
Lecture #7: Optimization in Learning

Instructor: Aditya Bhaskara Scribe: Tharindu Rusira

CS 5966/6966: Theory of Machine Learning

February 1st, 2017

Abstract

We saw the importance of empirical risk minimization in learning. In
many settings, the ERM problem is phrased as convex optimization, and
solved using the vast literature on the topic. In this and the next few lec-
tures, we will cover some of the basics. Today, we discuss the basics of
convexity, approximating loss functions by convex functions, and intro-
duce the gradient descent algorithm.

1 Introduction

So far in the course, we have seen ways to prove that the empirical risk mini-
mizer (ERM) also generalizes well. Now we focus on the problem of comput-
ing the ERM, given a hypothesis class H. I.e., given a sample S of points from
D, and their labels f , we wish to find a hypothesis h ∈ H that minimizes the
empirical loss (risk):

argminh∈HLS(h), where LS(h) := ∑
x∈S

1[h(x) 6= f (x)].

Consider the simple example of linear classifiers. Here H consists of all hy-
potheses of the form h(x) = sign(wTx). One of the earliest and most elegant A linear classifier for n dimensional vectors

x is simply a function defined by weights
w1, . . . , wn , where h(x) = sign(w1x1 +
w2x2 + ... + wn xn).

algorithms for finding a linear classifier is the so-called perceptron algorithm. It
works as follows.

Input: (x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))

Goal: find a weight vector w s.t. sign(〈w, x(i)〉) = y(i) for all i
w← 0 ∈ Rd

while a misclassified point x(i) is found,
w(t+1) = w(t) + yixi

In the ‘well-classifiable’ case, i.e., when there exists a w with ‖w‖2 = 1 s.t.
y(i) · 〈w, x(i)〉 ≥ η‖x(i)‖2 for some η > 0, it can be shown that the algorithm
converges in O

(
1

η2

)
iterations.

What if the data is not perfectly classifiable? In this case, the algorithm may
end up in cycles, and never converge. Furthermore, when there is no perfect
classifier (i.e., in an agnostic setup), finding the hypothesis with the least num-
ber of mistakes (i.e., that minimizes the loss function) is NP hard. The problem
is that the loss function `(h, x) = 1[h(x) 6= f (x)] is too discrete. This motivates
us to consider different loss functions that can be minimized easily, and can
act as a proxy for the number of mistakes.

Three natural candidates are the following:

1

2. Convex sets and functions

1. squared loss, where the loss of the ith point is defined as (y(i)−〈w, x(i)〉)2.

2. `1 loss, where the loss is |y(i) − 〈w, x(i)〉|.

3. logistic regression, where the loss is defined using the sigmoid. Formally,

the loss of the ith point is log
(

1

1+e−yi〈w,x(i)〉

)
.

Using a convex loss function is often preferred, as minimizing convex functions
over convex domains is an efficiently solvable problem. This will be the subject
of the next few lectures of the course.

2 Convex sets and functions

2.1 definition (Convex set). A set K ⊆ Rd is said to be a convex set if ∀x, y ∈
K, the segment joining x, y is fully contained in K.

2.2 definition (Convex function). A function f : Rd → R is said to be a
convex function over a convex set D, if for all t ∈ (0, 1), we have

(1) f (tx + (1− t)y) ≤ t f (x) + (1− t) f (y), ∀x, y ∈ D.
In real analysis, you may have seen convex-
ity defined in terms of the second deriva-
tive – f : R → R iff f ′′(x) ≥ 0 ∀x.
The two definitions are equivalent when
f is twice differentiable. The definition (1)
makes sense for all continuous f .

We now quickly recall basic notions from multivariate calculus.

2.3 definition. Partial derivative of f : Rd → R w.r.t. xi is defined as,

∂ f (x)
∂xi

= lim
δ→0

f (x + δei)− f (x)
δ

where ei is the i-th basis in Rd.

2.4 definition. Gradient of function f is defined as

∇ f =

∂ f
∂x1
...

∂ f
∂xd

The first order “Taylor approximation” for f can be directly obtained from the
above definitions.

(2) f (x + h) ≈ f (x) + 〈h,∇ f (x)〉, for all h, x ∈ Rd.

Another important property of a convex function (which is indeed crucial to
the analysis of gradient descent that we will see later) is the following:

(3) f (y)− f (x) ≥ 〈y− x,∇ f (x)〉 for all x, y

Geometrically, this inequality says that a convex function always “lies above”
the tangent to the function at any point. Indeed, convex functions are some-
times defined using the envelope of such tangent planes.

Next, we define some other useful notions about multivariate functions.

2.5 definition (Lipschitz property). A function f : Rd → R is said to be
ρ-Lipschitz if | f (x)− f (y)| ≤ ρ‖x− y‖ ∀x, y.

2

2.6 definition. A function f is said to be β−smooth if ∇ f is β−Lipschitz,
i.e., ‖∇ f (x)−∇ f (y)‖ ≤ β‖x− y‖.

3 Minimizing convex functions

Let f be a convex function defined over a convex set D ⊆ Rd. We will be
interested in the minimization problem: minx∈D f (x).

Most of the known algorithms for general convex optimization work in an it-
erative way – they start with any point in D, and try to move to a nearby
point with a smaller value of f . They repeat this process until no “local im-
provement” is possible (this is essentially local search). The nice thing about
convex functions is that such a procedure is guaranteed to converge to the
(global) minimum! (I.e., any local minimum is a global minimum – this is a
nice exercise for those who have not seen it earlier.)

Now, which direction should we move in order to obtain a local improvement?
From the first order Taylor approximation of f , we know,

f (x + h) ≈ f (x) + 〈h,∇ f (x)〉 for “smal” h.

For small h, if we need to have f (x + h) < f (x), we must make sure that
〈h,∇ f (x)〉 < 0, i.e., we should “move” along a direction whose inner product
with the gradient is negative. The easiest choice is the negative of the gradient!
I.e., we can set h = −η∇ f (x) with ∇ > 0 which implies f (x + h)− f (x) ≈
−η‖∇ f (x)‖2 < 0. η is called step size in this context. It is

a parameter that should be chosen apropri-
ately, depending on f .This is the idea behind the popular algorithm – gradient descent. We will de-

scribe and analyze gradient descent over the next few lectures.

4 Gradient descent

Formalizing the discussion above, the gradient descent procedure is the fol-
lowing:

set x(0) ← any point in D
for t = 0 : T − 1

x(t+1) = x(t) − η∇ f (x(t))
return x(T)

Does this procedure always converge to the optimum? How do we choose η
and T? What if x(t+1) defined as above is not in D (i.e., we lose feasibility)?

These are all questions that we will study. The choice of η is an important
concern during implementation – if it’s chosen to be too small, then the al-
gorithm typically converges to the minimum, but it could be too slow. If η is
large, then the algorithm may oscillate, and even diverge. In general, choosing
a varying η is also possible, and sometimes works well.

The other issue is the loss of feasibility, which occurs when x(t+1) as defined
above ceases to be feasible (in D). In this case, a general solution is to set x(t+1) A projection of a point x onto a convex

set D is defined to be the closest point to x
in D. For simple sets D, such a projection
is often easy to compute (e.g., by normaliz-
ing, etc.).

to be the projection of x(t) − η∇ f (x(t)) onto D. All the analyses we will see in
the coming lectures continue to hold under such a projection.

3

5. Analysis of Gradient Descent

5 Analysis of Gradient Descent

We now study the gradient descent algorithm above, under the two assump-
tions:

1. f is ρ-Lipschitz, and

2. The starting point x(0) is at a distance ≤ B from the optimum x∗.

In the next lecture, we will show the following bound:

(4)
1
T

T

∑
t=1

(f (x(t))− f (x∗)) ≤ B2

2ηT
+

ρ2η

2
.

This bound can be used to determine the setting of η and T. The LHS is the
average difference between the function values of the current iterate and the
optimum. We note that this analysis does not really imply that x(t) → x∗.
Indeed, there could be a “region” around the optimum in which the function
could be relatively flat, and it would take many iterations for x(t) to really get
close to x∗. However, if all we care about is the function value (as is true in
nearly all applications), the bound above is good enough.

In order to have the RHS being ε, an easy way to set the parameters is to
choose η = ε/ρ2, and T = B2/εη. If we think of B, ρ as constants, this means
that the number of iterations should be O(1/ε2).

4

	Introduction
	Convex sets and functions
	Minimizing convex functions
	Gradient descent
	Analysis of Gradient Descent

