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Abstract
In this lecture, we discuss Rademacher complexity, which is a differ-

ent (and often better) way to obtain generalization bounds for learning
hypothesis classes.

1 Introduction

Recall the notions introduced in the last couple of lectures – the growth func-
tion τH(m) and the Vapnik-Chervonenkis (VC) dimension.

We saw that a class is learnable iff log τH(m)
m tends to 0 as m → ∞. Further,

we saw that this condition is equivalent to saying that H has a finite VC
dimension (via Sauer’s Lemma). If H is learnable, it means that a hypothesis
that minimizes the empirical risk also generalizes well, w.h.p. In this lecture,
we will see an alternative way to obtain generalization bounds.

2 Motivation – Limitations of PAC

While the PAC model provides an elegant characterization of learnability, it is
somewhat restrictive. Recall the definition of PAC learnability: there exists an
algorithm, that for every distribution D and ε, δ > 0, finds a hypothesis that is
“ε-optimal” with probability 1− δ. By ε-optimality, we simply mean that the

loss is within ε of the best hypothesis inH.
There are two strong requirements here. First, we need the learning algorithm
to succeed for every distribution D over the inputs. Second, for every accuracy
parameter ε, we need the algorithm to output an ε-optimal hypothesis, using
m(ε, δ) samples.

We can imagine relaxing both of these conditions. For instance, in practice
we might not need the algorithm to work for all D. Alternately, we might
require the algorithm to learn a hypothesis that is “somewhat” accurate (say
ε = 0.1). The latter question will be addressed in the course when we discuss
boosting. Today, we will focus on the first question. Specifically, can we obtain
generalization bounds that depend on D (and are thus less “worst case”)?

This is the setting for the so called Rademacher complexity, which is the sub-
ject of today’s lecture. Rademacher complexity is named after

Hans Rademacher, a german-born mathe-
matician known for work in mathematical
analysis and number theory, this is a mea-
sure of richness of a class of real-valued
functions with respect to a probability dis-
tribution.

3 Distribution dependent generalization

Suppose we have some distribution D (unknown) from which we obtain m
i.i.d. samples S. Let S = x1, x2, · · · , xm, for convenience. As usual, we denote
the empirical loss of a hypothesis h ∈ H by LS(h), and its true loss byLD(h).
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4. Rademacher Complexity and Generalization

To prove a generalization bound, we require the difference between the two
quantities to be small, for every h ∈ H. (In this case, the ERM procedure will
yield a hypothesis with near optimal loss).

Let us start with a thought experiment: suppose we are given a hypothesis h,
the sample S, and we are asked to estimate LS(h)− LD(h). One natural idea is
to try “cross-validation” – i.e., we can split the sample S into two, S1 (training)
and S2 (test), and use the estimate

LS(h)− LD(h) ≈ LS1(h)− LS2(h).

Cross-validation and Rademacher averages

Let us now expand out the expression introduced above. Let `(h, xi) be an
indicator which is 1 if hypothesis h errs on the example xi and is 0 otherwise.
The equation above can now be re-written as:

LS(h)− LD(h) ≈
1
|S1| ∑

xi∈S1

`(h, xi)−
1
|S2| ∑

xi∈S2

`(h, xi).

Suppose we had |S1| = |S2| = |S|/2. The RHS above is now quite simple
(recall |S| = m):

2
m ∑

xi∈S1

`(h, xi)− ∑
xi∈S2

`(h, xi).

Thus if S is given to us, then the loss `(h, xi) appears with a +1 coefficient if
xi ∈ S1 and a −1 coefficient if xi ∈ S2. Suppose we denote this sign by σi, we
have

LS1(h)− LS2(h) =
2
m

[
∑

i
σi`(h, xi)

]
.

Suppose we have a fixed S, and we partition it into two halves S1, S2 at ran-
dom, then this is equivalent to picking signs σi at random (independently
and uniformly), and the sum above “in principle” provides an estimate of
the generalization error. (There is a mild technicality – if we choose the signs
independently, then we may not exactly have |S1| = |S2|, but we ignore this.)

The sum above is typically referred to as a Rademacher average. We will now de-
fine the notion of Rademacher complexity, which intuitively is the supremum
of the quantity above, over h ∈ H.

4 Rademacher Complexity and Generalization

4.1 definition. Let H be a hypothesis class over a domain X , and let S be
a sample. The Rademacher Complexity of H with respect to the sample S is
defined to be

(1) RS(H) := Eσ sup
h∈H

1
m

∣∣∣∣∣ m

∑
i=1

σi`(h, xi)

∣∣∣∣∣
In the above defintion, the expectation is over the signs σ, which are chosen
to be ±1 independently. We take supremum over h, because we wish to have
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4.1. A New Generalization Bound

a generalization guarantee (LS(h) ≈ LD(h)) for all h ∈ H.

Indeed, the notion of Rademacher averages and complexity can be defined
not just for loss functions of hypotheses, as above, but for arbitrary classes of
functions. There are many settings in machine learning and theoretical com-
puter science, in which we have a class of functions F over a domain, and our
goal is to approximate the expected value of f ∈ F using samples from the
domain. The goal broadly is to obtain a good estimate for every f ∈ F , using
a small number of samples.

The notion of Rademacher complexity allows us to analyze this general set-
ting, for bounded functions.

4.2 definition. Let F be a class of real valued functions over a domain X ,
that are take values in [−1, 1]. The Rademacher complexity of F wrt a set The bound of [−1, 1] is arbitrary – any

bounded interval will work as well.S ⊆ X is defined to be:

(2) RS(F ) = Eσ sup
f∈F

1
|S|

∣∣∣∣∣ m

∑
i=1

σi f (xi)

∣∣∣∣∣
Next, we introduce a slight variant, where we do not have S, but simply the
sample size m.

(3) Rm(F ) = ES∼Dm RS(F )

This is a complexity measure for F that depends on D (unlike the notions of
growth function and VC dimension).

A New Generalization Bound

As discussed earlier, we now present a bound that applies broadly to a setting
in which we have a function class F , we have points coming form distribution
D, and we want to estimate the expected value Ex∼D f (x) for all f ∈ F .

4.3 theorem. Let S = {x1, x2, · · · , xm} be a sample from an unknown distribution
D. With probability at least 1− δ, we have:

(4) sup
f∈F

∣∣∣∣∣ED( f )− 1
m ∑

i
f (xi)

∣∣∣∣∣ ≤ 2Rm(F ) + O

(√
log(1/δ)

m

)
.

Further, the inequality also holds w.h.p., when Rm(F ) is replaced with RS(F ). I.e.,

(5) sup
f∈F

∣∣∣∣∣ED( f )− 1
m ∑

i
f (xi)

∣∣∣∣∣ ≤ 2RS(F ) + O

(√
log(1/δ)

m

)
.

The first term is Radamacher complexity, and the second term is the tail that
one expects in a standard Chernoff bound for a single f . Thus having a small
Rademacher complexity Rm(F ) implies a good generalization bound.

The second inequality above, i.e. (5) is interesting because it gives a bound
that can, in principle, be evaluated given the sample S (with a knowledge of F ).
Thus, given a sample, we can, with high probability, estimate the generaliza-
tion error! Indeed, this easily implies the generalization bound we saw earlier
in terms of the growth function. We will outline the proof in Section 5

The proof of the theorem is via a clever symmetrization argument. We will skip
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4. Rademacher Complexity and Generalization

it here, and point to Rob Schapire’s notes:
https://www.cs.princeton.edu/courses/archive/spring13/cos511/scribe_

notes/0305.pdf

Now we discuss one key ingredient in the proof, which is a concentration
inequality that is widely useful.

McDiarmid Inequality

Let us start with a word on concentration inequalities. Given a random vari-
able X that takes real values, concentration inequalities deal with the question:
what is the probability that X deviates a lot from its expectation?

There has been a long line of work in probability and statistics that essen-
tially says that if X is an aggregate of a large number of independent random
variables without depending too strongly on each of the variables, then the so-
called “law of large numbers” kicks in, and X is tightly concentrated around
the mean. The McDiarmid inequality is a concrete way of formalizing this
intuitive statement.

Suppose we have a random variable X which is a function g of a collection of
independent (not necessarily identically distributed) variables X1, . . . , Xm. I.e.,

X = g(X1, X2, . . . , Xm).

Now, suppose the sensitivity of g to the variable Xi is bounded by ci, i.e.,

∀x1, x2, . . . , xm, ∀x′i ,∣∣g(x1, x2, . . . , xi−1, xi, xi+1, . . . , xm)− g(x1, x2, . . . , xi−1, x′i , xi+1, . . . , xm)
∣∣ ≤ ci.

Then, the McDiarmid inequality says:

(6)

Pr
X1,X2,...,Xm

[|g(X1, X2, · · · , Xm)−E[g(X1, X2, · · · , Xm)]| > t] ≤ exp

(
−t2

c2
1 + c2

2 + c2
3 + · · ·+ c2

m

)
.

The expectation is (once again) over the choice of X1, . . . , Xm. Note that we
do not care how complicated g is – all we need for (6) to hold is that g does
not depend “too much” on its individual arguments. In the HWs, we will see
some interesting examples.

For now, let us see how McDiarmid’s inequality is used in our setting. Suppose
we define

g(X1, X2, . . . , Xm) = sup
f∈F

[
1
m ∑

i
f (Xi)− E

X∼D
[ f (X)]

]
.

I.e., g is the supremum over f ∈ F of the generalization error. This is well
defined even when F is infinite. Let us now see how sensitive g() is to a
change in xi. Suppose we consider some values for x1, . . . , xm, and replace xi
with x′i .

Now, for every f , we have f (xi)− f (x′i)
m ≤ 2

m , and thus each term in the supre-
mum changes by at most 2/m. This means that the supremum itself changes
by at most 2/m. (You may want to show this formally if it is not clear.) Thus,
we can set ci = 2/m for all i, and use McDiarmid’s inequality. This shows
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that with high probability, g() will be close to its expectation. Thus the second
(and the tricky) of the proof is to bound

EX1,...,Xm [g(X1, . . . , Xm)] .

5 Comparison to Earlier Bounds

As we mentioned earlier, the Rademacher bound (Theorem 4.3) is stronger
than the other ways of obtaining generalization bounds (including the one we
saw involving the growth function, and the VC dimension).

Indeed, using Eq. (5), it follows that we only need to bound RS(F ), in order
to bound the generalization. The following lemma then implies that we can
recover the theorem we saw a couple of lectures ago (bound in terms of the
growth function).

5.1 lemma. Let F be the class containing loss functions of a hypothesis class H.
Then

RS(F ) ≤
√

log(τH(m))

m
,

where τH, as before, refers to the growth function.

To prove the lemma, start by recalling the definition of RS(F ),

RS(F ) := E sup
f∈F

1
m

∣∣∣∣∣ m

∑
i=1

σi f (xi)

∣∣∣∣∣ .

In our case, F is the class of loss functions for H. I.e., each f corresponds to
one h ∈ H, and f (xi) is 1 if h classifies xi correctly, and 0 otherwise. Thus, each
f can be viewed as a 0/1 vector of length m. The number of distinct strings
is at most the growth function τH(m), because the growth function captures all
the ways in which h ∈ H can classify the points S. Thus, the supremum over
f ∈ F is essentially the supremum over |τH(m)| terms!

Once we have the supremum over a finite number of f ’s we can simply use
a combination of Chernoff and union bounds, as we have seen earlier. This
is captured in the so-called Massart lemma. We will skip the full proof of the
Lemma – it can be found in Chapter 26 of the textbook.

6 Conclusion

This concludes the portion of the course on statistical learning theory. In gen-
eral, to prove learnability for a class H, we prove a generalization bound
(which implies that ERM is a good hypothesis), and then we need to com-
pute the ERM. We have seen different techniques (of which the Rademacher
complexity is the most powerful), to do the first of these steps. The second
step is an optimization problem. This will be focus of the second part of the
course. We then study the online learning framework, which is closely related
to optimization.
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