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Abstract

In this lecture, we review the notion of the growth function of a hy-
pothesis class, and introduce VC dimension – a fundamental notion in
learning theory. We then prove a powerful lemma that connects the VC
dimension to the growth function.

1 Review and Introduction

Let us recall some of the notation we have used over the last few lectures. We
started to look at infinite hypothesis classesH and we are trying to understand
the question of when a hypothesis class is PAC learnable. In the last lecture,
we introduced the notion of the growth function (denoted τH(m) of a class H. Recall: the growth function is the max

number of sign patterns that H induces on
a set of size m.As a consequence of the no free lunch theorem, we saw that if the growth

function is exponential, then the class H is not PAC learnable, and vice versa.
Thus to understand the learnability of a class, we simply need to know how
τH(m) grows.

2 Analysing the Growth function

While the characterization is elegant, reasoning about the growth function is
often not easy unless the hypothesis class is very simple.

Consider an extremely simple class, e.g., half planes in R2. To compute the
growth function, we need to argue that only lines that pass through two of
the points “matter” (a fact that takes some reasoning), and then conclude that
τH(m) grows as Θ(m2).

insert image - You have planes like shown and everything on one side is
labeled (plus) and the other half is labeled (minus).

If we consider a H that is moderately more involved, e.g., the interiors of
rectangles (not necessarily axis aligned), it becomes intricate to reason about
the max number of sign patterns the class can induce on a set of m points (as
we need to obtain a bound that works for all sets of m points). Is there a notion
that makes it easier to argue about learnability?

3 Shattering, VC Dimension

Let us start with the simple observation, that the largest possible number of sign
patterns that H can induce on a set S of size m is at most 2m. I.e., σH(S) ≤ 2|S|.
A set S for which equality is achieved above is said to be shattered by H. I.e.,
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4. Relation to the Growth Function

3.1 definition. H is said to “shatter” a point set S if σH(S) = 2|S|.

Next, we define the VC dimension – named after the authors who introduced
it – Vapnik and Chervonenkis.

3.2 definition (VC dimension). The VC dimension of a class H is the size of
the largest S it shatters.

Any non-empty class trivially shatters a set of size 0, thus the VC dimension
is non-negative. Also, the VC dimension is equal to zero iff H has precisely
one hypothesis – a constant function.

3.3 example. Let H be the set of all half spaces in the two-dimensional plane.
What is its VC dimension?

We want the largest m for which there is a set of m points that is shattered. It
is clear that H can shatter a set of 3 points, so the VC dimension is ≥ 3. Could
there exist a set of 4 points that are shattered?

This illustrates the difficulty in reasoning about the VC dimension – while
it is often easy to show that the VC dimension is at least a certain value (by
exhibiting a set that is shattered), it is trickier to prove that the dimension is
less than a certain value. To show this, we need to show that no set of that size
can be shattered.

In the case of lines, this can be done by observing that any set of 4 points in
the plane are in a “convex” configuration (Fig 2a) or as a triangle with one
point in the interior (Fig 2b). In either case, we can show that it is impossible
to attain all possible sign patterns using half spaces. Thus, in this example,It is easy to lower bound the VC dimension

and harder to upper bound it. the VC-dimension is 3.

3.4 example. Consider the example of convex polygons in a plane. (Insert
image) I.e., the class H consists of all convex polygons in a 2D plane, with the
interior labeled + and the exterior − (each h ∈ H gives a classifier for the
plane). What is the largest set that can be shattered? If we take any K points
that are all in convex position then if we pick any subset of these they can
form a convex polygon and thus we can make precisely this subset + and the
rest −. We can also easily get the “all −” hypothesis. Since we can do this for
any integer K ≥ 3, the VC-dim of this H is ∞.

4 Relation to the Growth Function

We next prove a rather surprising theorem, relating the VC dimension with
the growth function. It says that a hypothesis class of VC dimension d has its
growth function τH(m) = O(md). I.e., for any fixed d, it is polynomial in m.
Formally,

4.1 theorem (Sauer, Shelah, Vapnik-Chervonenkis). Let H be a hypothesis class
of finite VC dimension d. Then for every m, we have

(1) τH(m) ≤
(

m
0

)
+

(
m
1

)
+ ... +

(
m
d

)
[= O(md)]

This is a remarkable theorem, as it implies that “asymptotically”, the growth
function of any H is either 2m, or it is md, for a fixed d. An easy consequence
is the so-called fundamental theorem of statistical learning theory which we

2



will discuss now.

5 Fundamental theorem of stat learning theory

5.1 theorem. Class H is PAC learnable ⇐⇒ H is agnostically PAC learnable
⇐⇒ H has a finite VC dimension.

It basically says that the VC-dimension characterizes the notion of PAC learn-
ability. The proof is via the following two claims.

1. If H has VC-dim ∞, then H is not PAC learnable. This means the growth function is 2m , and
so by the “no-free-lunch” theorem we saw
last class, it implies that H is not PAC
learnable.2. If VC-dim is d, then H is agnostically PAC learnable.

The second claim follows by first using Sauer’s lemma to conclude that τH(m) ≤
O(md), and then appealing to the result we saw in the last lecture, namely

5.2 theorem. Let H be a hypothesis class. Then for every D, and every δ ∈ (0, 1),
we have that w.p. at least 1 - δ over the choice of S,

(2) sup
h∈H
|LD(h)− Ls(h)| ≤

O
(√

log(τH(2m))
)

δ
√

m
.

If we use the fact that τH(m) = O(md) in the above, the RHS simplifies to√
d log m

mδ2 . Thus, for (ε, δ)-learning, we need ≈ dpoly(1/δ, 1/ε) training sam-
ples.

The bound above gives a bound on the number of training samples we need
to learn a hypothesis class. The moral is: small VC-dim implies that fewer
training e.g.s suffice.

6 Proof of Theorem 4.1

Let us now prove Sauer’s Lemma (stated earlier), as it is key to the proof of
the Fundamental theorem.

Proof. Given a hypothesis class H of VC dimension d, we need to prove that
for any set S of size m ≥ 1,

(3) σH(S) ≤ φ(m, d), where φ(m, d) :=
(

m
0

)
+

(
m
1

)
+ ... +

(
m
d

)
.

The proof proceeds by induction on m + d. As base cases, we consider d = 0
(and arbitrary m) and m = 1 (and arbitrary d).

Note that d = 0 means that the classH has just one hypothesis, as we observed
earlier. Thus in this case, for any S, σH(S) = 1 = φ(m, 0).

So also, if m = 1, (and assuming d 6= 0, as that case is covered above) we have
σH(S) ≤ 2 (as there are only two sign patterns possible), and φ(1, d) = 2.

Now, consider some m > 1 and d > 0. Suppose that we have S = s1, s2, s3, ...sm
and we want to analyze how many sign patters H could induce on S. First,
we can omit one of the points and see how many sign pattern H could give
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6. Proof of Theorem 4.1

on the rest of the points. Let us define P1 as the set of sign patterns induced
by H on {s2, s3, ..., sm}.
By the inductive hypothesis (noting that we have m− 1 elements, and the VC
dimension of H is d), we have |P1| ≤ φ(m− 1, d).

Now let’s define P2 as the set of sign patterns σ on s2, s3, ..., sm that have the
property that both 0σ and 1σ are valid sign patterns on {s1, s2, s3, ..., sm}.

6.1 example. Suppose m=3, and suppose that the sign patterns induced by H
on some set are P = {011, 111, 101, 010}.
P1: is the restriction on 2nd and 3rd bit. Thus, P1 = {11, 01, 10}.
P2: is the subset of P1 with the property that both 0σ and 1σ are patterns in
P (e.g for σ = 01, we want to see if 001 and 101 are in P). Thus, P2 = {11}.

6.2 claim. |τH(S)| = |P1|+ |P2|.

In our example P1 = 3 and P2 = 1, and their sum is |P|. In general, if we look
at a sign pattern σ on s2, s3, . . . , sm, and ask how many patterns in P (defined
as above) have σ as the restriction to the last m− 1 coordinates. If the answer
is two, it means that 0σ and 1σ are both in P (in which case σ appears once
in P1 and once in P2), and if the answer is 1, then σ appears only in P1. Thus
the claim follows.

Now, how can we bound the size of P2? Let us abuse notation slightly and
also think of P2 as a set of hypotheses on the domain s2, . . . , sm.

6.3 claim. VC dimension of P2 is ≤ d− 1.

In particular, it is not d. The reason is that if P2 could shatter a set T ⊂
{s2, . . . , sm}, thenH can shatter the set T∪{s1} (this is by the definition of P2),
and thus if |T| = d, then the VC dimension of H is d + 1 — a contradiction.

Thus we have |P2| ≤ φ(m− 1, d− 1).

This implies that

τH(S) ≤ φ(m− 1, d) + φ(m− 1, d− 1).

Now, using Pascal’s identity (recall Binomial theorem from high school), we
have (m−1

k−1 ) + (m−1
k ) = (m

k ), and using this repeatedly, we get φ(m − 1, d −
1) + φ(m − 1, d) = φ(m, d). Together with the bound on τH(S) above, this
completes the inductive proof.
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