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Abstract

In this lecture, we introduce the notion of the growth function corre-
sponding to a hypothesis class. This is the key notion that allows us to
prove the learnability of infinite hypothesis classes.

1 Introduction

Last class, we proved the ”No Free Lunch” theorem, which shows that

• There is no universal learning algorithm.

• If we wish to learn an arbitrary function over a set of m points, we need
at least m

2 training samples.

In other words, the hypothesis class H which consists of all possible functions
over the domain cannot be learned (in the PAC model). Today we will see how
to reason about more restrictive (and reasonable) function classes. The goal in
this lecture and the next is to come up with a characterization of learnable
hypothesis classes.

Towards this end, let us recall what we showed a couple of lectures ago: every
finite H is learnable using O

(
log |H|+log(1/δ)

ε2

)
samples (to an accuracy ε, w.p.

1− δ).

What about infinite classes? In the previous lecture, we discussed why we
expect the class of “linear thresholds over the line” is learnable. In some sense,
this is feasible for every D, because we wish to find a hypothesis with small
error, not necessarily the “right threshold”. (We refer to the textbook for a
formal treatment of this example. It turns out that linear thresholds are PAC
learnable using ≈ log(1/δ)

ε2 samples.)

2 The Growth Function

Suppose we have a (possibly infinite) hypothesis class H, consisting of binary
classifiers over a domain X (the output of the binary classifier is a sign +
or −). Now, suppose we fix an S ⊆ X of size m. Every hypothesis h ∈ H,
restricted to the points of S, produces a length-m “sign pattern” (i.e., the string
h(x1)h(x2) . . . h(xm), corresponding to S = {x1, x2, . . . , xm}). For example, the
sign patterns induced by the three hypothesis classes on a set of five points
are illustrated in Figure 2.

Let us denote by σH(S) the number of distinct sign patterns produced as
above, as h varies over H. Clearly, for all S of size m, we have |σH(S)| ≤ 2m.
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2. The Growth Function
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Figure 1: Figure showing five points and three hypotheses (interior of the
curved shapes). The sign patterns induced on p1 p2 p3 p4 p5 are +,−,−,−,−,
−,−,−,+,+ and −,−,−,−,−.

2.1 definition. The growth function of a class H is denoted τH : N → N ,
and τH(m) is defined as the max number of sign patterns H can induce on a
set of size m. In other words,

τH(m) := max
|S|=m

σH(S).

Before proceeding, we observe that the “corollary” of the no-free-lunch theo-
rem we saw in the previous lecture implies that no class for which τH(m) is
exponential is PAC-learnable.

To illustrate this, suppose H is a hypothesis class for which τH(m) ≥ 2m/10

for all m. Now, the corollary of the no-free-lunch theorem implies that as long
as we obtain fewer than m/100 samples, we cannot learn H to an accuracy
better than 1/20, with probability > 1/2. This proof can be extended to the
following theorem:

2.2 theorem. Let H be a hypothesis class that satisfies τH(m) ≥ 2Ω(m), for all m.
Then H is not PAC learnable.

Growth Function for Linear Separators

Before proceeding, let us see the example of a simple hypothesis class, and
study its growth function. A natural starting point is the set of linear thresh-
olds over the real line (i.e., X = R).

Let S be any set of (possibly unordered) points S = P1, P2, P3, ..., Pm on a line,
where each Pi is labelled with a + or −. How may sign patterns are possible?
If the points were ordered, the only patterns possible are

1 +,+,+, ...,+
2 −,+,+, ...,+
3 −,−,+, ...,+
...

m + 1 −,−,−, ...,−

If the points were not ordered, the patterns would simply be a permutation of
the above sign patterns. In any case, we have that

τH(S) ≤ m + 1.

Note that this is polynomial in m. The same is true for many natural hypoth-
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esis classes, including axis parallel rectangles, half spaces in R2, etc.

3 Growth Function and Learning

The main theorem for today is that as long as τH(m) is sub-exponential, the
class H is PAC learnable. This is a converse to Theorem 2.2, and together they
provide a characterization of learnability (although we will see a much more
‘crisp’ characterization in the next class).

3.1 theorem. Let H be a class and τH be its growth function. Suppose that

log(τH(m))

m
→ 0 as m→ ∞.

Then H is PAC learnable.

This follows from the following, more quantitative result:

3.2 theorem. Let H be a class, then for every D and every δ ∈ (0, 1) we have that
with probability at least 1− δ over the choice of S,

(1) sup
h∈H
|LD(h)− LS(h)| ≤

4 +
√

log(τH(2m))

δ
√

2m

Suppose there exists an m such that the RHS in Theorem 3.2 is < ε/2. Then,
the theorem states that w.p. at least 1− δ, the sample S provides a good ap-
proximation to the loss for every h ∈ H, and thus empirical risk minimization
yields a hypothesis whose loss is within ε of the optimal loss (which is what
we require for PAC learning).

Now, as long as log(τH(m))
m → 0, there is bound to exist an m such that the

RHS in Eq. (1) is ≤ ε/2. Thus, using the reasoning above, we conclude that
Theorem 3.2 implies Theorem 3.1.

On proving theorem 3.2 The proof of the Theorem will be given after we
discuss Rademacher complexity (couple of lectures from now). For now, we
simply point out the difficulty in proving such a claim: if we had a single
h for which we wish to show that |LD(h) − LS(h)| is small, then we could
simply apply a Chernoff bound (as shown below). The issue is that we need
to conclude this for all h ∈ H. Since there are potentially infinitely many h, we
cannot simply take a union bound over all h ∈ H. (In the case of finite H we
saw earlier, taking a union bound is exactly what gave us our bound.)

Thus, we defer the proof to Lecture 6.

For now, let us illustrate in detail how to apply a Chernoff bound (as we will
do it often in the course), by showing that for any single h, |LD(h)− LS(h)| is
small, with high probability.

One form of the Chernoff bound is the following:: There are a bunch of very good surveys on
Chernoff bounds. One is by Chung and Lu,
and another is by Boucheron, Lugosi and
Bousquet.3.3 theorem (Chernoff). Suppose X1, X2, ..., Xm are i.i.d. 0/1 random variables,

with E[Xi] = p. Then,

Pr(|∑
i

Xi −mp| ≥ t) ≤ 2e
−t2
4m , or equivalently,
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3. Growth Function and Learning

Pr(

∣∣∣∣∣ 1
m ∑

i
Xi − p

∣∣∣∣∣ ≥ t
m
) ≤ 2e

−t2
4m .

Thus for 0/1 random variables with expectation p, the probability that the
“empirical average” deviates from p by an amount t/m is bounded (roughly)
by exp(−t2/m). Thus, to estimate p up to an additive error of ε with proba-
bility ≥ 1− δ, we need to make sure that t/m is ε, and 2e−t2/4m ≤ δ. These
can be ensured by setting

m = O
(

log(1/δ)

ε2

)
and t =

√
4m log(2/δ).

In our application LD(h) = Ex∼D[`(h, x)] (where `(h, x) is the loss for the
hypothesis h on sample x). The loss is either 0 or 1. We are estimating this
expectation via an empirical average over the m samples in S. Hence, we can
apply the Chernoff bound, with t, m as above.
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