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Abstract

1 Introduction

In last session, we talked about regularization which is a way to avoid over-
fitting. Explicit techniques which can be used for regularization are dropout
and l1/l2 regularization. We should be careful about network structure when
applying these techniques.

2 Definition of Unsupervised Learning and Examples

2.1 definition. In contrast with supervised learning, in unsupervised learning
there is NO labeling for the data points.

Here is examples of unsupervised learning:

• Example 1: (Matrix completion or movie recommendation problem)
A set of users has initially rated some subset of movies (on the scale 1

to 5). The goal is to recommend movies to a user that he/she might be
interested.


u1 u2 ... un

M1 5∗
M2 2∗
... 4∗

Mk 3∗


In this example, there is no labeling for the movies. There is some infor-
mation about the preferences of users.

• Example 2: (Cocktail Party Problem)
Suppose you are at a cocktail party and the microphone is the superposi-
tion of a whole bunch of signals. The goal is to break up the microphone
sound to its components.
In this problem, we do not know the labeling for each person’s sound.

• Example 3: (Sparse coding)
This problem answers this question in neuroscience: How humans visual
system can interpret images? We know every image is a sparse combi-
nation of a few patterns. In this problem, there’s a bunch of signals (all
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4. Unsupervised Learning: Clustering

the images) and the goal is to find a set of patterns which satisfies these
signals.

Now we come up with a question: How we think about unsupervised learn-
ing? The answer would be Generative Model.

3 Generative Model

3.1 definition. In generative model, we assume that data is generated from a
random process with few parameters.

In clustering problems, we assume the data are chosen from a guassian distri-
bution. In figure below, the point ”dataPoint” is chosen by a guassian distri-
bution with mean ”center” .

center

dataPoint

In movie recommendation systems example, suppose each movie is a sparse
combination of generes, for example movie Mi is 0.4× action + 0.6× drama
and every user j has preferences lj. We can ”pretend” that the user preferences
are generated from linear combination of generes and lj’s.
Now we can ask: Is there any right model? The answer is NO. And aslo we
should consider, all the issues such as overfitting and trade off between com-
plexity and overfitting will happen in unsupervised learning.

4 Unsupervised Learning: Clustering

In this lecture, we will mostly talk about the data clustering which is unsuper-
vised learnig. Suppose there is some points on a line, what is a simple way to
model this?

xxxxxx xxx x x

One way to think about this data points is generative model. Now we should
find what is the reasonable model and what are the parameters?
In this problem, polynomial models are a bad choice, since they blow up very
easily. A good model for clustering problem is to think of the distribution of
points as a superposition of gaussian distribution, but how many different
gaussian distrubution?
Suppose the actual data distribution is like this 0.5g1 + 0.3g2 + 0.2g3 which is
known as Mixture of Guassian. We know every guassian distribution has two
parameters: mean (µ) and variance (σ2).
In the mixture of guassian model, we need more parameters: the number of
guassian distributions (k), the mean and variance for each guassian distribu-
tion (µi and σ2

i ) and also the weight for each guassian distribution (ωi). Once
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we find the parameters, we will have a way to generate (potentially infinity)
data points.
What does data distribution mean in gaussian mixture model?

x

y

If we assume the probability mass is 1, the data distrubtion means the fraction
of data points that belong to a specific interval (For example, blue area in
figure above) in the gaussion mixture plot.

5 Data Distribution in Mixture of Gaussian Model:
Likelihood

A formal way to measure how good a model fits data points is likelihood.
Likelihood is defined as:

Pr[generating data|µi, σ2
i , ωi, k]

Suppose the parameters µi, σ2
i , ωi, k is associated with a guassian mixture

model, this measure calculates the likelihood of generating given data points
using this model.
For one guassian distribution which mean and variance are 0 and 1.

x

y

t1 t2

The probability of generating points t1 and t2 is equal to
1√

2πσ2
.e− (t2

1)

2σ2 ×
1√

2πσ2
.e− (t2

2)

2σ2 . In general, if f is the probability density function of the distri-

bution, the probability of generating points {x1, x2, . . . , xn} would be:
f (x1). f (x2). . . . f (xn).
A small probability is not good, since we want to find parameters that maxi-
mize this probability. Maximum Likelihood Estimator which is defind as:

argmax
θ

Pr(generating data|θ)
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6. Kmeans Problem

will help us find a model which is most likely to generate the data points.
Now we want to find to use MLE to find the best singular gaussian to generate
data points {x1, x2, . . . , xn}:

Pr(x1, x2, . . . , xn|µ, σ2) = (
1

πσ
)

n
2 × e−(∑i(

xi−µ

σ2 ))

Which is equivalent to minimizing the ∑i(
xi−µ

σ2 ). Therefore:

argmax
µ,σ

Pr(X|µ, σ) = argmin
µ,σ

∑
i
(

xi − µ

σ2 )

For a model which is a mixture of two gaussian distribution, if f is the proba-
bility density function, the probability of generating data points {x1, x2, . . . , xn}
would be:

Pr(x1, x2, . . . , xn|µi, σ2
i ) = Πi( f (xi))

Considering both ω1 and ω2 equal to
1
2

:

f (xi) =
1
2

.
1√

2πσ2
1

.e−
(xi − µ1)

2

2σ2
1

+
1
2

.
1√

2πσ2
2

.e−
(xi − µ2)

2

2σ2
2

Which the distance to the closest mean matters.

6 Kmeans Problem

6.1 definition. you have a bunch of points x1, x2, . . . , xn; the goal of kmeans
problem is to find centers µ1, µ2, . . . , µk subject to ∑n

i=1(xi − µc(i))
2, which c(i)

is the closest center to xi, is minimized.

µ2
x
1

x
2

x
3 µ1

x
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x
5

Points 1, 2, 3 have assigned to center µ2 and points 4, 5 have assigned to µ1. By
changing µi’s, the clustering would change.
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