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Abstract

In this lecture, we will see the details of the back-propagation algo-
rithm. We will also look at questions about the power of depth in neural
networks.

1 SGD on NN

Recall that σ(t) = (1 + exp(−t))−1 and then σ′(t) = σ(t)(1− σ(t)). Note that
the network structure is chosen ”beforehand”. How you choose the structure?

Therefore, the challenge is to figure out the edge weight. In principle, we can
compute ∂ f

∂w for every weight w. We use SGD to compute the weight. The
algorithm work as the following.

Given the training data (x1, y1), . . . , (xn, yn) and objective function 1
n ∑n

i=1( f (xi)− yi)
2.

For iteration t = 1, . . . , T,
Pick a random example xit .
Change weight using derivative of loss(xit).

2 Example of 3-layer NN

Denote the following notation.

• f is the output node

• zi is node in first layer

• yi is node in second layer

• xi is node in third layer

• ui is edge between f and zi

• Vij is edge between zi and yj

• Wij is edge between yi and xj

In order to update in SGD, our goal is to find ∂ f
∂ui

, ∂ f
∂Vij

and ∂ f
∂Wij

. Recall that w(new) = w(old) − η
∂ f
∂w
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3. VC dimension and NN

For any two node in the network structure n1, n2, denote n1 ↔ n2 that there is
an edge between n1 and n2. In the first layer, we have f = σ(∑ f↔zi

uizi). For
any ui,

∂ f
∂ui

= σ′( ∑
f↔zi

uizi) · zi = f (1− f )zi

In the second layer, for any zi, we have zi = σ(∑zi↔yk
Vikyk) and then, for any

Vij,
∂zi
∂Vij

= zi(1− zi)yj. Therefore,

∂ f
∂Vij

=
∂ f
∂zi
· ∂zi

∂Vij
= [ f (1− f )ui] ·

[
zi(1− zi)yj

]
The above chain rule is true only because

Vij does not affect other zk ’s The key difference between the first layer and the second layer is we need to
deal with both node gradient and edge gradient in second layer while we only
need to compute edge gradient in first layer.

node gradient:
∂ f
∂zi

,
∂ f
∂yi

,
∂ f
∂xi

edge gradient:
∂ f
∂ui

,
∂ f

∂Vij
,

∂ f
∂Wij

The edge gradient affect the node gradient of previous layer and the node
gradient affect the edge gradient in the same layer.

In the third layer, by the same procedure, for any Wij,

∂ f
∂Wij

=
∂ f
∂yi
· ∂yi

∂Wij
=

∂ f
∂yi
· yi(1− yi)xj

Recall that the general chain rule is ∂ f
∂t =

∑n
i=1

∂ f
∂zi
· ∂zi

∂t for f (z1, . . . , zn) To compute ∂ f
∂yi

,

∂ f
∂yi

= ∑
zk↔yi

∂ f
∂zk
· ∂zk

∂yi

= ∑
zk↔yi

[ f (1− f )uk] · [zk(1− zk)Vki]

There are some properties about SGD-backprop

• Initialization matter (random is usually OK)

• No guarantees (local minimum)

• Matrix-vector product (highly parallelizable)

• ”Momentum” term

3 VC dimension and NN

We have already known that the class of m-edge, n-node network has VC
dimension (m+ n) log(m+ n). However, consider the following two networks.
The first one have five layers and each layer have n nodes. The second one have√

n layers and each layer have n3/4 nodes. Both of them are complete network.
That is, every pair of node in the consecutive layer have an edge. Both have
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VC dimension n2 log n. However, the class of function they could compute
is quite different since, intuitively, the more layer the network has the more
complicated function it can compute.

There are some general properties of NN.

• depth can capture ”oscillation” or ”spikiness”

• function computed by low depth network cannot oscillate too much (un-
less it is very wide)

• depth k network can have exp(k) oscillations

For one variable function, the number of oscillation is at most O(mk) where k
is the number of layer and m is the number of node in each layer. Also, there
is a k′ layers network that has at least 2k′/3 oscillations.
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