Lecture 18: SGD for Neural Networks, Back
 Propagation

Instructor: Aditya Bhaskara Scribe: Waiming Tai

CS 5966/6966: Theory of Machine Learning

$$
\text { March } 22^{n d}, 2017
$$

Abstract

In this lecture, we will see the details of the back-propagation algorithm. We will also look at questions about the power of depth in neural networks.

1 SGD on NN

Recall that $\sigma(t)=(1+\exp (-t))^{-1}$ and then $\sigma^{\prime}(t)=\sigma(t)(1-\sigma(t))$. Note that the network structure is chosen "beforehand".
Therefore, the challenge is to figure out the edge weight. In principle, we can compute $\frac{\partial f}{\partial w}$ for every weight w. We use SGD to compute the weight. The algorithm work as the following.

Given the training data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ and objective function $\frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}$.
For iteration $t=1, \ldots, T$,
Pick a random example $x_{i_{t}}$.
Change weight using derivative of $\operatorname{loss}\left(x_{i_{t}}\right)$.

2 Example of 3-Layer NN

Denote the following notation.

- f is the output node
- z_{i} is node in first layer
- y_{i} is node in second layer
- x_{i} is node in third layer
- u_{i} is edge between f and z_{i}
- $V_{i j}$ is edge between z_{i} and y_{j}
- $W_{i j}$ is edge between y_{i} and x_{j}

In order to update in SGD, our goal is to find $\frac{\partial f}{\partial u_{i}}, \frac{\partial f}{\partial V_{i j}}$ and $\frac{\partial f}{\partial W_{i j}}$.
any two node in the network structure n_{1}, n_{2}, denote $n_{1} \not n_{2}$ that there is an edge between n_{1} and n_{2}. In the first layer, we have $f=\sigma\left(\sum_{f \leftrightarrow z_{i}} u_{i} z_{i}\right)$. For any u_{i},

$$
\frac{\partial f}{\partial u_{i}}=\sigma^{\prime}\left(\sum_{f \leftrightarrow z_{i}} u_{i} z_{i}\right) \cdot z_{i}=f(1-f) z_{i}
$$

In the second layer, for any z_{i}, we have $z_{i}=\sigma\left(\sum_{z_{i} \leftrightarrow y_{k}} V_{i k} y_{k}\right)$ and then, for any $V_{i j}, \frac{\partial z_{i}}{\partial V_{i j}}=z_{i}\left(1-z_{i}\right) y_{j}$. Therefore,

$$
\frac{\partial f}{\partial V_{i j}}=\frac{\partial f}{\partial z_{i}} \cdot \frac{\partial z_{i}}{\partial V_{i j}}=\left[f(1-f) u_{i}\right] \cdot\left[z_{i}\left(1-z_{i}\right) y_{j}\right]
$$

The above chain rule is true only because $V_{i j}$ does not affect other z_{k} 's

The key difference between the first layer and the second layer is we need to deal with both node gradient and edge gradient in second layer while we only need to compute edge gradient in first layer.

$$
\begin{array}{ll}
\text { node gradient: } & \frac{\partial f}{\partial z_{i}}, \frac{\partial f}{\partial y_{i}}, \frac{\partial f}{\partial x_{i}} \\
\text { edge gradient: } & \frac{\partial f}{\partial u_{i}}, \frac{\partial f}{\partial V_{i j}}, \frac{\partial f}{\partial W_{i j}}
\end{array}
$$

The edge gradient affect the node gradient of previous layer and the node gradient affect the edge gradient in the same layer.
In the third layer, by the same procedure, for any $W_{i j}$,

$$
\frac{\partial f}{\partial W_{i j}}=\frac{\partial f}{\partial y_{i}} \cdot \frac{\partial y_{i}}{\partial W_{i j}}=\frac{\partial f}{\partial y_{i}} \cdot y_{i}\left(1-y_{i}\right) x_{j}
$$

To compute $\frac{\partial f}{\partial y_{i}}$,

$$
\begin{aligned}
\frac{\partial f}{\partial y_{i}} & =\sum_{z_{k} \leftrightarrow y_{i}} \frac{\partial f}{\partial z_{k}} \cdot \frac{\partial z_{k}}{\partial y_{i}} \\
& =\sum_{z_{k} \leftrightarrow y_{i}}\left[f(1-f) u_{k}\right] \cdot\left[z_{k}\left(1-z_{k}\right) V_{k i}\right]
\end{aligned}
$$

There are some properties about SGD-backprop

- Initialization matter (random is usually OK)
- No guarantees (local minimum)
- Matrix-vector product (highly parallelizable)
- "Momentum" term

3 VC dimension and NN

We have already known that the class of m-edge, n-node network has VC dimension $(m+n) \log (m+n)$. However, consider the following two networks. The first one have five layers and each layer have n nodes. The second one have \sqrt{n} layers and each layer have $n^{3 / 4}$ nodes. Both of them are complete network. That is, every pair of node in the consecutive layer have an edge. Both have

VC dimension $n^{2} \log n$. However, the class of function they could compute is quite different since, intuitively, the more layer the network has the more complicated function it can compute.
There are some general properties of NN.

- depth can capture "oscillation" or "spikiness"
- function computed by low depth network cannot oscillate too much (unless it is very wide)
- depth k network can have $\exp (k)$ oscillations

For one variable function, the number of oscillation is at most $O\left(m^{k}\right)$ where k is the number of layer and m is the number of node in each layer. Also, there is a k^{\prime} layers network that has at least $2^{k^{\prime} / 3}$ oscillations.

