
Lecture #17: Back Propagation

Instructor: Aditya Bhaskara Scribe: Tuowen Zhao

CS 5966/6966: Theory of Machine Learning

March 20th, 2017

Abstract

Introduction of the back propagation algorithm.

1 Introduction

Last week, we have discussed the general structure of a ”threshold networks”
that have ”neurons” in each layer and compute some weighted threshold of
the input, where we also assume one output f . We also discussed the univer-
sality property that a two-layer network can compute any function. But, we also
noted that many functions require Exp(#Input) size network, because the VC-
dim of the class of m-edges and n-nodes networks is O((n + m) log(n + m).

The Fundamental Theorem of Statistical Learning implies that to learn the best
network we only need O(d/ε2) samples. But, to be able to learn efficiently we
also need an efficient algorithm to solve the ERM problem. As we have seen,
even for a very simple network, learning is at least as hard as 3-coloring.

Albeit the hardness, there are algorithms that may work in this setting as we
will see one such in this lecture.

2 Back propagation algorithm

The idea behind Back Propagation is Gradient Descent, but in this case the func-
tion is not guaranteed convex and may take a very long time to converge. But
the algorithm often work fine and find good solutions in practice. We will for-
mulate the algorithm starting with a simple one-layer network and gradually
adding layers to it.

One-layer network

Suppose we have a one-layer network such as in Figure 1. For a set of
(x(1), y1), . . . , (x(m), ym) training examples The training problem is as in Equa-
tion 1.

(1) arg min
w,τ

= ∑
i

1[f (x(i)) 6= yi]

Note that, in the equation, we used the indicator function to calculate the
loss while using sign function for calculating the threshold, but these are not
suitable for Gradient Descent due to the gradient being not well defined on

1

2. Back propagation algorithm

x1 x2 x3 · · · xn

f τ

w1 w2 w3 wn

Input
layer

Ouput
layer

Figure 1: One-layer network

such functions. Other functions can be used for loss function, such as squared
loss, l1-norm ... And, functions such as rectified linear and sigmoid 1

1+e−x can
be used for the activation function instead. Assuming we use loss function `
and use some activation function σ.

The gradient of the output in relation to one parameter wj can be formulated
as follows:

∂L
∂wj

= ∑
i
`′(f (x(i))− yi)σ

′(x(i))x(i)j

Using the above we can update the weights in the network using the up-
date formula of gradient descent, w(t+1) = w(t) − η∇`. This weight update
is related to the input in a way a lot like the Perceptron algorithm, where
w(t+1) = w(t) + ηyix(i). Also note that for the stochastic gradient descent,
instead of summing all the gradient of the examples, we can just pick one
example, such that:

For t = 1 . . . T

1. Pick an index it = [N]

2. w(t+1) = w(t) − η∇`1it f (w(t))

Two-layer network

For a two layer network such as in Figure 2. The training equation becomes
that in Equation 2.

(2) arg min
w,u,τy ,τf

= ∑
i
`(f (x(i)), yi)

The gradient to uj can be calculated by setting the output of yi being constant,
then the formula is the same as in the one-layer network. For wjk, we first can
observe that if the absolute value of uj is small, such as 0, then the gradient of
wjk is small as well, because all the influence of wjk to ` is through uj(yj). We
can formulate that intuition in mathematical terms as follows:

2

x1 x2 x3 · · · xn

y1 y2 y3 · · · ym

f τ

w11 w22 w33 wmn

u1 u2 u3 um

Input
layer

Hidden
layer

Ouput
layer

Figure 2: Two-layer network

∂L
∂wjk

= ∑
i

∂`

∂yj

∂yj

∂wjk

= ∑
i

∂`

∂yj
σ′yj

xk

= ∑
i
`′σ′f ujσ

′
yj

xk

If we ignore the summation, the equation becomes:

∂`

∂wjk
= `′σ′f ujσ

′
yj

xk

Recall the gradient to uj:

∂`

∂uj
= `′σ′f yj

Let e = `′σ′f , we have:

∂`

∂wjk
= eujσ

′
yj

xk

∂`

∂uj
= eyj

Three-layer network

For a three layer network as in Figure 3. We can repeat the above formula-
tion and come up with a vector relation of the formula. The details will be
discussed in the next lecture.

3

2. Back propagation algorithm

x1 x2 x3 · · · xn

y1 y2 y3 · · · ym

z1 z2 z3 · · · zo

f τ

w11 w22 w33 wmn

u11 u22 u33 uom

v1 v2 v3 vo

Input
layer

Hidden
layer

Hidden
layer

Ouput
layer

Figure 3: Three-layer network

4

	Introduction
	Back propagation algorithm

