
Lecture 16: Introduction to Neural Networks

Instructor: Aditya Bhaskara Scribe: Philippe David

CS 5966/6966: Theory of Machine Learning

March 20th, 2017

Abstract

In this lecture, we consider Backpropagation, a standard algorithm
that’s used to solve the ERM problem in neural networds. We also dis-
cuss the use of Stochastic Gradient Descent (SGD) in Backpropagation.
The use of SGD in the neural network setting is motivated by the high
cost of running back propagation over the full training set.

1 Recap: The Expressive Power of Neural Networks

In previous lecture, we started formalizing feed-forward neural networks.
These networks take a collection of inputs, pass these inputs through a series
of layers composed of neurons, and use this mapping to produce an output.
We then defined what threshold networks are: they are basically a collection
of neurons in every layer where each neuron computes a weighted thresh-
old function. We then went on to study the expressive power of these neural
networks. Namely, we looked at what type of functions can be implemented
using a neural network. We looked at two theorems that related to this ques-
tion. The first said that a feed-forward network with a single hidden layer
can compute any arbitrary functions - this is known as universal approxima-
tion theorem. We then said that while this may look powerful, there are many
functions that require an exponential number of inputs to be approximated.
We proved this by saying VC dimension of the class of all such networks (all
networks with m edges, and n neurons) is O((m + n)log(m + n). While we
didn’t prove this theorem, we used it to conclude the previous theorem. What We will prove a simplified version of this

theorem in assignment.#3this theorem states is that if you are interested in learning neural networks
that just have at most m edges, all you need is roughly so many samples. If
a class of functions has VC dimension d, then to learn earn the best network
need VC dimension/ε2 samples. This is what is known as the Fundamental
Theorem of Learning Theory. Nevertheless, these is a caveat: All this tells you
is that if you had a bunch of samples and if you had a procedure that could
find the best Empirical Risk Minimizer (ERM) for these examples you could
also get the best network. VC theory tells us that VC dimension/ε2 examples
+ an algorithm for solving ERM implies efficient learning. It turns out, how-
ever, for Neural Networks, this second part if very hard. We went on to show
that the the ERM problem for a two-layer neural network with just 3 neurons
in each layer is NP-Hard as it can be reduced to coloring a k-colorable graph
with 2k - 1 colors for general k which is known to be NP-Hard.

1

2. The Backpropagation Algorithm

2 The Backpropagation Algorithm

The backpropagation algorithm — the process of training a neural network.
The key to training a neural network is finding the right set of weights for all
of the connections to make the right decisions. This algorithm work to solves
the above problem in a very similar manner to gradient descent as it iteratively
progressively work their way towards the optimal solution. Clearly, there are
no guarantees for it because the problem is NP-Hard, but this is a very good
heuristic approach. We will start with a simple examples. Suppose you have a
one layer neural network

What is the training problem? The training problem is that you want to mini-
mize the empirical risk given by the following equation:

(1) ∑
i
(f (x(i)) 6= yi)

where the inputs are x(i) and yi correspond the labels for these inputs. As
this is just an indicator function, and we want something to be smooth, the
above is not the optimal. Nonetheless, there are various proxies for this and a
commonly used one is the squared loss:

(2) loss = ∑
i
(f (x(i))− yi)

2

The network is now very simple, we have w1, w2, . . . , wn. f is a threshold func-
tion:

(3) f = σ(∑
j
(wjx

(i)
j))

where i corresponds to the input point and j is jth index of the weights. From
here, gradient descent appears to be the natural idea to find the best. To do
this you start with some w0 and set wt+1 = w(t) − γ5 f (w(t). The issue with

2

this is with computing the gradient of f (w(t)). We don’t have a contentious
gradient as the gradient of a simple threshold function is undefined.

A commonly used alternative is the rectified linear unit activation function
which grows linearly to 1. This function is also non-linear (despite its name).
If we only use linear activation functions in a neural network, the output will
just be a linear transformation of the input, which is not enough to form a
universal function approximator.

Now we know what f is, we can run gradient descent. Using the chain rule:

(4)
∂loss
∂wj

= ∑
j

2(f (x(i))− yi)(σ
′(∑

j
wjx

(i)
j)x(i)j

Now explore an stochastic gradient descent (SGD) version of this. What do
you mean by this? Remember that the loss being a sum of terms is something
we often encounter. In such a setting, computing the loss gradients is compli-
cated so we will just take a random example and move along the gradient for
that example. This is the common way of training neural networks, you don’t
look at the loss summed over everything. But you take a random training ex-
amples and you update according to the gradient for that example. This gives
us the following algorithm:

• For t = 1...T.

• Pick an index itwithinN.

• w(t) = w(t+1) − γ5lit(w
(t)).

where l(w(t)) = ∑i li(w(t)) = ∑i(f (xi))− yi)
2. In SGD we iteratively update

our weight parameters in the direction of the gradient of the loss function
until we have reached a minimum. Unlike traditional gradient descent, we do
not use the entire dataset to compute the gradient at each iteration. Instead,
at each iteration we randomly select a single data point from our dataset and
move in the direction of the gradient with respect to that data point.

3

3. Computing weight vector derivative in 2-layer neural networks

3 Computing weight vector derivative in 2-layer neural

networks

As we have seen, for a one layer NN, computing this derivative is very simple.
For the 2-Layer NN, this computation becomes more complicated. The first
question that naturally arises are what parameter do we want learn if we
want to learn the best neural network of this form? in order to estimate this
loss function we need to have τs for every node, τi and τ(top− layer). Where
τ represents the thresholds and the weights between nodes are represented
by ui and wij. To run SGD, you need to pick a random data point, and move
along the gradient.

(5) f = σ
k

∑
j=1

ujyj

(6)
∂ f
∂uj

= σ′(
k

∑
j=1

ujyj)yj

where σ is the threshold function. But what is

(7)
∂ f

∂wij
= σ′(

k

∑
j=1

ujyj)
∂(∑k

l=1 ulyl)

∂wij
= σ′(

k

∑
j=1

ujyj)ui

(8) yi = ′(
n

∑
l=1

wil xl), xl = inputs

(9)
∂ f

∂wij
= σ′(

k

∑
j=1

ujyj)uiσ
′(

n

∑
l=1

wijxj)xj = σ′(f)σ′(yi)uixj

4

4 Computing weight vector derivative in 3-layer neural

networks

(10)
∂ f

∂wij
=

∂σ(∑k
j=1 ujyj)

∂wij

Taking this derivative will result in multiple summations.

(11)
∂ f

∂wij
= σ′((

k

∑
j=1

ujyj))
k

∑
l=1

uj(
∂yl
∂wij

)

∂ f
∂wij

is a weighted sum of these yl’s with respect to wij where yl = σ((∑
q
t=1 vltzq))

which implies that ∂yl
∂wij

= σ′(yl) ∗ vli ∗ ∂zi
∂wij

5

	Recap: The Expressive Power of Neural Networks
	The Backpropagation Algorithm
	Computing weight vector derivative in 2-layer neural networks
	Computing weight vector derivative in 3-layer neural networks

