
Lecture 13: Introduction to Neural Networks

Instructor: Aditya Bhaskara Scribe: Dietrich Geisler

CS 5966/6966: Theory of Machine Learning

March 8th, 2017

Abstract

This is a short, two-line summary of the day’s lecture. Should provide
a rough set of topics covered or questions discussed.

1 Recap: Boosting

In previous lecture, we discussed boosting in learning. Boosting is the prin-
ciple that, given a weak learner for a class, it is possible to obtain a strong
learning. More formally, given a black box of weak learners, it is possible
to produce a strong learning algorithm from the collection of weak learning
algorithms.

2 Formalizing Feed-Forward Neural Networks

The first type of neural network we will explore is a feed-forward neural
network. Feed-forward neural networks take a collection of inputs, pass these
inputs through a series of Hidden Layers (HLs) composed of neurons, and
use this mapping to produce an output. This output can be of any dimension
and does not depend on the dimension of the input.

Each neuron in the network is an entity connecting inputs to other neurons
(or the output). Each of these essentially functions as a map from a given
set of inputs values to an output value. For a given neuron, each incoming
input is multiplied by a weight wi which is modified as new data is given
to allow learning. The neuron has some function f by which this value is
produced. This means that for some neuron with inputs x1, x2. . . . , xk, weights
w1, w2, . . . , wk, and function f , the following output is given:

(1) f (w1x1 + w2x2 + · · ·+ wkxk)

1

3. Structure of fvt(x1, . . . , xn)

The choice of f arbitrary; however we generally require that f : Rn → [0, 1]
and expect that f is nonlinear. Common choices for f include the threshold
function:

And the sigmoid function:

Other common choices for f exist but will be considered later.

The final output of a given neural network after moving through each layer
for some initial inputs x1, x2, . . . , xn is given by the function, where f (wx) is a
neuron as given in Eq. (1):

(2) fvt(x1, x2 . . . , xn) = f (w, [f (w, . . . [f (w, x), . . . f (w, x)])])

This equation implies some useful properties of neural networks. First, since
Eq. (2) is deterministic, the result of an arbitrary feed-forward neural network
is always deterministic; that is, an unchanged neural network always pro-
duces the same value given the same set of inputs. Second, the total function
provided by the neural network can be nonlinear, even though each neuron
is a nonlinear function of a linear combination of inputs. Finally, the nonlin-
earity of the resulting function described in Eq. (2) allows for modeling of
complicated patterns and interactions.

The power apparently granted by neural networks, however, presumes two
necessary questions. First, what does fvt(x1, . . . , xn) actually look like? Second,
can we find a nueral network that computes some fvt given enough training
examples?

3 Structure of fvt(x1, . . . , xn)

We will denote the number of layers of a neural network with t ≥ 1 and
observe that the number of hidden layers in such a network equal to t− 1. Let
us first consider a simple neural network, where t = 1. This is just a direct
mapping from our inputs x1, x2, . . . , xn to the output. In other words, we just
have that fvt = f , where f is the function given in Eq. (1).

We will now examine the neural networks with t = 2, noting that this implies
we have one hidden layer. Using Eq. (1) and Eq. (2), we obtain the function:

(3)

2

fvt(x1, x2 . . . , xn) = f (w1 f1(w11x1 + · · ·+w1jxj)+ . . . wi fi(wi1x1 + · · ·+wijxj))

This can be visualized as follows (note that the two diagrams are equiva-
lent):44

The activation function given in Eq. (3) can represent any convex shape as a
conjunction of linear classifiers, an illistration of which can be seen below:

More generally, however, [Cybenko ’89] and [Kolmogorov ’50s] tell us that
any arbitrary boolean function can be approximated to arbitrary accuracy by
two-layer threshold neural networks. Showing this result is fairly technical,
however, so we will instead illustrate a similar case where we assume boolean
functions over the domain {0, 1}n. Specifically, we will show that any boolean
function f : {0, 1}n → {0, 1} can be written as a two-layer threshold network.

The idea of this proof is as follows. Let us suppose that n = 3, which gives that
inputs are of the form (x1, x2, x3); thus a total of 23 = 8 inputs are possible.
Since only outputs in the set {0, 1} are possible, some number (protentially 0)
of these inputs produce a value of 1 and the remainder produce 0. Then we
simply construct a neural network where we have a neuron corresponding to
each output of 1 such that these neurons are only fired when precisely the
input associated with this output is given. We then produce as our output 1 if
at least one of these neurons fires and 0 otherwise.

As an illustration, let us suppose that the inputs (1, 0, 0) and (0, 0, 1) produce
a value of 1 and all other inputs produce a value of 0. We then construct a
network with two neurons with the following functions, respectively:

f1 = (x1) + (1− x2) + (1− x3) ≥ 3

f2 = (1− x1) + (1− x2) + (x3) ≥ 3

fvt = f1 + f2 ≥ 1

Where each neuron provides a 1 if the given condition is true and 0 otherwise.
Then we have perfectly modeled our input function.

3

4. Learning Power of Neural Networks

This argument of course does not depend on n, which means that we can per-
form a similar operation on any size of input layer. We can therefore conclude
that, so long as we don’t restrict the number of nodes in the hidden layer, we
can perfectly model any boolean function with a two-layer neural network.

This begs the question, however, of what happens when we do limit the num-
ber of nodes in the hidden layer of our neural network, as we would have to in
the real world? As might be expected from our construction above, there are
indeed boolean functions that cannot be represented by two-layer neural net-
work when we limit the number of neurons the hidden layer. A formalization
of this idea is given in the theorem below.

3.1 theorem. There exists a boolean function f over n bits to which any threshold
network computing f has size (V + E) ≥ 2Ω ln n

Proof. Before demonstrating this, however, we must bound the VC dimension
of our limited networks. Define smallnetsd = {The set of all threshold nets
that have V + E ≤ d}.

3.2 theorem. VC(smallnetsd) ≤ d log d

Proof. The proof of this theorem is a bit technical and can be found in the
textbook.

This proof is non-constructive since it is an
argument by counting

Now that we have established this bound, we may proceed with demonstrat-
ing our original theorem.

We first recall the intuition that the VC-dimension α of a learner gives the
number of distinct parameters that can be learned by the algorithm.

Consider the case where d log d < 2n and observe that the alternative where(*)

d log d ≥ 2n trivially shatters all boolean functions with fewer than 2n inputs.

Then we claim that the class of functions smallnetsd excludes some boolean
function with 2n inputs. But the VC-dimension(H) is the size of the largest set
that H can shatter. By (*), VC-dimension(smallnetsd) < 2n. This means that
for any set S of inputs of size 2n, smallnetsd cannot shatter S.

Before moving to the next section, it is worth summarizing what we have dis-
covered. Simple (small-depth) neural networks initially seem very powerful,
and indeed allow representation of a variety of interesting functions. Real-
world limitations, however, enforce bounds on the number of neurons and,
therefore, the complexity of the functions that can be represented.

We conclude by notin that depth is not sufficient to solve this problem, though
it can help. Consider the question: do depth 4 networks (say size n) compute
functions that can be computed by size 2 neural networks of size n2?

4 Learning Power of Neural Networks

Recall our question from earlier, namely: can we find a nueral network that
computes some fvt given enough training examples? More precisely, is train-
ing neural networks a ’hard’ problem and, if so, how hard can it be to obtain
arbitrary precision?

Suppose we fix a neural network such that depth = 2, that is the network has
two hidden layers. Can we ”train” this network? More precisely, can we find

4

the optimal neural network to model some function given sample data? This
problem is known as Empirical Risk Minization (ERM).

We know the structure of the network, namely that we have two hidden layers
and a set number of neurons. Our problem, then, is to find the values for wi
and ti for all i such that we minimize the number of mistakes across the
training set. This problem is generally very difficult, even for fairly simple
networks such as the one given!

4.1 theorem. ’Even’ a network with just 3 neurons in the hidden layer is NP-Hard
to ”learn”; that is, we can find input arrangements where finding the optimal neural
network with this arrangement is NP-Hard. More generally, the ERM problem is
NP-Hard.

Proof. We will perform a reduction from the 3-coloring problem, a problem
that is known to be NP-Complete. The 3-coloring problem is as follows. Given
a graph G(V, E), determine if it possible to color v ∈ V with the colors red,
green, and blue such that (∀e ∈ E)(e = (u, v)⇒ u, v are colored with different
colors). In other words, this coloring partitions the vertices of the graph in such
a way that no edge maps between two elements of the same partition.

Now, to show that the ERM problem for a two-layer neural network with 3

neurons is a reduction from the 3-coloring problem, take a graph G(V, E) and
determine some training examples. In particular, it is possible to select those
training examples such that ERM=0 iff G(V, E) is 3-colorable. As a hint, if a
graph is 3-colorable, some edges to the output will be 1 while the rest will be
0. That is, we have two kinds of input (0, 0, . . . , 1, . . . 0, 0)→ 0, where 1 occurs
at the ith position, and (0, 0, . . . , 1, . . . , 1, . . . 0, 0) → 1, with 1s at the locations
of the ends of a given edge (u, v). This will give that every incoming edge ahas
an outgoing edge matching two the correct color as given by these inputs.

5

	Recap: Boosting
	Formalizing Feed-Forward Neural Networks
	Structure of fvt(x1,…,xn)
	Learning Power of Neural Networks

