
Lecture 11: Online Learning

Instructor: Aditya Bhaskara Scribe: Maks Cegielski-Johnson

CS 5966/6966: Theory of Machine Learning

January 1st, 2017

Abstract

In this lecture, we considered online learning in the case of not having a
consistent hypothesis in the hypothesis class. We also compared the regret
bound between deterministic and randomized algorithms.

1 Introduction

As we have previously seen, in the online learning model: points arrive and
the learner predicts the label, with the true label being revealed later. The goal
of online learning is to compete with the best single hypothesis “in hindsight”
after T rounds of learning, where we view each hypothesis as an expert. We
define regret as the difference between “the number of mistakes the learner
made” and “the number of mistakes the best expert made”.

2 Finite Set of Hypotheses

2.1 theorem. If there exists hypothesis h ∈ H that makes no mistakes, then we can
ensure that the learning algorithm A makes at most log |H| mistakes overall.

From this theorem, the idea for an algorithm is to select what the majority
of the “non-eliminated” experts say (and there always is an expert that is
never eliminated). If the algorithm makes a mistake, then that means we can
eliminate at least half of the hypotheses, which also made mistakes.

3 Infinite Set of Hypotheses

Suppose we know there is a consistent hypothesis, can we ensure that the
learning algorithm only makes O(1) mistakes? In the last lecture we saw the
Littlestone dimension, and we saw that

L-Dim ≤ VC-Dim

4 Non-consistent Finite Set of Hypotheses

What if there is no perfect expert? Can we ensure that Turns out this is not possible

#-mistakes(Alg) < #-mistakes(hbest) + small, where “small” is log n

This is known as regret.

1

6. Analysis of Multiplicative Weight Algorithm

We have previously seen the idea of eliminating hypotheses that made a mis-
take. What if we keep track of how many mistakes each hypothesis has made?
At each step, each hypothesis hi is assigned some weight wi, where wi is small
if hi made many mistakes. In other words, reweight hypotheses rather than
eliminating.

5 Multiplicative Weight Algorithm

Suppose we haveH = {h1, h2, . . . , hN} and initial weights {w(1)
1 , w(2)

1 , . . . , w(N)
1 }

with each w(i)
1 = 1 for each hi. And, suppose that if a hypothesis hi makes a

mistake, then w(i)
2 = w(i)

1 · (1− η) for some η ∈ (0, 1). This means that after t

steps, hi has weight w(i)
t = (1− η)#-mistakes(hi).

This gives us the following algorithm:

• At each step t, keep track of w(i)
t for each hypothesis hi

• Prediction at time t is{
0 if ∑i who predict 0 at t w(i)

t ≥ ∑j who predict 0 at t w(j)
t

1 otherwise.

6 Analysis of Multiplicative Weight Algorithm

What happens every time we make a mistake? Let’s define the “sum of weights”
(also known as potential) asThis plays the role of the number of hy-

potheses which are not eliminated

(1) Φt = ∑
i

w(i)
t at step t

And let’s call Φ(0)
t the weights of hypothesis that predict 0 at time t, and sim-

ilarly Φ(0)
t the weights of the hypothesis that predict 1 at step t.

Suppose Φ(0)
t > Φ(1)

t . Then, if the learning algorithm predicted 0, and it was
wrong, we have that

Φt+1 = Φ(1)
t + (1− η)Φ(0)

t

If we made a mistake, in the worst case, then

Φt+1 ≤
1
2

Φt +
1
2

(
1− η

)
Φt =

(
1− η

2

)
Φt

So after T steps,We have the |H| term because at t = 0,
each wi = 1 for each hypothesis in H

ΦT ≤ |H| ·
(

1− η

2

)#-mistakes(Alg)

Is there a lower bound on Φt?Say ∃h that made only a “few” mistakes

If there exists a best hypothesis hi that made ≤ k mistakes, then

w(i)
T = (1− η)k =⇒ ΦT ≥ (1− η)k =⇒ (1− η)k ≤ |H| ≤

(
1− η

2

)m

2

where m = #-mistakes(Alg). Then,

k log(1− η) ≤ m log(1− η/2) + log |H|

and so this implies

m ≤ k
log(1− η)

log(1− η/2)
− log |H|

log(1− η/2)

and then we have log(1− x) ≈ −x for small x

log(1− η)

log(1− η/2)
≤ (2 + η) and

log |H|
log(1− η/2)

≈ 2
log |H|

η

6.1 theorem. For any η, the weighted majorty algorithm achieves the guarantee:

#-mistakes(Alg) ≤ (2 + η) · #-mistakes(hopt) +
1
η

log |H|

Notice that the optimum-mistake-count term has a factor of 2. We are inter-
ested in whether we can reduce this value.

7 Randomized Algorithm

7.1 theorem. No deterministic algorithm can achieve a number of mistakes < 2 ·
#-mistakes(opt).

Proof (Cover Example)
Consider H = {h1, h2} where h1 always predicts 1 and h2 always predicts 0.
Then, suppose we have any deterministic algorithm A and we get learn and
predict on T examples. Now, suppose that the true label is always the opposite
of what A predicts. Then, it must be the case that

#-mistakes(A) = T and #-mistakes(opt) ≤ T
2

And this is a 2-factor loss .

The model we want to consider is one where the adversary (who knows the
true label function f) knows what the learning algorithm is, but does not see
the coin-tosses. Suppose the algorithm is{

0 with probability p
1 with probability 1− p.

What happens in the cover example? The claim is that the algorithm will do
as well as the optimal hypothesis in this model.

Question. In this setting, can we beat the factor of 2? That is, can we achieve

E[#-mistakes(A)] ≤ (1 + ε)#-mistakes(opt) +
log |H|

ε

3

8. Weighted Majority - Version 2

8 Weighted Majority - Version 2

A natural idea is to treat the weights as probabilities. Consider the following
algorithm:

• Start with w(i)
0 = 1, ∀i

• At time t:

– Algorithm picks hi with probability w(i)
t

Φt
and outputs hi output

– For each j ∈ [|H|],

w(j)
t+1 =

{
(1− η)w(j)

t if j was wrong
w(j)

t otherwise.

8.1 theorem. The expected regret of the algorithm satisfies the “right” bound:

E[#-mistakes(A)] ≤ (1 + 2η)#-mistakes(opt) +
log |H|

η

4

	Introduction
	Finite Set of Hypotheses
	Infinite Set of Hypotheses
	Non-consistent Finite Set of Hypotheses
	Multiplicative Weight Algorithm
	Analysis of Multiplicative Weight Algorithm
	Randomized Algorithm
	Weighted Majority - Version 2

