
Lecture 10: Online Learning

Instructor: Aditya Bhaskara Scribe: Yiliang Shi

CS 5966/6966: Theory of Machine Learning

February 13th, 2017

Abstract
This lectured first reviewed optimization from the past lectures, then

introduced new framework of online learning.

1 Review

Last week, we discussed gradient descent. Let f be a convex function on a
convex domain S. Suppose that f is ρ-Lipschiz. We showed that after O(1/ε)
iterations, we get ε close in f value to the optimum.

Gradient descent is pretty flexible. If the examples are from another domain,
it is possible to project from the other domain. If it is not ρ-Lipschiz, it is
possible to take the sub gradient.

A key inequality involved in gradient descent is convexity. f (x(t))− f (x∗) ≤
〈x(t)− x∗,∇ f (x(t))〉, which implies 1

T ∑T
t=1(f (x(t))− f (x∗)) ≤ B2

2η + Tρ2η
2 , where

B is the difference between the actual x and x∗

The more assumptions we make on gradient descent, the better our guran-
tees. If f is β-smooth, O(1/ε) iterations suffice. If f is β-smooth and α convex,
O(β

α
˙log(1/ε)) iterations suffice. β is basically a tangent above the curve while

α is a tangent below the curve. β
α is basically the condition number used in

linear regression.

When the gradient is too expensive to compute, an alternative is stochastic
gradient-descent. We can decompose f into an average, f = 1

m [f1 + f2 + · · ·+
fm] where ∇ fi is easier to compute. Instead of computing ∇ f each time, we
replace it with a random ∇ fi. The expectation is correct.

1.1 theorem. Suppose that fi’s are all ρ-Lipschitz, and we run SDG for T iterations

with T= B2ρ2

ε2 andη = ε
ρ2 . Then E[f (w̄)− f (w∗)] ≤ ε

Proof: ‖x(t+1) − x∗‖2 − ‖x(t) − x∗‖2 = 2η〈x(t) − x∗, g(t)〉+ η2‖gt‖2

2 A New Framework - Online learning

Thus far, we assume that x ∼ D.

Motivation: What happens then if we dropped the distribution assumption in
learning?

We want to do well in the future, given the examples we’ve seen in the past.
Given a hypothesis class H, we want to compete with the best in the class
instead of the best in hindsight.

1

3. Realizable case

With online algorithms, the future might be adversarial. An analogy is the
secretary problem - when interviewing candidates to hires, you don’t know
anything about the next candidate.

Online Learning Setup

Given a hypothesis class H, ”data points” arrive one by one. We don’t know
the label of each ”data point” until we make a prediction. After making a
prediction, we can see the loss for the prediction.

x(1) x(2) · · · x(T)

h1 0 0 1

h2 1 0

h3
...

...
hN

Alg. y1 · · · yT

We have a collection of hypothesis h ∈ H that makes a prediction on the
examples seen so far. At every t, we make a ’prediction’ yt according to a
function of x(t). Next, we get to see the true value of f (x(t). We then know the
loss for the prediction, loss = 1[yt 6= f (x(T)].

Out goal in online learning is to compete with the best hypothesis in H in
hindsight.

Example 1

Assume we have 2 hypothesis h1, h2 in our hypothesis class. Our algorithm
predicts label of the next example using the hypothesis that made the least
mistakes so far.

x1 x2 · · ·
h1 1 x 0

√
· · ·

h2 0

√
1 x · · ·

At t=1, h1 predicts a 1 while h2 predicts a 0. Say our algorithm goes with h1
and predicts 1. Then the true label f (x1) is revealed to be 0. At t=2, h1 predicts
a 0 while h2 predicts a 1. Since the mistakes so far made by h1, m1, is 1 while
the mistakes made by h2, m2, is 0, the algorithm selects h2 as the predicted
true hypothesis and predicts 1. However, the true label f (x2) in this case is 0.
The algorithm would have made 2 mistakes, while m1 and m2 both equal 1.

The goal of online learning is to ensure that the number of mistakes the algo-
rithm makes is less or equal to that of the best hypothesis in hindsight, a.k.a.
the hypothesis that made the least mistakes.

#mistakes(Alg) ≤ min{m1, m2}+ ”small”

3 Realizable case

First, we look at the realizable case, where ∃ a hypothesis h∗ that makes no
mistakes.

h∗(xi) = f (xi)∀i = 1 · · · T

2

3.1. Mistake Bound

A simple algorithm to find h∗ is to start with all hypothesis in H, then elimi-
nate everyone that makes a mistake with each update. For instance, if f (x1) =
1, then every hypothesis that predicted 0 is eliminated.

More generally, at each time t, we maintain ”candidate” hypothesis Ht ⊆ H.
At time t + 1, the algorithm predicts what the majority of Ht predicts. Then
we update Ht, removing all the incorrect hypothesis.

Mistake Bound

The next question is if we can bound the mistakes made by the algorithm. If
the algorithm did not make a mistake at time t, we do not have control over
its update. It is possible that all h ∈ Ht is correct, or there might be some that
are wrong.

What happens then if the algorithm made a mistake at time t? If the algorithm
makes a mistake, at least half of the hypothesis must be wrong. In this case,
we know that we reduced the size of |H| by half or more.

|Ht+1| ≤ |Ht|/2

If we start off with |H0| = N, than we can halve at most [log N] times, as ∃ a
h∗ that is always right, which implies that |Ht| ≥ 1 ∀t.

3.1 theorem. Suppose ∃ a h ∈ H that makes no mistakes, the the number of mistakes
made by the algorithm is ≤ [log N].

Littlestone vs VC dimension

The example and proof above assumes a finite hypothesis class. Is there a
way to handle N = ∞? For PAC learning, having small VC dimensions was
equivalent.

It turns out that there is a equivalent concept called Littlestone dimension,
which ”characterizes” learnability in the sense of mistake bounds. We will not
go into the exact definition of Littlestone dimension as it is involved.

3.2 claim. We can say that if we have a concept class H with VC dim = d, no online
algorithm can make fewer than d mistakes.

This is easy to prove. The general idea is to shatter H into s1, s2, · · · , sd. For
each si, set the true value f (si)! = Alg(si). The algorithm must be wrong at
least d times.

Next, suppose that VC-dim(H) is small. Can we then ensure that ∃ an algo-
rithm that makes a small number of mistakes?

The answer is no, as shown from the example of linear thresholds. With linear
thresholds, ∃ a τ that divides H into positive and negative labels and has a VC
dimension of 1. If the above claim is true, then there must exist an algorithm
that can make O(1) constant mistakes

However, it is possible for an adversary to generate a sequence of examples
where the algorithm always end up guessing incorrectly. Every time the algo-
rithm says the example is positive, the adversary and reveal the true label to
be negative and imply that τ is to its right. If the algorithm says the sample is
negative, the adversary can reveal the true label to be positive and imply that
τ is to the left.

3

3. Realizable case

The process can continue on forever. Unlike with PAC learning, it is not pos-
sible to stop learning once we are within a certain accuracy of τ, since there is
no concept of distribution.

4

	Review
	A New Framework - Online learning
	Online Learning Setup
	Example 1

	Realizable case
	Mistake Bound
	Littlestone vs VC dimension

