Algorithms, Geometry, and Optimization

Lecture 4: Jan 22, 2024

Last class

- Estimation via sampling: what fraction of a population can ski?
- Main parameters: estimate, error of estimate, confidence in estimate estimated value
- Suppose population had N people
- Using $\approx\left(\frac{4}{\epsilon^{2}}\right)^{-18}$ samples, we can be $95 /$ confident that true fraction is within $\pm \epsilon$ of the estimate

Hoeffding's inequality

Theorem. Suppose $\stackrel{\dot{X}_{1}}{X_{1}}, \dot{X}_{2}, \ldots, X_{m}$ are indepéndent random variables with the property that $a_{i} \leq X_{i} \leq b_{i}$ always holds. Let $Y=X_{1}+X_{2}+\cdots+X_{m}$. Then

- Sum of independent random variables is well concentrated
- Closely related to the Central Limit Theorem

Dimension reduction

$$
\mathrm{O}_{1, n} \sim 10^{9}
$$

Suppose we are given points $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$, where d is large. Can we embed these points into a smaller dimensional space, so distances are approximately preserved?

$$
\begin{aligned}
& x_{i} \sim^{2} \begin{array}{l}
\phi\left(x_{i}\right) \in \mathbb{R}^{m} \quad \text { (classical applications of rand. } \\
\in \mathbb{R}^{m \ll} \quad \text { algorithms.) } \\
\left\|\phi\left(x_{i}\right)-\phi\left(x_{j}\right)\right\| \approx\left\|x_{i}-x_{j}\right\| \quad \forall i, j
\end{array}
\end{aligned}
$$

Johnson-Lindenstrauss (JL) lemma

x_{i}
Theorem (1984). There exists an embedding ϕ into
$m=O\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensional space such that:
for every pair $\stackrel{1}{x}_{i}, \stackrel{1}{x}_{j}$,

$(1-\epsilon)\left\|x_{i}-x_{j}\right\|^{2} \leq\left\|\phi\left(x_{i}\right)-\phi\left(x_{j}\right)\right\|^{2} \leq(1+\epsilon)\left\|x_{i}-x_{j}\right\|^{2}$.

- in fact, linear embeddings do it! $\quad \phi(x)=A x$

- The bound is tight (cannot be improved)
- As such, stated and proved for the Euclidean norm only
- Weaker versions hold for ℓ_{p} norms with $p>1$
- Impossible for $0=1$ (Brinkman, Charikar '2002].

JL-Lemma: Proof Sketch

- Pick \underline{A} to be an $m \times d$ matrix with each entry $A_{i j}$ uniformly at random!

$$
A_{i j}=\left\{\begin{array}{l}
\frac{1}{\sqrt{m}} \\
-\frac{1}{\sqrt{m}} \\
-\cdots \cdot p \cdot \frac{1}{2}
\end{array}\right.
$$

- Two choices of distribution $\underset{\alpha}{\mathcal{N}(0,1 / m)}$ or $\pm \frac{1}{\sqrt{m}}$
- Set $\phi(x)=A x$

$x \leadsto A x$

$$
\|A \cdot\| \approx\|x\|
$$

JL-Lemma: Proof Sketch
Lemma. Let $\stackrel{\downarrow}{x}$ be any vector. Then with probability

$$
\frac{\geq 1-2 e^{-m \epsilon^{2} / 4} \text {, we have }}{(1-\epsilon)\|x\|^{2} \leq\|A x\|^{2} \leq(1+\epsilon)\|x\|^{2} .}
$$

- This implies the JL lemma. Why?

Actual JL lemma requires the above for $x=x_{i}-x_{j} \forall i, j$ $\mathcal{E}_{i j}$: event that norm presentation hot de for pair $\overline{(i, j)} \rightarrow 1-\frac{1}{2\binom{n}{2}}$

* Example of Union Bound Argument.
\nrightarrow-Can use union bound! $\operatorname{Pr}\left(A_{1} \cup A_{2} \cup A_{3}\right)$

$$
\leq \operatorname{Pr}\left(A_{1}\right)+\operatorname{Pr}\left(A_{2}\right)+\operatorname{Pr}\left(A_{3}\right)
$$

A ii event that norms preservation fails to hold $=$ for pair (i, j)

$$
\begin{aligned}
& \text { for pair }(i, j) \\
& \operatorname{Pr}\left(A_{i j}\right) \text { for any } i, j \quad i \leq \frac{1}{4 n^{2}}
\end{aligned}
$$

$$
\operatorname{Pr}\left(\bigcup_{i, j} A_{i j}\right) \leq\binom{ n}{2} \cdot \frac{1}{4 n^{2}} \leq \frac{1}{8}
$$

$$
\therefore \operatorname{Pr}(\text { all norms are preserved }) \geqslant \frac{7}{8}(80 \%) \text {. }
$$

Expected value $\left.\quad\left(\begin{array}{c}\text { Lemma wanted } \\ \text { say } \\ \|A x\|\end{array} \| \times x\right\rangle\right)$
What is $\mathbb{E}\left[\|A x\|^{2}\right]$? \rightarrow fixed
$A_{i j}$ are random $\pm \frac{1}{\sqrt{m}}$

$$
\begin{aligned}
& =\underset{=}{m} \mathbb{E}\left[\left\langle A_{1}, x\right\rangle^{2}\right]=\|x\|^{2}
\end{aligned}
$$

Want:

$$
0
$$

(Hooking. .) Concentration bound

- Define $\xlongequal\left[Y_{i}=\langle]{\langle } A_{i}, x\right\rangle^{2}$
- What is its range?

Is this concentrated?
$\mathbb{E}\left[\left\langle A_{1}, x\right\rangle^{2}+\left\langle A_{2}, x^{2}\right\rangle^{2}+\cdots+\left\langle A_{m, x}^{2}\right\rangle\right.$
$\cdots x\rangle^{2}$
$\left.\frac{\|x\|^{2}}{m}\right\rangle^{2}=$ expectation.
Turns out to imply the lemma

Example: linearity of expectation

- Max 3-SAT problem boolean variables x_{1}, \ldots, x_{n}

$$
\underbrace{\left(\begin{array}{c}
\frac{1}{x_{1}} \vee x_{2} \\
x_{2} \\
x_{3}
\end{array}\right)}_{C_{1}}, \begin{gathered}
\left(\begin{array}{c}
x_{3} v \bar{x}_{5} \vee x_{7} \\
-1 \\
C_{j}
\end{array}\right), \cdots \cdots \\
\hline
\end{gathered}
$$

Surprising fact: if you set each x_{i} to true/false uniformly at random, then $\frac{7}{8}$ faction of the clauses get satisfied in expectation.

Streaming algorithms: basic model

- Data: values (phone numbers, IP addresses, etc.) arrives one after another
- Full data set is too hard to store

- Router must compute aggregate statistics

$$
0000 \ldots 0 \text { Tow resonce pe. }
$$

Distinct elements problem

- How many distinct values does the stream have?

- Hash set or equiv: $O(k)$ space, log lookup element.
\rightarrow Bud if k is very large... log space!!

