
Recap: Lectures 1 & 2: Randomized Algorithms  

Note: the purpose of these notes is to help recap what we did in the lecture. They are not designed to be exhaustive
lecture notes.

Randomized Algorithms: what are they?  #
Standard algorithms for problems (e.g., merge sort, graph search / shortest paths, basic dynamic programming) are all
deterministic . This means that given an input, the entire execution of the algorithm is pre-determined (or fixed).
Randomized algorithms differ in this basic sense: they use random bits  in the execution of the algorithm to make
decisions. Our goal here is to see what extra power this simple change gives.

Example 1.  Given an array of integers , and the promise that at least half of the array elements are 0, find
one index  such that .

We called this problem, finding hay in a haystack .

To solve this deterministically, one has to go over the entire array, so it takes  time. In fact, any deterministic
algorithm must take roughly  time, because it has to examine the elements in a pre-determined order (possibly
depending on the previously seen elements), so an adversary can create an input on which the algorithm takes ~ (n/2)
time steps.

However, a randomized algorithm for this problem is easy:

1. Pick an index  uniformly at random from  (shorthand for )

2. If  return , else go back to step (1).

How long does this procedure take? In principle, it could run forever, because the algorithm could always find an index 
with . However, it is easy to see that the probability that it runs for  steps without returning a  is .

In this case, the running time  of the algorithm depends on the random choices made by the algorithm. So it is random
variable . If we call this , we can actually compute , the expected value.

It is a simple calculation (if you do not remember it, look up Geometric Random Variables) to see that , where
 is the exact fraction of s in the array. We are given that , so . In other words, the expected  running

time of the algorithm is . The actual running time can be greater, but the earlier observation says that, for example,
the probability of the running time being  is , which is extremely small.

This example, of course, seems (and is) trivial. But surprisingly, many randomized algorithms have this flavor!

Example 2.  (Checking matrix multiplication) Given three matrices  (all ), check if .



The obvious way to do it is to first compute the product  and then check if it equals . This can take time as large as 
 if one uses the naive algorithm for matrix multiplication, or perhaps  if one uses the super-state-of-the-art

algorithm. However, it is still much worse than . Can checking  be done faster? (After all, no one is asking us to
compute .)

Main idea: hit LHS and RHS with a random vector  (assume a binary vector)

Observe that  and  can be computed in  time

Prove that equality  holds with probability . Proof uses the fact that given two unequal vectors  
, the probability that  is at most . (Special case of the Schwartz-Zippel Lemma.)

Repeat this process 20 (or whatever you wish) times. If none of the checks fail, declare that , else return
false.

In the two examples, we see two slightly different phenomena: in the first one, the algorithm always returns the right
answer, but the running time is probabilistic. In the second, the algorithm can return an incorrect answer (it can falsely
conclude that ), but the running time is fixed.

Amplification of success probability

Wednesday (1/9):  #
We discussed two main examples: QuickSort, and Estimation via random sampling.

Classic quicksort algorithm

The running time is a random variable

Unlucky choice of pivot can result in lopsided subproblems -->  time

Lucky choice results in two subproblems of size . This results in a recurrence ,
which solves to 

What is the typical running time?

We can try to compute the expectation of the running time in the standard way ( [ run-time = t]). But this is
infeasible because estimating the probability is very messy. Instead, we can write down a recurrence for the expected
running time.

Using this idea, one can show that the expected running time is .

The next question is, is this good enough? Is the running time "with high probability" close to , or can it be 
 say 50% of the time?

Markov's inequality

It's the most basic (and also fundamental) example of a concentration  inequality (people also call this the
"concentration of measure phenomenon")



Markov's inequality is good, but (as is) it is quite weak. For example, if we want to have a limit of say  on
the running time, Markov's inequality bounds the failure probability by . However, if we do a more
hacky thing: we stop the QuickSort after  steps (by Markov's inequality, this has at least a (1/2) probability of
success), and then repeat ten times, the failure probability drops to  which is about 1 in a thousand!

Estimation by sampling

TODO

 

 


	Recap: Lectures 1 & 2: Randomized Algorithms
	Randomized Algorithms: what are they?
	Wednesday (1/9):


