Algorithms, Geometry, and Optimization
(Lecture 21: Mon, Apr 1 2024)
Aditya Bhaskara

Volume estimation

Problem. Givien an n-dimensional convex body K (in the form of membership oracle), estimate $\operatorname{vol}(K)$.

Surprising: deterministic algorithms cannot do this!
Theorem (last lecture): For any deterministic algo that makes $<2^{n / 2}$ queries, there is an instance where the estimation is off by $2^{n / 2}$.

Randomized algorithms?

Can obtain $(1+\epsilon)$ approximation with only polynomial ($n, \frac{1}{\epsilon}$) many queries to the oracle.

Assumption. (technical) for some known R,

$$
\mathcal{B} \subseteq K \subseteq R \mathcal{B}
$$

(Runtime includes a $\log R$ factor.)

Outline

Claim 1. Membership oracle \Longrightarrow "sampling" oracle (poly time, obtain a random sample from K)
[Spoiler: done via random walks!]
Claim 2. This implies efficient volume estimation
One weird trick...

Sampling \& volume finding

Example: blindfold dartboards

What is the probability that dart lands on a black colored region?

Curse of dimensionality

Volume of a cube / volume of "minimum enclosing" sphere is $\exp (-n)$
\Longrightarrow need to throw $\exp (n)$ darts!
[Dyer, Frieze, Kannan] trick: define

$$
K_{j}:=\left(1+\frac{1}{n}\right)^{j} \mathcal{B} \cap K
$$

By definition, $K_{0}=\mathcal{B}, K_{m}=K$, for $m \approx n \log R$

DFK trick (contd.)

Can write:

$$
\frac{\operatorname{vol}(K)}{\operatorname{vol}\left(K_{0}\right)}=\frac{\operatorname{vol}\left(K_{m}\right)}{\operatorname{vol}\left(K_{m-1}\right)} \cdot \frac{\operatorname{vol}\left(K_{m-1}\right)}{\operatorname{vol}\left(K_{m-2}\right)} \cdots \frac{\operatorname{vol}\left(K_{1}\right)}{\operatorname{vol}\left(K_{0}\right)} .
$$

Key idea. Each of these terms is between $[1,3]$.
Thus, to estimate to error $(1+\gamma)$, need $\approx \frac{1}{\gamma^{2}}$ samples.
Choose $\gamma=\frac{\epsilon}{2 m}$ (ϵ is desired overall accuracy)

Recall outline

Claim 1. Membership oracle \Longrightarrow "sampling" oracle (poly time, obtain a random sample from K)
[Spoiler: done via random walks!]
Claim 2. This implies efficient volume estimation
One weird trick...

Sampling from membership

How to create random sample from K ?

- Start with any point x_{0}
- Pick random point z in $\operatorname{Ball}\left(x_{0}, \delta\right)$ for some $\delta>0$
- If z is in K (membership), set $x_{1}=z$, else $x_{1}=x_{0}$
- Repeat, x_{2}, x_{3}, \ldots for $N=\operatorname{poly}(n)$ steps

Problems

1. "Needles" -- can be inefficient -- but convex objects don't have too many!
2. What is the stationary distribution of this random walk?
3. How many iterations? main challenge
