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ABSTRACT
Accurate real-time speech recognition is not currently possi-
ble in the mobile embedded space where the need for natural
voice interfaces is clearly important. The continuous na-
ture of speech recognition coupled with an inherently large
working set creates significant cache interference with other
processes. Hence real-time recognition is problematic even
on high-performance general-purpose platforms. This paper
provides a detailed analysis of CMU’s latest speech recog-
nizer (Sphinx 3.2), identifies three distinct processing phases,
and quantifies the architectural requirements for each phase.
Several optimizations are then described which expose par-
allelism and drastically reduce the bandwidth and power
requirements for real-time recognition. A special-purpose
accelerator for the dominant Gaussian probability phase is
developed for a 0.25µ CMOS process which is then ana-
lyzed and compared with Sphinx’s measured energy and
performance on a 0.13µ 2.4 GHz Pentium 4 system. The
results show an improvement in power consumption by a
factor of 29 at equivalent processing throughput. However
after normalizing for process, the special-purpose approach
has twice the throughput, and consumes 104 times less en-
ergy than the general-purpose processor. The energy-delay
product is a better comparison metric due to the inherent
design trade-offs between energy consumption and perfor-
mance. The energy-delay product of the special-purpose
approach is 196 times better than the Pentium 4. These
results provide strong evidence that real-time large vocab-
ulary speech recognition can be done within a power bud-
get commensurate with embedded processing using today’s
technology.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—Real-time and embedded
systems; B.7.1 [Hardware]: Integrated Circuits—Algor–
ithms implemented in hardware; I.2.1 [Computing Meth–
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1. INTRODUCTION
For ubiquitous computing to become both useful and real,

the computing embedded in all aspects of our environment
must be accessible via natural human interfaces. Future
embedded environments need to at least support interfaces
such as speech (this paper’s focus), visual feature recogni-
tion, and gesture recognition. A viable speech recognizer
needs to be speaker independent, accurate, cover a large
vocabulary, handle continuous speech, and have implemen-
tations amenable to mobile as well as tethered computing
platforms. Current systems fall short of these goals pri-
marily in the accuracy, real time, and power requirements.
This work addresses the latter two problems. Modern ap-
proaches to large vocabulary continuous speech recognition
are surprisingly similar in terms of their high-level struc-
ture[17]. Our work is based on CMU’s Sphinx 3 system [7,
11]. Sphinx 3 uses a continuous model that is much more
accurate than the previous semi-continuous Sphinx 2 system
but requires significantly more compute power.

Sphinx 3 runs at 1.8x slower than real time on a 1.7 GHz
AMD Athlon. Performance is hardly the problem since im-
provement rates predicted by Moore’s Law assures that real
time performance will be available soon. A much more im-
portant problem is that the real time main memory band-
width requirement of Sphinx 3 is 800 MB/sec. Our 400 MHz
StrongARM development system has a peak bandwidth ca-
pability of only 64 MB/sec and this bandwidth costs 0.47
watts of power. A reasonable approximation is that power
varies with main memory bandwidth for Sphinx 3 indicat-
ing that this program is at least an order of magnitude too
slow and consumes an order of magnitude too much power
for embedded applications. This provides significant moti-
vation to investigate an alternate approach.

In the next section we give a brief overview of the orga-
nization of Sphinx. Section 3 then discusses the memory
system and ILP characteristics of the application. We also
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Figure 1: Anatomy of a Speech Recognizer

do software optimizations to Sphinx the results of which ap-
pear in Section 3.3. We then present a hardware accelerator
architecture for the Gaussian phase of Sphinx in Section 4.
The performance and power consumption characteristics of
the architecture are evaluated in Section 5. As will be ex-
plained shortly, in addition to the Gaussian phase, Sphinx
has another dominant phase called HMM. Though we ana-
lyze the performance of both the phases here, we accelerate
only the Gaussian phase in this paper. We present an ac-
celeration strategy for HMM in [9]. Sections 6 and 7 cover
related work and conclusions respectively.

2. OVERVIEW OF SPHINX
A simplistic view of the high-level organization of Sphinx

3 is shown in Figure 1. Rectangles represent algorithmic
phases and rounded boxes represent databases. The num-
bers in parenthesis are the approximate on-disk size of the
databases before they are loaded into memory and possi-
bly expanded. Sphinx has 3 major logical phases: front-end
signal processing which transforms raw signal data into fea-
ture vectors; acoustic modeling which converts feature vec-
tors into a series of phonemes; and a language model based
search that transforms phoneme sequences into sequences
of words. The process inherently considers multiple proba-
ble candidate phoneme and word sequences simultaneously.
The final choice is made based on both phoneme and word
context. We focus on analyzing the dominant processing
component of the acoustic and search phases in this paper.

The front end will hereafter be referred to as FE. The
dominant computation done during acoustic model evalu-
ation is Gaussian probability estimation. Hence the figure
and the rest of this paper refers to this algorithm as GAU.
The key component of the search phase is Hidden Markov
Model evaluation. So we refer to it as HMM.

A more accurate and detailed view is that Sphinx models
language using hidden Markov models where the probability
of observing a feature vector while in a particular state is
assumed to follow a Gaussian distribution. GAU precom-
putes Gaussian probabilities for sub-phonetic HMM states
(senones). The output of the GAU phase is used during
acoustic model evaluation and represents the probability of
observing a feature vector in an HMM state. The Gaussian
probability is computed as the weighted sum of the Ma-
hanalobis distance of the feature from a set of references used
while training the recognizer. The Mahanalobis distance is a
statistically significant distance squared metric between two
vectors. Given a feature vector Feat and the pair of vectors
(M, V ) (hereafter called a component) which represent the
mean and variance from a reference, GAU spends most of
its time computing the quantity:

d = Σ8

c=1FinalWeightc + FinalScalec ∗
�

39

i=1
(Feat[i] −

M [i])2 ∗ V [i]
GAU is a component of many recognizers including Sphinx

3, Cambridge University’s HTK, ISIP and Sirocco to name
a few [6, 7, 15, 14, 4]. For Sphinx 3, all three vectors contain
39 IEEE 754 32-bit floating point numbers. The Gaussian
reference table contains 49,152 components for the HUB4
speech model we use. Each component consists of an in-
stance of a mean vector and a variance vector.

Sphinx uses feedback from the HMM phase to minimize
the number of components GAU needs to evaluate. In the
worst case, every single component needs to be evaluated
for every single frame. A real time recognizer should have
the ability to perform 4.9 million component evaluations per
second. In practice, the feedback heuristic manages to re-
duce this number to well under 50%. The Viterbi search
algorithm for HMMs is multiplication intensive, but Sphinx
as well as many other speech recognizers convert it to an
integer addition problem by using fixed point arithmetic in
a logarithmic domain. FE and GAU are the only floating
point intensive components of Sphinx.

The Sphinx 3 code spends less than 1% of its time on front
end processing, 57.5% of the time on the Gaussian phase and
41.5% on the HMM phase. While our work has addressed
the entire application, the work reported here addresses the
optimization and implementation of the dominant Gaussian
phase. The contributions include an analysis of the Sphinx
3 system, an algorithmic modification which exposes addi-
tional parallelism at the cost of increased work, an optimiza-
tion which drastically reduces bandwidth requirements, and
a special-purpose coprocessor architecture which improves
the performance of Sphinx 3 while simultaneously reduc-
ing the energy requirements to the point where real-time,
speaker-independent speech recognition is viable on embed-
ded systems in today’s technology.

3. CHARACTERIZATION AND OPTIMIZA-
TION OF SPHINX 3

To fully characterize the complex behavior of Sphinx, we
developed several variants of the original application. In
addition to the FE, GAU and HMM phases, Sphinx has
a lengthy startup phase and extremely large data struc-
tures which could cause high TLB miss rates on embed-
ded platforms with limited TLB reach. To avoid perfor-
mance characteristics being aliased by startup cost and the
TLB miss rate, Sphinx 3.2 was modified to support check-
pointing and fast restart. For embedded platforms, the
check-pointed data structures may be moved to ROM in
a physically mapped segment similar to kseg0 in MIPS pro-
cessors. Results in this paper are based on this low startup
cost version of Sphinx referred to as original.

Previous studies have not characterized the 3 phases sep-
arately [2, 8]. To capture the phase characteristics and to
separate optimizations for embedded architectures, we de-
veloped a “phased” version of Sphinx 3. In phased, each of
the FE, GAU and HMM phases can be run independently
with input and output data redirected to intermediate files.
In the rest of this paper FE, GAU, HMM refers to the cor-
responding phase run in isolation while phased refers to all
three chained sequentially with no feedback. In Phased, FE
and HMM are identical to original, while GAU work is in-
creased by the lack of dynamic feedback from HMM. Break-
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Figure 2: L1 Dcache Miss rate

ing this feedback path exposes parallelism in each phase and
allows the phases to be pipelined. GAU OPT refers to a
cache optimized version of the GAU phase alone. PAR runs
each of the FE, GAU OPT and HMM phases on separate
processors. It also uses the same cache optimizations as
GAU OPT.

We used both simulation and native profiling tools to an-
alyze Sphinx 3. Simulations provide flexibility and a high
degree of observability, while profiled execution on a real
platform provides realistic performance measures and serves
as a way to validate the accuracy of the simulator. The con-
figurations used to analyze Sphinx 3 are shown in Table 1.

It appeared likely that a multi-GHz processor might be
required to operate Sphinx in real time. Parameters like L1
cache hit time, memory access time, floating point latencies
etc were measured on a 1.7GHz AMD Athlon processor using
the lmbench hardware performance analysis benchmark [10].
Numbers that could not be directly measured were obtained
from vendor micro architecture references. The Simplescalar
simulator was then configured to reflect these parameters.
Unless mentioned otherwise, the remainder of this paper
uses the default configuration.

Native profiling indicates that the original Sphinx 3 spends
approximately 0.89%, 49.8% and 49.3% of its compute cy-
cles in the FE, GAU and HMM phases respectively. Another
recent study found that as high as 70% of another speech
recognizers execution time was spent in Gaussian probabil-
ity computation [8]. In the phased version we found that
approximately 0.74%, 55.5% and 41.3% of time was spent
in FE, GAU and HMM respectively. Since FE is such a small
component of the execution time, we ignore it in the rest of
this study and concentrate on the analysis of the GAU and
HMM phases.

3.1 Memory System Behavior
Figures 2 and 3 show the L1 Dcache and L2 cache miss

rates for original, phased, FE, HMM and GAU for a variety
of configurations. Since earlier studies showed that larger
line sizes benefited Sphinx II, 64 byte L1 and 128 byte L2
cache line sizes were chosen [2]. In addition, the L2 cache
experiments assume a 32K L1 Dcache. Both figures assume
an 8 KB Icache. Since Sphinx has an extremely low in-
struction cache miss rate of 0.08% for an 8KB Icache, no

256 KB
512 KB

1 MB
2 MB

4 MB
8 MB

SGI 8 MB

L2 Cache Size

0

5

10

15

20

25

30

35

40

45

50

M
is

s 
R

at
e 

(P
er

ce
nt

)

44
.1

3%

40
.8

7%

38
.3

1%

35
.4

5%

30
.8

8%

21
.8

4%

17
.7

8%

42
.8

9%

40
.1

5%

37
.4

7%

34
.3

9%

29
.4

2%

17
.9

0%

13
.2

9%

25
.3

6%

22
.4

6%

19
.8

3%

16
.8

5%

13
.1

5%

9.
63

%

9.
19

%

5.
46

%

5.
00

%

1.
80

%

1.
54

%

1.
39

%

0.
92

%

0.
28

%

41
.8

6%

41
.1

7%

40
.4

8%

39
.9

8%

36
.8

7%

20
.2

7%

11
.8

0%

8.
65

%

7.
67

%

7.
05

%

6.
70

%

6.
21

%

5.
21

%

4.
06

%

44
.7

8%

39
.6

1%

34
.4

8%

28
.0

7%

19
.9

5%

11
.4

1%

11
.6

3%

Original
Phased
Phased Opt
FE
GAU
GAU OPT
HMM

Figure 3: L2 Cache Miss rate

256 KB
512 KB

1 MB
2 MB

4 MB
8 MB

SGI 8 MB

L2 Cache Size

0

250

500

750

1000

1250

1500

1750

2000

L2
 to

 M
em

or
y 

B
an

dw
id

th
 (M

B
/s

) 15
84

14
73

13
83

12
77

11
11

79
0

79
1

18
95

17
76

16
54

15
02

12
61

77
3

76
6

12
43

11
18

10
01

85
4

66
1

46
8

46
8

82
4

81
0

79
5

78
5

72
4

39
9

36
3

17
4

15
4

14
1

13
4

12
3

10
3

86

10
68

96
2

85
3

70
5

50
5

28
9

30
5

Original
Phased
Phased Opt
GAU
GAU Opt
HMM

Figure 4: L2 to Memory Bandwidth

other Icache experiments were done. The SGI data provides
a reality check since they represent results obtained using
hardware performance counters. Though the SGI memory
system latency is much lower than that of simulated proces-
sors on account of low processor to memory clock ratio, the
L2 results are very similar in character to the 8MB simula-
tion results in spite of the effects of out of order execution
affected by memory system latency and differences in the
cache replacement policy. The L1 results are not directly
comparable since the R12000 uses a 32 byte L1 line size and
suffers from cache pollution induced by abundant DTLB
misses.

Figure 4 shows the average bandwidth required to process
the workload in real time. This is obtained by dividing the
total L2 to memory traffic while Sphinx operates on a speech
file by the duration in seconds of the speech signal. The ev-
idence suggests that bandwidth starvation leading to stalls
on L2 misses is the reason this application is not able to meet
real time requirements. The memory bandwidth required for
this application is several times higher than what is avail-
able in practice. Note that available bandwidth is always
significantly less than the theoretical peak on most architec-
tures. A 16 fold improvement in L2 size from 256 KB (the
L2 size of a 1.7 GHz Athlon) to 8 MB (SGI Onyx) produces
only a very small decrease in the bandwidth requirement of
GAU. This phase essentially works in stream mode making
100 sequential passes per second over a 14 MB Gaussian



Native Execution:

SGI Onyx3, 32 R12K processors at 400 MHz
32KB 2 way IL1, 32KB 2 way DL1, 8 MB L2
Software: IRIX 64, MIPS Pro compiler, Perfex, Speedshop
Simulator: (default configuration)
SimpleScalar 3.0, out of order CPU model, PISA ISA
8 KB 2 way IL1, 2 cycle latency, 32 KB 2 way DL1, 4 cycle latency
2 MB 2 way L2, 20 cycle latency, 228 cycle DRAM latency
L1 line size 64 bytes, L2 line size 128 bytes
Software: gcc 2.6.3

ILP Experiment Configurations

Reasonable configuration:

32KB DL1, 4 cycle latency, 2MB L2, 20 cycle latency
2 memory ports
Aggressive configuration:

32KB DL1, 2 cycle latency, 8MB L2, 20 cycle latency
4 memory ports

Table 1: Experiment Parameters

table. The speech signal itself contributes only 16KB/s to
the total bandwidth requirements. Some computation sav-
ing heuristics in Sphinx also have the beneficial side effect of
helping to save bandwidth by not touching blocks that are
deemed improbable. Until the L2 size reaches 8 MB, long
term reuse of Gaussian table entries in the L2 is infrequent.
It should be noted that the bandwidth requirement of GAU
in isolation is more severe than if it were operating inside
original, since feedback driven heuristics cannot be applied.

3.2 ILP in Sphinx
Before exploring special-purpose architecture extensions

for speech, it is worthwhile to investigate the limits of mod-
ern architectures. GAU is a floating point dominant code
while HMM is dominated by integer computations. GAU
also appears to be easily vectorizable. We performed two
simulation studies to explore possibilities for extracting ILP.
For GAU, a surplus of integer ALUs were provided and the
number of floating point units were varied. Since this algo-
rithm uses an equal number of multiplies and adds, the num-
ber of floating point adders and multipliers were increased
in equal numbers from 1 to 4, which corresponds to the X
axis varying from 2 to 8 FPUs in Figure 5. Two different
memory system hierarchies were considered: a reasonable
one for a multi GHZ processor and an aggressive memory
system with lower latencies. Both configurations are sum-
marized in Table 1.

The SGI-2+2f entry describes the measured total IPC on
the R12000 which has 2 integer and 2 floating point units.
The SGI-2 entry is the measured floating point IPC alone.
In the case of GAU, IPC remains low because of the inabil-
ity of the algorithm to have sufficient memory bandwidth to
keep the FPUs active. In the case of the R12000 which can
issue two floating point operations per cycle, the IPC for
this loop is an underwhelming 0.37. GAU OPT, uncovers
opportunities for ILP by virtue of its cache optimizations
thereby improving IPC greatly. However, the IPC saturates
at 1.2 in spite of available function units. A recently pub-
lished study also indicated IPC in the range of 0.4 to 1.2 for
another speech recognizer [8]. Clearly, the architecture and
compiler are unable to automatically extract the available
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Figure 5: GAU and GAU OPT IPC

ILP which again argues for custom acceleration strategies.
Figure 6 shows the corresponding experiment for the HMM
phase. In this experiment, the number of integer adders
and multipliers are varied equally from 1 to 4. In spite of
available execution resources, IPC remains low. It should
be noted that in both experiments, the SGI results are in-
dicative of cases where the CPU to memory clock ratio is
low. This ratio will undoubtedly increase in the future.

The observations from sections 3.1 and 3.2 have several
implications: If speech is an “always on” feature, it could
cause significant L2 cache pollution and memory bandwidth
degradation to the foreground application. To guarantee
real time processing, it might be better to stream data around
the L2 rather than pollute it. Since the L2 cache is one of
the largest sources of capacitance on the chip, accessing it
for stream data also incurs a large power overhead. Low
power embedded platforms may not need any L2 cache at all
since dramatic increases in L2 size are not accompanied by
corresponding improvements in DRAM bandwidth or per-
formance. Bandwidth reduction is important for its own
sake as well as to reduce power consumption. Bandwidth
partitioning so that each phase has independent access to
its data set is important.

3.3 Results of Software Optimizations
This section presents the results of our software optimiza-

tions before we move on to the acceleration architecture for
GAU.
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3.3.1 Cache Optimizations
In Section 3.1, GAU was shown to be bandwidth starved.

The GAU code in phased was instrumented and found to re-
quire approximately twice the amount of computation as in
original. However, Figure 7 shows that phased suffers only
0.85 times slow down over original on an R12000. Clearly, a
large fraction of the excess computation is hidden by mem-
ory latency. With processor to memory speed ratios increas-
ing in the future, an out of order processor can hide an even
larger amount of compute overhead. The key is to improve
the memory system behavior without an unreasonable in-
crease in compute requirements.

To achieve this goal, two transformations were performed
on phased. First, a blocking optimization similar in spirit to
loop tiling is performed which delays the initial speech signal
by 100ms or 10 frames. The Gaussian probabilities for all
10 frames are then computed by making a single pass over
the Gaussian tables. This effectively reduces the number of
passes to 10 per second where original would have done 100.
The blocking factor is limited to 10 to avoid a perceptible
real-time lag at the decoder output.

It should be noted that this is not a blocking or tiling
transformation that a compiler could perform. The soft-
ware had to be restructured to accumulate 10 frames of the
speech signal and process 10 frames in one pass. Further,
this became possible only because we eliminated the feed-
back between HMM and GAU. Speech researchers advancing
the state of their art are unlikely to be interested in or aware
of architectural level implications. Thus, it is imperative
that architecture researchers analyze the performance im-
plications of important perception applications like speech
recognition.

Sphinx allocates the mean and variance vectors used for
Gaussian computation described in section 1 separately. Ev-
ery component evaluation consumes one mean and one vari-
ance vector. Since Sphinx originally allocated each table of
vectors separately and each is more than 7 MB, they po-
tentially conflict with each other in the cache. To avoid
this, we interleaved corresponding mean and variance vec-
tors and padded them with an additional 64 bytes to be ex-
actly 3 L2 cache lines long. This padding strategy consumes
bandwidth but simplifies DMA transfers for the coprocessor
architecture described later. The optimized version appears
in Figure 8. Note the interleaving of vectors and a blocking
loop that is not present in the equation shown in Section 1.
More details of how this affects a hardware implementation
will be presented in the next section. The optimized version
appears in Figures 2, 3, 4 and 7 as the data point GAU
OPT.

GAU OPT demonstrates the true streaming nature of
GAU. Figure 4 shows that GAU OPT uses a factor of 4.7 to
3.9 less bandwidth than GAU in simulation with a factor of
4.2 improvement obtained on a real machine. This supports
our claim that GAU processing can be done without an L2
cache. With a 256 KB L2 cache, the GAU OPT bandwidth
is 174 MB/s. We have calculated that with no heuristic,
and no L2 cache, GAU OPT can meet its real time require-
ments with 180 MB/s of main memory bandwidth. This
has important implications for the scalability of servers that
process speech.

Figures 2 and 3 show dramatic reduction in the cache
miss rates in both simulation and native execution. The L2
native execution results are better than simulation results.
The large variation in the L1 results is due to the 32 byte
L1 line size on the R12000 and also possibly because of an
extremely large number of TLB misses. The software miss
handler could easily pollute the L1 cache. The important
point is that Figure 7 shows that OPT, a version of phased
with our GAU OPT blocking optimizations achieves a slight
speedup over original in spite of performing a larger num-
ber of computations. In summary, to be able to extract
parallelism, the feedback loop was broken which approxi-
mately doubled the GAU workload. With cache optimiza-
tions (which are not possible with feedback), the loss due
to the extra GAU workload is recovered and the exposed
parallelism is now open for further optimization.

3.3.2 Parallelization
Based on the percentage of execution time, Amdahl’s law

predicts a factor of 1.97 speedup if GAU and HMM process-
ing could be entirely overlapped. It is clear that a special-
purpose architecture for GAU can have significant speedup,
as well as power and scaling benefits. We parallelized Sphinx
in order to see if there were any practical impediments to



for(senone = 0; senone < N; senone++) // Loop 0

for(block=0; block < 10; block++) // Loop 1

for(c=0; c < 8; c++) // Loop 2

{

for(i=0, sum=0.0; i < 39; i++) // Loop 3

{

t = X[block][i] - Gautable[senone][c].vector[i].Mean;

sum = t * t * Gautable[senone][c].vector[i].Var;

sum = max(sum, MINIMUM_VALUE);

}

score[senone][block] += sum * Gautable[senone][c].FinalScale +

Gautable[senone][c].FinalWeight;

}

Figure 8: Cache Optimized Gaussian Algorithm

achieving good speedup. We developed, a parallel version of
Sphinx, called PAR, which runs each of the FE, GAU OPT
and HMM phases on separate processors. In effect, this
models an SMP version of Sphinx 3 as well as the case where
each processor could be replaced by a special-purpose accel-
erator. As shown in Figure 7, the parallel version achieves a
speedup of 1.67 over the original sequential version. A cus-
tom accelerator will likely be even better. The HMM phase
was further multi-threaded to use 4 processors instead of 1,
but the resulting 5 processor version was slower than the 2
processor version due to the high synchronization overhead.
Our research shows that HMM processing also benefits from
special-purpose acceleration but that work is reported else-
where [9].

4. ACCELERATOR ARCHITECTURE
The tight structure of the GAU computation lends it-

self to a high-throughput custom implementation. The key
questions are how to achieve area, power and bandwidth
efficiency as well as scalability. This section describes how
we achieved these goals by a) reducing the floating point
precision, b) restructuring the computation, and c) sharing
memory bandwidth.

Sphinx designers try hard to eliminate floating point com-
putation wherever possible. GAU and FE are the only float-
ing point dominant computations in Sphinx. An attempt
was made to convert GAU to use fixed point integer arith-
metic. This was a total failure. The computations require a
very high dynamic range which cannot be provided with 32
bit scaled integer arithmetic. Fortunately, the scores of the
highly probable states are typically several orders of magni-
tude higher than those of the less likely ones indicating that
a wide range is more important than precision.

Earlier work explored the use of special-purpose floating
point formats in Gaussian estimation to save memory band-
width [12]. Special floating point formats should be almost
invisible to the application. This reduces complexity and
enables the development of speech models without access
to any special hardware. We conducted an empirical search
for the precision requirements by creating a custom software
floating point emulation library for GAU. The library sup-
ports multiplication, addition, MAC, and (a−b)2 operations
on IEEE 754 format floating point numbers. The approach
was to experimentally reduce mantissa and exponent sizes
without changing the output results of the Sphinx 3 recog-

nizer. The result is an IEEE 754 compatible 12-bit mantissa
and 8-bit exponent format similar to an IEEE 754 number
in that, it has a sign-bit, an 8-bit excess 127 exponent and
a hidden one-bit in its normalized mantissa. Unlike IEEE
754 which has 23 explicit-bits in the mantissa, we only need
12-bits. Conversion between the reduced precision repre-
sentation and IEEE 754 is trivial. Though our study was
done independently, we subsequently found a previous study
which arrived at similar conclusions based on an earlier ver-
sion of Sphinx [16]. However this study used digit serial
multipliers which cannot provide the kind of throughput re-
quired for GAU computation. Hence we chose to use fully
pipelined reduced precision multipliers instead.

Another key insight is that current high performance mi-
croprocessors provide a fused multiply add operation which
would benefit GAU. However, GAU also needs an add multi-
ply (subtract-square) operation. There is scope for floating
point circuit improvements relying on the nature of (a− b)2

always returning a positive number. Further gains can be
obtained both in area, latency, power and magnitude of the
numerical error by fusing the operations (a− b)2 ∗ c. This is
the approach we have taken.

4.1 Top Level Organization
Figure 9 illustrates the system context for our GAU ac-

celerator.
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Figure 10: Gaussian Coprocessor

We implemented loops 1,2,3 (from the optimized GAU
algorithm in Figure 8) in hardware while the outer loop is
implemented in software. The max operation can be folded
into the denormal floating point number handling section
of our floating point adder without additional latency, but
empirically it can be discarded without sacrificing recogni-
tion accuracy. The organization in Figure 9 is essentially a
decoupled access/execute architecture where the outer loop
runs on a host processor and instructs a DMA engine to
transfer X, Mean and Var vectors into the accelerators in-
put memory. A set of 10 input blocks are transferred into the
accelerator memory and retained for the duration of a pass
over the entire interleaved Mean/Var table. The Mean/Var
memory is double buffered for simultaneous access by the
DMA engine and the accelerator. The accelerator sends re-
sults to an output queue from where they are read by the
host processor using its coprocessor access interface.

4.2 Coprocessor Datapath
Figure 10 shows the details of the accelerator itself. The

datapath consists of an (a − b)2 ∗ c floating point unit, fol-
lowed by an adder that accumulates the sum as well as a
fused multiply add (a ∗ b + c) unit that performs the final
scaling and accumulates the score. Given that X, Mean, and
Var are 39 element vectors, a vector style architecture is sug-
gested. The problem comes in the accumulation step since
this operation depends on the sum from the previous cycle,
and floating point adders have multi-cycle latencies. For a
vector length of N and an addition latency of M, a straight
forward implementation takes (N-1) * M cycles. Binary tree
reduction (similar to an optimal merge algorithm) is possi-
ble, but even then the whole loop cannot be pipelined with
unit initiation interval.

This problem is solved by reordering Loops 1,2,3 to a 2,3,1
order. This calculates an (X − M)2 ∗ V term for each in-
put block while reading out the mean and variance values
just once from the SRAM. Effectively this is an interleaved
execution of 10 separate vectors on a single function unit
which leaves enough time to do a floating point addition
of a partial sum term before the next term arrives for that
vector. The cost is an additional 10 internal registers to
maintain partial sums. Loops 2,3,1 can then be pipelined
with unit initiation interval. In the original algorithm the
Mean/Var SRAM is accessed every cycle whereas with the
loop interchanged version this 64-bit wide SRAM is accessed
only once every 10 cycles. Since SRAM read current is com-

parable to function unit current in the CMOS technology we
use, the loop interchange also contributes significant savings
in power consumption.

The Final Sigma unit in Figure 10 works in a similar man-
ner except that instead of a floating point adder, it uses a
fused multiply add unit. It scales the sum, adds the final
weight and accumulates the final score. Due to the inter-
leaved execution, this unit also requires 10 intermediate sum
registers. This unit has a fairly low utilization since it re-
ceives only 8 * 10 inputs every 39 * 10 * 8 cycles. It is
useful since it makes it possible for the host processor to
read one combined value per block instead of having to do
8 coprocessor reads. Also, an earlier version of the acceler-
ator without this unit could not scale beyond 6 channels if
the host CPU is an embedded processor with a blocking L1
Dcache. To save power this unit is disabled when it is idle.
In a multi-channel configuration it is possible to share this
unit between multiple channels.

4.3 Implementation
The datapath shown in Figure 10 has been implemented

using a datapath description language (Synopsys Module
Compiler Language) and is subsequently synthesized for a
0.25µ CMOS process. The control sections were written in
Verilog and synthesized using Synopsys Design Compiler.
The gate level netlist is then annotated with worst case wire
loads calculated using the same wire load model used for
synthesis. The netlist is then simulated at the Spice level us-
ing Synopsys Nanosim and transistor parameters extracted
for the same 0.25µ process by MOSIS. Energy consump-
tion is estimated from the RMS supply current computed
by Spice. The unoptimized fully pipelined design can oper-
ate above 300 MHz at the nominal voltage of 2.5 volts with
unit initiation interval. At this frequency the performance
exceeds the real time requirements for GAU, indicating an
opportunity to further reduce power. A lower frequency and
voltage can be used to further reduce power.

The accelerator was designed and simulated along with
a low-power embedded MIPS-like processor that we could
modify as needed to support special purpose coprocessor
accelerators. This control processor is a simple in-order de-
sign that uses a blocking L1 Dcache and has no L2 cache.
To support the equivalent of multiple outstanding loads,
it uses the MIPS coprocessor interface to directly submit
DMA requests to a low priority queue in the on-chip memory
controller. The queue supports 16 outstanding low priority



block read requests, with block sizes being multiples of 128
bytes. A load request specifies a ROM address and a desti-
nation – one of the Feat, Mean or Var SRAMs. The memory
controller initiates a queued memory read and transfers the
data directly to the requested SRAM index. A more capa-
ble out of order processor could initiate the loads directly.
Software running on the processor core does the equivalent
of the GAU OPT phase. It accumulates 100ms or 10 frames
of speech feature vectors (1560 bytes) into the Feat SRAM
periodically. This transfer uses the memory controller queue
interface. Next, it loads two interleaved Mean/Var vectors
from ROM into the corresponding SRAM using the queue
interface . A single transfer in this case is 640 bytes. The
Mean/Var SRAM is double buffered to hide the memory la-
tency. Initially, the software fills both the buffers. It then
queues up a series of vector execute commands to the control
logic of the Gaussian accelerator. A single command corre-
sponds to executing the interchanged loops 2,3,1. The pro-
cessor then proceeds to read results from the output queue of
the Gaussian accelerator. When 10 results have been read,
it is time to switch to the next Mean/Var vector and refill
the used up half of the Mean/Var SRAM. This process con-
tinues until the end of the Gaussian ROM is reached. When
one cache line of results has been accumulated, they are
written to memory where another phase or an I/O interface
can read it.

The processor frequency was chosen to provide a capabil-
ity similar to the well known StrongArm. We also have a
cycle accurate simulator which is validated by running it in
lock step with the processor’s HDL model. The simulator
is detailed enough to boot the SGI Linux 2.5 operating sys-
tem and run user applications in multitasking mode. CAD
tool latency estimates are used to time the simulated version
of the accelerator. The resulting system accurately models
the architecture depicted in Figures 9 and 10. The GAU
OPT application for this system is a simple 250 line C pro-
gram with less than 10 lines of assembly language for the
coprocessor interface. Loop unrolling and double buffering
were done by hand in C. The application was compiled using
MIPS GCC 3.1 and run as a user application under Linux
inside the simulator. It was able to process 100ms samples
of a single channel in 67.3ms and scale up to 10 channels in
real time. The actual data may be seen in the next section.

4.4 Applications
Though the Gaussian estimator was designed for Sphinx

3 and the MIPS-like embedded processor, the results are
widely applicable to other architectures and recognizers. Th–
ere are several levels at which this system may be integrated
into a speech recognition task pipeline similar to Phased .
For example, an intelligent microphone may be created by
using a simple low-power DSP to handle the A/D conversion
and FE phase and then a GAU coprocessor attached to the
DSP may be used for probability estimation. The proba-
bility estimates can then be sent to a high-end processor or
custom accelerator that does language model computation
thereby hiding more than 50% of the compute effort required
for speech recognition. On desktop systems, the Gaussian
accelerator may be part of a sound card or the Gaussian
accelerator may be directly attached to the main proces-
sor. On commercial voice servers, the Gaussian estimator
may be directly built into the line cards that interface to
the telephone network thereby freeing up server resources

for language model and application processing. This also
has important implications for server scalability, discussed
in the next section.

5. ACCELERATOR EVALUATION
The main contributions of our coprocessor architecture

are energy savings, server scalability and bandwidth savings.
We describe each of these advantages next.

5.1 Energy Savings
We compared the Spice simulation results from our fully

synthesized coprocessor architecture with an actual 2.4 GHz
Pentium 4 system that was modified to allow accurate mea-
surement of processor power. Without considering the power
consumed by main memory, the GAU accelerator consumed
1.8 watts while the Pentium 4 consumed 52.3 watts during
Mahanalobis distance calculation, representing an improve-
ment of 29 fold. The performance of the Pentium 4 system
exceeded real-time demands by a factor of 1.6 while the co-
processor approach exceeded real-time by 1.55. However the
Pentium 4 is implemented in a highly tuned 0.13µ process
whereas the GAU accelerator was automatically synthesized
for a generally available TSMC 0.25µ process. When nor-
malizing for process differences, the advantage of the GAU
coprocessor approach increases significantly. After normal-
izing for the process, the coprocessor’s throughput is 187%
higher than the Pentium 4, while consuming a whopping
271 times less energy. However it is important to note that
energy consumption vs. performance are common design
trade-offs. A more valid comparison is the energy-delay
product. The GAU coprocessor improves upon the energy-
delay product of the Pentium 4 processor by a factor of 507.

However the processor is only part of any system. Main
memory is an important consideration as well. When the
memory is included the GAU coprocessor approach improves
upon the Pentium’s energy delay product by a factor of 196,
has an energy advantage of a factor of 104, and the through-
put performance stays the same as the processor-only re-
sults.

We used a Pentium 4 as the comparison because embed-
ded processors like the StrongARM do not have either the
floating point instructions or the performance required for
our benchmarks. We believe that software emulated float-
ing point will greatly bloat the energy delay product of the
StrongARM and make a meaningful comparison impossible.
Another reason for the choice was simply the technical feasi-
bility of measuring processor power. For example, the Intel
XScale (StrongARM) development platform we investigated
had a processor module board with FPGA, Flash memory
etc integrated on it and isolating the processor power was
difficult. The particular Pentium 4 system we used was cho-
sen because the layout of the printed circuit board permitted
us to de-solder certain components and make modifications
to permit measuring the energy consumption of the proces-
sor core alone. We look forward to making a more mean-
ingful comparison when the Intel Banias processor which is
expected to be energy-efficient becomes available.

5.2 Scalability
As natural human interfaces become more common, scal-

ability of servers that process speech will become an im-
portant issue. This will be particularly important for sys-
tems like call centers and collaborative work environments.
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Figure 11: Channel Scaling

In addition to having energy advantages, our design is also
scalable. Figure 11 shows that our system can be scaled to
process up to ten independent speech channels in real-time.
The main limitation is our in-order processor with its sim-
ple blocking cache mode. The Final Sigma stage enables
the design to scale even with blocking caches due to the re-
moval of destructive interference between the cache and the
DMA engine. For embedded designs, the power required to
support out of order execution may be excessive but such
an organization is likely in a server. One channel of speech
feature vectors contributes about 16 KB/s to the memory
bandwidth. The outgoing probabilities consume 2.3 MB/s.

By setting a threshold on acceptable Gaussian scores and
selectively sending out the scores, this can be significantly
reduced. The dominant bandwidth component is still the
Gaussian table. We can add additional Feat SRAMs and
Gaussian accelerator data paths that share the same Var
and Mean SRAMs since the Gaussian tables are common
for all channels, thereby reusing the same 180 MB/s vector
stream for a large number of channels. With a higher fre-
quency implementation of the Gaussian datapath, multiple
channels can also be multiplexed on the same datapath. In
a server, the Gaussian estimation of several channels can be
delegated to a line card which operates out of its own 18
MB Gaussian ROM. The partitioning of bandwidth, a 50%
reduction in server workload per channel as well as reduced
cache pollution leads to improved server scalability.

5.3 Bandwidth Savings
The HUB4 speech model used in this study has 49,152

interleaved and padded Mean/Var components each occu-
pying 3 L2 cache lines of 128 bytes or a total of 384 bytes
per component. Thus the total size of the Gaussian ta-
ble is 18MB. Sphinx processes this table 100 times every
second, but uses some heuristics to cut down the band-
width requirement. To guarantee real time processing, we
can do brute force evaluation using the Gaussian acceler-
ator at low-power. Because of our blocking optimization
(GAU OPT), we need to process the data only 10 times
per second with a peak bandwidth of 180 MB/s which can
be further reduced by applying the sub-vector quantiza-
tion (non-feedback) heuristics in Sphinx. Not only does our
design bring the bandwidth requirements to limits possi-
ble on embedded systems, it also drastically improves the
power consumption. On a 400 MHz Intel XScale (Stron-
gARM) development system where the processor itself con-

sumes less than 1 W, we measured a peak memory band-
width of 64MB/s which consumes an additional 0.47 W. The
factor of 4 or more bandwidth savings is significant for the
embedded space since it indicates that a 52-watt server can
be replaced by a 1-watt embedded processor.

6. RELATED WORK
Most speech recognition research has targeted recogni-

tion accuracy [5, 4]. Performance issues have been sec-
ondary and power efficiency has largely been ignored. Rav-
ishankar improved Sphinx performance by reducing accu-
racy and subsequently recovering it in a less computation-
ally active phase and developed a multi-processor version
of an older version of Sphinx [11]. However, details of this
work are currently unavailable. Agaram provided a detailed
analysis of Sphinx 2 and compared this analysis with SPEC
benchmarks [2]. Pihl designed a 0.8µ custom coprocessor
to accelerate Gaussian probability generation for an HMM
based recognizer. However Pihl’s work proposed a special-
ized arithmetic format rather than the IEEE 754 compatible
version described here. Furthermore the number of Gaussian
components need to be processed per second has escalated
from 40,000 in the case of Pihl’s coprocessor to 4.9 million
for our accelerator during the last 7 years and this trend is
likely to continue as the search for increased accuracy pro-
ceeds. Pihl’s work did not address scalability which is a
central theme for this research. Tong showed an example
of reduced precision digit serial multiplication for Sphinx
[16]. Anatharaman showed a custom multiprocessor archi-
tecture for improving the Viterbi beam search component of
a predecessor of Sphinx [3]. Application acceleration using
custom coprocessors has been in use for decades, however
current researchers are exploiting this theme for reducing
power consumption. Piperench is one such approach which
exploits virtualized hardware, and run-time reconfiguration
[13]. Pleiades is a reconfigurable DSP architecture that uses
half the power of an Intel StrongARM for FFT calculations
[1].

7. CONCLUSIONS
Sphinx 3 has been analyzed to show that real-time pro-

cessing is problematic due to high memory bandwidth re-
quirement on high-end general-purpose machines, and even
more problematic due to both power and performance con-
cerns for low-end embedded systems. Optimizations were
then presented and analyzed to expose parallelism and sub-
stantially reduce the bandwidth requirements for real-time
recognizers. A custom accelerator for the dominant Gaus-
sian phase was then described and analyzed. The accelerator
takes advantage of the low precision floating point require-
ments of Sphinx 3 as well as creating a custom function unit
for calculating Gaussian probabilities which is the dominant
component of the Gaussian phase of Sphinx 3. The accel-
erator has been synthesized for a .25u CMOS process and
shown to improve on the process normalized performance of
a Pentium 4 system by a factor of 2, while simultaneously
improving on the energy consumption by 2 orders of magni-
tude. Other work, not reported here, shows similar results
for other phases of the speech recognition process. This is
strong evidence that by incorporating a small amount of
custom acceleration hardware, it is possible to perform real-
time Sphinx 3 speech recognition for the HUB4 language



model on an embedded processor implemented in current
technology.
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