

More examples:
PDF malware & rootkits

Malware Analysis Seminar

Meeting 8

Cody Cutler, Anton Burtsev

PDF malware

Background

● First exploit in 2008
● Vulnerability in one of Adobe JavaScript API

functions
– collectEmailInfo()

● Used together with a heap spray attack
– More vulnerabilities
– printf(), getIcon(), customDictionaryOpen(), getAnnots(),

newPlayer()

● Very similar to browser exploits
● Very easy to obfuscate and evade detection

Obfuscation: split strings

● Split strings
● Many short strings
● Some are defined as variables
● Evaluated with unescape()

● AV scanner needs lexical and structural parser

Obfuscation: bracket notation

● Property access using bracket notation

Obfuscation: regular expressions

● Regular expressions
● Hide a real string inside a longer string
● Retrieve it with RegExp

● Each instance of l, k, u, d are replaced with “%”
● Result is %25%34%35%30%30%30%66
● Evaluate with unescape to %45000f

Obfuscation: eval function

● Eval – dynamic code generation mechanism
● app.alert(“Hello)
● eval('app.alert(“Hello”)')

How many evals?

Alternatives to eval

● AVs look for eval, but alternatives are there
● app.setTimeOut(statement, timeout)

● In PDF any code can be specified as statement

● Split eval
 qkgd=(“foo”, “bar”, ...)[(“baz”, … , “e”+”v”+”a”+”l”)]

● Arrays are evaluated from left to right
 qkgd=(“foo”, “bar”, ...)[“eval”]

●

Numeric eval

● Use a numeric representation to produce a
desired string

 foo=3280+690461;
 bar=”baz”[foo.toString(7+29)];

● foo becomes 693741
● toString converts it to string using radix-36

representation
● 693741 = 14x36^3 + 31x36^2 + 10x36 + 21
● 14 is “e”, 31 is “v”, 10 is “a”, 21 is “l”

● bar becomes “eval”

Packers

● There are 30 JavaScript packers
● Base64 encoding
● RC4
● Neosploit

– Generates key from the decryption function itself

Using features of PDF format

● Cross-reference tables
● Can confuse the AV detector
● Require complete parsing

● Use of stream filters
● PDF allows embedding of compressed objects

● Encryption
● Decryption requires CPU resources

● Fragmented JavaSript
● Requires complete parsing of PDF

JavaScrip features unique to PDF

● Document forms
● this.getField()

● retrieves data from the Field object of individual
widget

● It's possible to hide code inside Field objects

● app.doc.getAnnots()
● retrieves data from the ScreenAnnot object

● this.info.Producer, this.info.Title

Conclusions

● Complexity of the PDF specification means that
this is an endless arm-race
● Lots of false positives
● Recently introduced sandboxing (2010) might help

to a certain extend

Rootkits

SSDT hooking

● System Service Dispatch Table
● Syscall mechanism in Windows

– EAX – syscall number, EDX – user stack with arguments, INT 2E

– Alternatively SYSENTER (IA32_SYSENTER_EIP)

● Pointers to core windows kernel functions

● Disable write protection
● Set write protection bit (16) in CR0 to 0

 mov eax, cr0
 and eax, 0FFFEFFFFh
 mov cr0, eax

● Locate SSDT
 mov eax, offset KeServiceDescriptorTable ; 1
 mov edi, [eax] ; 2
 mov eax, [edi] ; 3

● Install the hook

Example: process hiding

● Install a hook on ZwQuerySystemInformation
● Filter results

Kthread Manipulation

● Each thread can have its own SSDT
● The kernel KTHREAD struct has a pointer to

thread's SSDT
● Not checked by AV software

● After rootkit is installed all new threads are
patched
● PsSetCreateThreadNotifyRoutine

IDT hooking

● IDT hooks will get called before SSDT
● Complications

● Each processor has its own IDT
– You have to hook all of them

● IDT routines do not return to kernel
– You can't just call the original function and filter results
– But you can block invocations

IRP function table hooking

● I/O Request Packet (IRP) function table
● Initialized by a driver

● Complication
● IRP routines do not return

– You have to hook a completion routine

Binary rewriting

● Far jump (7 bytes)
● Pad with nops

● Locate the function
● If exported use PE headers
● If not search for binary match

● Check the function code
● Byte comparison with the hardcoded template

● Put the rootkit code in a non-pageable memory

Hooking through exception handling

● Generate an exception in the function code
● Process exception in a hooked IDT routine

Direct kernel object manipulation

● Hooks are relatively easy to detect
● It's mach harder to detect an inconsistency in

the kernel object structures
● Fragile

– Hard to understand what objects mean
● Incomplete

– Can hide processes, but can't hide files

Hiding

● Processes
● EPROCESS – doubly linked list of running

processes
● Escalate privileges, hide

● Drivers
● MODULE_ENTRY

Attacking AV software

● Prevent AV processes from loading
● PsSetLoadImageNotifyRoutine
● Write a ret instruction at the entry point of the

process
● Let it load [Nuwar 2007]

Memory forging

● Hardware breakpoints to intercept read
accesses
● Hooking exception handler

– KiDebugRoutine
● Configure a read watchpoint

– DR0 – memory addres, DR7 – read access
● Run exception handlers on every processor

TDL-4

Infection and loading

● Infects MBR
● Loads before OS

● Unsophisticated encryption algorithm
● But even small changes to the algorithm break

signature-based detection

● Small MBR component searches rootkit's
encrypted partition
● Finds ldr16 component
● Passes control to it

Ldr16

● Ldr16 hooks BIOS 13h interrupt
● Disk input/output interrupt

● Finds original MBR
● Saved in its encrypted partition

● Copies original MBR to memory
● Passes control to the original boot record

Disk I/O monitoring

● Uses a hooked BIOS interrupt 13h
● Looks for kdcom.dll

● Scans every read sector for a matching signature

● kdcom.dll is replaced in memory with rootkit's
loader
● ldr32 or ldr64
● Both are kept in the encrypted partition

● kdcom.dll is restored in kernel memory after
initialization completes

Disable integrity check

● Search for Boot Configuration Data (BCD)
block in memory
● Disable integrity check

● Integrity of kdcom.dll is not checked
● Later the check is re-enabled

LDR32/LDR64

● LDR32 implements interface of the kdcom.dll
● One of the functions which is called by the kernel to

initialize kdcom.dd starts rootkit initialization
● Creates a driver object

Hiding

● Hooks the miniport driver for the system disk
● Hooks StartIO function
● Removes device object from the list

● Intercepts read/write requests
● Hides MBR and encrypted partition

Watchdog process

● Periodically checks its integrity (once per
second)
● Queues WORK_QUEUE_ITEM
● Checks MBR
● Checks driver object for the miniport driver
● Checks StartIo

Acknowledgements

● Portable Document Format Malware.
Kazumasa Itabashi. Symantec Security
Response.

● Predicting the Future of Stealth Attacks. Aditya
Kapoor, Rachit Mathur. McAfee.

● Rootkit Analysis: Hiding SSDT hooks. Nick
Jogie.

● Kernel Malware: The Attack from Within. Kimmo
Kasslin (F-Secure).

Acknowledgements (contd)

● TDL3: The Rootkit of All Evil? Aleksandr
Matrosov, Eugene Rodionov. ESET.

● The Evolution of TDL: Conquering x64. Eugene
Rodionov, Aleksandr Matrosov. ESET.

● TDSS. Kaspersky Lab.
● TDSS. TDL-4. Kaspersky Lab.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

