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PDF malware



  

Background

● First exploit in 2008
● Vulnerability in one of Adobe JavaScript API 

functions
– collectEmailInfo()

● Used together with a heap spray attack
– More vulnerabilities
– printf(), getIcon(), customDictionaryOpen(), getAnnots(), 

newPlayer()

● Very similar to browser exploits
● Very easy to obfuscate and evade detection



  

Obfuscation: split strings

● Split strings
● Many short strings
● Some are defined as variables
● Evaluated with unescape()

● AV scanner needs lexical and structural parser



  

Obfuscation: bracket notation

● Property access using bracket notation



  

Obfuscation: regular expressions

● Regular expressions
● Hide a real string inside a longer string
● Retrieve it with RegExp

● Each instance of l, k, u, d are replaced with “%”
● Result is %25%34%35%30%30%30%66
● Evaluate with unescape to %45000f



  

Obfuscation: eval function

● Eval – dynamic code generation mechanism
● app.alert(“Hello)
● eval('app.alert(“Hello”)')



  

How many evals?



  

Alternatives to eval

● AVs look for eval, but alternatives are there
● app.setTimeOut(statement, timeout)

● In PDF any code can be specified as statement

● Split eval
   qkgd=(“foo”, “bar”, ...)[(“baz”, … , “e”+”v”+”a”+”l”)]

● Arrays are evaluated from left to right
   qkgd=(“foo”, “bar”, ...)[“eval”]

●



  

Numeric eval

● Use a numeric representation to produce a 
desired string

    foo=3280+690461;
    bar=”baz”[foo.toString(7+29)];

● foo becomes 693741
● toString converts it to string using radix-36 

representation
● 693741 = 14x36^3 + 31x36^2 + 10x36 + 21
● 14 is “e”, 31 is “v”, 10 is “a”, 21 is “l”

● bar becomes “eval”



  

Packers

● There are 30 JavaScript packers
● Base64 encoding
● RC4
● Neosploit

– Generates key from the decryption function itself



  

Using features of PDF format

● Cross-reference tables
● Can confuse the AV detector
● Require complete parsing

● Use of stream filters
● PDF allows embedding of compressed objects 

● Encryption
● Decryption requires CPU resources 

● Fragmented JavaSript
● Requires complete parsing of PDF



  

JavaScrip features unique to PDF

● Document forms
● this.getField() 

● retrieves data from the Field object of individual 
widget

● It's possible to hide code inside Field objects

● app.doc.getAnnots()
● retrieves data from the ScreenAnnot object

● this.info.Producer, this.info.Title



  

Conclusions

● Complexity of the PDF specification means that 
this is an endless arm-race
● Lots of false positives
● Recently introduced sandboxing (2010) might help 

to a certain extend



  

Rootkits



  

SSDT hooking

● System Service Dispatch Table
● Syscall mechanism in Windows

– EAX – syscall number, EDX – user stack with arguments, INT 2E

– Alternatively SYSENTER (IA32_SYSENTER_EIP)

● Pointers to core windows kernel functions

● Disable write protection
● Set write protection bit (16) in CR0 to 0

      mov eax, cr0
      and eax, 0FFFEFFFFh
      mov cr0, eax

● Locate SSDT
      mov eax, offset KeServiceDescriptorTable ; 1
      mov edi, [eax] ; 2
      mov eax, [edi] ; 3

● Install the hook



  

Example: process hiding

● Install a hook on ZwQuerySystemInformation
● Filter results



  

Kthread Manipulation

● Each thread can have its own SSDT
● The kernel KTHREAD struct has a pointer to 

thread's SSDT
● Not checked by AV software

● After rootkit is installed all new threads are 
patched
● PsSetCreateThreadNotifyRoutine



  

IDT hooking

● IDT hooks will get called before SSDT
● Complications

● Each processor has its own IDT
– You have to hook all of them

● IDT routines do not return to kernel
– You can't just call the original function and filter results
– But you can block invocations



  

IRP function table hooking

● I/O Request Packet (IRP) function table
● Initialized by a driver

● Complication
● IRP routines do not return

– You have to hook a completion routine



  

Binary rewriting

● Far jump (7 bytes)
● Pad with nops

● Locate the function 
● If exported use PE headers
● If not search for binary match

● Check the function code
● Byte comparison with the hardcoded template

● Put the rootkit code in a non-pageable memory



  

Hooking through exception handling

● Generate an exception in the function code
● Process exception in a hooked IDT routine



  

Direct kernel object manipulation

● Hooks are relatively easy to detect
● It's mach harder to detect an inconsistency in 

the kernel object structures
● Fragile

– Hard to understand what objects mean
● Incomplete

– Can hide processes, but can't hide files



  

Hiding

● Processes
● EPROCESS – doubly linked list of running 

processes
● Escalate privileges, hide

● Drivers
● MODULE_ENTRY



  

Attacking AV software

● Prevent AV processes from loading
● PsSetLoadImageNotifyRoutine
● Write a ret instruction at the entry point of the 

process
● Let it load [Nuwar 2007]



  

Memory forging

● Hardware breakpoints to intercept read 
accesses
● Hooking exception handler

– KiDebugRoutine
● Configure a read watchpoint

– DR0 – memory addres, DR7 – read access
● Run exception handlers on every processor



  

TDL-4



  

Infection and loading

● Infects MBR
● Loads before OS

● Unsophisticated encryption algorithm
● But even small changes to the algorithm break 

signature-based detection

● Small MBR component searches rootkit's 
encrypted partition
● Finds ldr16 component
● Passes control to it



  

Ldr16

● Ldr16 hooks BIOS 13h interrupt
● Disk input/output interrupt

● Finds original MBR 
● Saved in its encrypted partition

● Copies original MBR to memory
● Passes control to the original boot record



  

Disk I/O monitoring

● Uses a hooked BIOS interrupt 13h
● Looks for kdcom.dll

● Scans every read sector for a matching signature

● kdcom.dll is replaced in memory with rootkit's 
loader 
● ldr32 or ldr64
● Both are kept in the encrypted partition

● kdcom.dll is restored in kernel memory after 
initialization completes



  

Disable integrity check

● Search for Boot Configuration Data (BCD) 
block in memory
● Disable integrity check

● Integrity of kdcom.dll is not checked
● Later the check is re-enabled



  

LDR32/LDR64

● LDR32 implements interface of the kdcom.dll
● One of the functions which is called by the kernel to 

initialize kdcom.dd starts rootkit initialization
● Creates a driver object 



  

Hiding

● Hooks the miniport driver for the system disk
● Hooks StartIO function
● Removes device object from the list

● Intercepts read/write requests
● Hides MBR and encrypted partition



  

Watchdog process

● Periodically checks its integrity (once per 
second)
● Queues WORK_QUEUE_ITEM
● Checks MBR
● Checks driver object for the miniport driver
● Checks StartIo
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