

An Introduction to x86 ASM

Malware Analysis Seminar

Meeting 1

Cody Cutler, Anton Burtsev

Registers

● General purpose
● EAX, EBX, ECX, EDX
● ESI, EDI (index registers, but used as general in 32-bit protected mode)

● Stack
● EBP, ESP

● Instruction pointer
● EIP

● Flags
● EFLAGS

● Segment
● CS, DS, SS, ES, FS, GS

Syntax

● General form:
● mnemonic operand(s)

movl %eax, %ebx

● Operands (0-3) may refer:
● Registers
● Memory
● Immediate

Syntax (contd.)

● Register naming (AT&T is UNIX default)
● AT&T: %eax
● Intel: eax

● Source/Destination Ordering:
● Load EBX with the value of EAX
● AT&T: movl %eax, %ebx
● Intel: mov ebx, eax

Constant value/immediate value format

● Load EAX with the address of the "C" variable boo
● AT&T: movl $_boo, %eax
● Intel: mov eax, _boo
● Note that “_” works for static (global) variables only

● Now let's load ebx with 0xd00d:
● AT&T: movl $0xd00d, %ebx
● Intel: mov ebx, d00dh

Operator size specification

● You don't want make GAS to guess this wrong
● AT&T: movw %ax, %bx
● Intel: mov bx, ax

Referencing memory

● 32bit protected mode addressing
● AT&T: immed32(basepointer,indexpointer,indexscale)
● Intel: [basepointer + indexpointer*indexscale + immed32]

● A global C variable
● AT&T: _booga
● Intel: [_booga]

● Addressing what a register points to:
● AT&T: (%eax)
● Intel: [eax]

Referencing memory (contd.)

● Addressing a variable offset by a value in a register:
● AT&T: _variable(%eax)
● Intel: [eax + _variable]

● Addressing a value in an array of integers (scaling by 4):
● AT&T: _array(,%eax,4)
● Intel: [eax*4 + array]

● Offsets with immediate value
● C code: *(p+1) where p is a char *
● AT&T: 1(%eax) where eax has the value of p
● Intel: [eax + 1]

Referencing memory (contd.)

● Addressing a particular char in an array of 8-character
records
● EAX holds the number of the record desired.
● EBX has the wanted char's offset within the record.

● AT&T: _array(%ebx,%eax,8)
● Intel: [ebx + eax*8 + _array]

● Integers:
● Two's compliment:
● Reverse bits, then add one (throw away carry)

– Original value: 00111000 (+56)
– Reverse bits: 11000111
– Add 1: 11001000 (-56)

● Rules of arithmetic are preserved

 002C 44
 + FFFF + (- 1)

 002B 43

Arithmetic

Carry and overflow

● Overflow
● Set if the true result of the operation is too big to fit

into the destination for signed arithmetic.

● Carry
● Set if there is a carry in the msb of an addition or a

borrow in the msb of a subtraction.
● Can be used to detect overflow for unsigned

arithmetic.

Extended precision arithmetic

● ADC

operand1 = operand1 + carry flag + operand2

● SBB

operand1 = operand1 - carry flag – operand2

● Sum of 64-bit integers in EDX:EAX and EBX:ECX

add eax, ecx ; add lower 32-bits
adc edx, ebx ; add upper 32-bits and carry

Control structures

● Control structures decide what to do based on
comparisons of data

● CMP instruction
● subtract operands
● set EFLAGS

● EFLAGS register
● ZF – zero flag
● CF – carry flag
● SF – sign flag

Control structures (contd.)

● Unsigned: cmp vleft, vright <=> vleft – vright
● vleft = vright: ZF (1), CF (0)
● vleft > vright: ZF (0), CF (0) – no borrow
● vleft < vright: ZF (0), CF (1) – borrow

● Signed: cmp vleft, vright <=> vleft – vright
● vleft = vright: ZF (1), CF (0)
● vleft > vright: ZF (0), SF = CF
● vleft < vright: ZF (0), SF != CF

Branch instructions

● JMP
● Short:

– One byte instruction!
– But jumps only 128 bytes up or down

● Near:
– Jump anywere in a segment
– 2-byte displacement: jump 32000 bytes
– 4-byte displacement: jump anywhere in 32-bit mode

● Far:
– Jump across segments

Examples

if (EAX == 0)

 EBX = 1;

else

 EBX = 2;

 cmp eax, 0 ; set flags (ZF set if eax - 0 = 0)

 jz thenblock ; if ZF is set branch to thenblock

 mov ebx, 2 ; ELSE part of IF

 jmp next ; jump over THEN part of IF

thenblock:

 mov ebx, 1 ; THEN part of IF

next:

Comparison instructions

● JE branches if vleft = vright
● JNE branches if vleft != vright
● JL, JNGE branches if vleft < vright
● JLE, JNG branches if vleft <= vright
● JG, JNLE branches if vleft > vright
● JGE, JNL branches if vleft >= vright

Loops

● LOOP
● Decrements ECX, if ECX != 0 branches to label

● LOOPE, LOOPZ
● Decrements ECX (FLAGS register is not modified),

if ECX != 0 and ZF = 1, branches

● LOOPNE, LOOPNZ
● Decrements ECX (FLAGS unchanged), if ECX != 0

and ZF = 0, branches

Loop example

sum = 0;
 for (i=10; i >0; i--)
 sum += i;

 mov eax, 0 ; eax is sum
 mov ecx, 10 ; ecx is i

loop_start:

 add eax, ecx
 loop loop_start

Stack

● SS
● Specifies stack segment (usually same as data)

● ESP
● Contains the address of the data that would be

removed from the stack

● PUSH/POP
● Insert/remove data on the stack
● Subtract/add 4 to ESP

Call/return

● CALL
● Makes an unconditional jump to a subprogram and

pushes the address of the next instruction on the
stack

● RET
● Pops off an address and jumps to that address

Calling conventions

● Goal: reentrant programs
● Conventions differ from compiler, optimizations, etc.

● Call/return are used for function invocations
● Parameters passed on the stack

● Pushed onto the stack before the CALL instruction

Stack bottom pointer

● Initially parameter is
● [ESP + 4]

● Later as the function
pushes things on the
stack it changes, e.g.
● [ESP + 8]

● Use dedicated
register EBP

Prologue/epilogue

subprogram_label:
 push ebp ; save original EBP value on stack
 mov ebp, esp ; new EBP = ESP
; subprogram code
 pop ebp ; restore original EBP value
 ret

● Example invocation

 push dword 1 ; pass 1 as parameter
 call fun
 add esp, 4 ; remove parameter from stack

Local variables

● Stored right after the saved EBP value in the stack
● Allocated by subtracting the number of bytes required

from ESP

subprogram_label:
 push ebp ; save original EBP value on stack
 mov ebp, esp ; new EBP = ESP
 sub esp, LOCAL_BYTES ; = # bytes needed by locals
; subprogram code
 mov esp, ebp ; deallocate locals
 pop ebp ; restore original EBP value
 ret

Enter/leave

● ENTER
● prologue code

● LEAVE
● Epilogue

subprogram_label:
 enter LOCAL_BYTES, 0 ; = # bytes needed by locals
; subprogram code
 leave
 ret

Examples

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

