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Registers

● General purpose
● EAX, EBX, ECX, EDX
● ESI, EDI (index registers, but used as general in 32-bit protected mode)

● Stack
● EBP, ESP

● Instruction pointer
● EIP

● Flags
● EFLAGS

● Segment
● CS, DS, SS, ES, FS, GS



  

Syntax

● General form:
● mnemonic operand(s)

movl %eax, %ebx

● Operands (0-3) may refer:
● Registers
● Memory
● Immediate



  

Syntax (contd.)

● Register naming (AT&T is UNIX default)
● AT&T:  %eax
● Intel: eax

● Source/Destination Ordering:
● Load EBX with the value of EAX
● AT&T:  movl %eax, %ebx
● Intel:   mov ebx, eax



  

Constant value/immediate value format

● Load EAX with the address of the "C" variable boo
● AT&T:  movl $_boo, %eax
● Intel: mov eax, _boo
● Note that “_” works for static (global) variables only

● Now let's load ebx with 0xd00d:
● AT&T:  movl $0xd00d, %ebx
● Intel: mov ebx, d00dh



  

Operator size specification

● You don't want make GAS to guess this wrong
● AT&T:  movw %ax, %bx
● Intel: mov bx, ax



  

Referencing memory

● 32bit protected mode addressing
● AT&T: immed32(basepointer,indexpointer,indexscale)
● Intel: [basepointer + indexpointer*indexscale + immed32]

● A global C variable
● AT&T:  _booga
● Intel: [_booga]

● Addressing what a register points to:
● AT&T: (%eax)
● Intel: [eax]



  

Referencing memory (contd.)

● Addressing a variable offset by a value in a register:
● AT&T: _variable(%eax)
● Intel: [eax + _variable]

● Addressing a value in an array of integers (scaling by 4):
● AT&T:  _array(,%eax,4)
● Intel: [eax*4 + array]

● Offsets with immediate value
● C code: *(p+1) where p is a char *
● AT&T:  1(%eax) where eax has the value of p
● Intel: [eax + 1]



  

Referencing memory (contd.)

● Addressing a particular char in an array of 8-character 
records
● EAX holds the number of the record desired. 
● EBX has the wanted char's offset within the record.

● AT&T:  _array(%ebx,%eax,8)
● Intel: [ebx + eax*8 + _array]



  

● Integers: 
● Two's compliment: 
● Reverse bits, then add one (throw away carry)

– Original value: 00111000 (+56)
– Reverse bits:   11000111 
– Add 1:              11001000 (-56) 

● Rules of arithmetic are preserved

  002C         44
   + FFFF    + ( - 1)   

  002B         43

Arithmetic



  

Carry and overflow

● Overflow
● Set if the true result of the operation is too big to fit 

into the destination for signed arithmetic.

● Carry
● Set if there is a carry in the msb of an addition or a 

borrow in the msb of a subtraction. 
● Can be used to detect overflow for unsigned 

arithmetic.



  

Extended precision arithmetic

● ADC

operand1 = operand1 + carry flag + operand2

● SBB

operand1 = operand1 - carry flag – operand2

● Sum of 64-bit integers in EDX:EAX and EBX:ECX

add eax, ecx ; add lower 32-bits          
adc edx, ebx ; add upper 32-bits and carry



  

Control structures

● Control structures decide what to do based on 
comparisons of data

● CMP instruction
● subtract operands
● set EFLAGS

● EFLAGS register
● ZF – zero flag
● CF – carry flag
● SF – sign flag



  

Control structures (contd.)

● Unsigned: cmp vleft, vright <=> vleft – vright
● vleft = vright: ZF (1), CF (0)
● vleft > vright: ZF (0), CF (0) – no borrow
● vleft < vright: ZF (0), CF (1) – borrow

● Signed: cmp vleft, vright <=> vleft – vright
● vleft = vright: ZF (1), CF (0)
● vleft > vright: ZF (0), SF = CF
● vleft < vright: ZF (0), SF != CF



  

Branch instructions

● JMP
● Short: 

– One byte instruction! 
– But jumps only 128 bytes up or down

● Near:
– Jump anywere in a segment 
– 2-byte displacement: jump 32000 bytes 
– 4-byte displacement: jump anywhere in 32-bit mode

● Far: 
– Jump across segments



  

Examples

if ( EAX == 0 )

   EBX = 1;

else

   EBX = 2;

   cmp eax, 0   ; set flags (ZF set if eax - 0 = 0)

   jz thenblock ; if ZF is set branch to thenblock

   mov ebx, 2   ; ELSE part of IF

   jmp next      ; jump over THEN part of IF

thenblock:

  mov ebx, 1   ; THEN part of IF

next:



  

Comparison instructions

● JE branches if vleft = vright
● JNE branches if vleft != vright
● JL, JNGE branches if vleft < vright
● JLE, JNG branches if vleft <= vright
● JG, JNLE branches if vleft > vright
● JGE, JNL branches if vleft >= vright



  

Loops

● LOOP 
● Decrements ECX, if ECX != 0 branches to label

● LOOPE, LOOPZ 
● Decrements ECX (FLAGS register is not modified), 

if ECX != 0 and ZF = 1, branches

● LOOPNE, LOOPNZ
● Decrements ECX (FLAGS unchanged), if ECX != 0 

and ZF = 0, branches



  

Loop example

sum = 0;
    for ( i=10; i >0; i-- )
        sum += i;

      mov eax, 0   ; eax is sum 
      mov ecx, 10 ; ecx is i 

loop_start:

      add eax, ecx
      loop loop_start



  

Stack

● SS
● Specifies stack segment (usually same as data)

● ESP
● Contains the address of the data that would be 

removed from the stack

● PUSH/POP
● Insert/remove data on the stack
● Subtract/add 4 to ESP



  

Call/return

● CALL
● Makes an unconditional jump to a subprogram and 

pushes the address of the next instruction on the 
stack

● RET
● Pops off an address and jumps to that address



  

Calling conventions

● Goal: reentrant programs
● Conventions differ from compiler, optimizations, etc.

● Call/return are used for function invocations
● Parameters passed on the stack

● Pushed onto the stack before the CALL instruction



  

Stack bottom pointer

● Initially parameter is 
● [ESP + 4]

● Later as the function 
pushes things on the 
stack it changes, e.g.
● [ESP + 8]

● Use dedicated 
register EBP



  

Prologue/epilogue

subprogram_label:
     push ebp            ; save original EBP value on stack
     mov ebp, esp     ; new EBP = ESP
; subprogram code
     pop ebp              ; restore original EBP value
     ret

● Example invocation
     
     push dword 1     ; pass 1 as parameter
     call fun
     add esp, 4          ; remove parameter from stack



  

Local variables

● Stored right after the saved EBP value in the stack
● Allocated by subtracting the number of bytes required 

from ESP

subprogram_label:
     push ebp                           ; save original EBP value on stack
     mov ebp, esp                    ; new EBP = ESP
     sub esp, LOCAL_BYTES ; = # bytes needed by locals
; subprogram code
     mov esp, ebp                    ; deallocate locals
     pop ebp                             ; restore original EBP value
     ret



  

Enter/leave

● ENTER 
● prologue code

● LEAVE
● Epilogue

subprogram_label:
     enter LOCAL_BYTES, 0       ; = # bytes needed by locals
; subprogram code
     leave
     ret



  

Examples
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