

A. Yu. Burtsev, L. B. Ryzhyk, Yu. O.
Timoshenko

OPERATING SYSTEM ARCHITECTURE BASED ON
DISTRIBUTED OBJECTS

Introduction

Today the computing power of the
networks of workstations has become
comparable to that of modern supercom-
puters. The practical implementation
of high-performance distributed compu-
tations obviously requires a special
software platform. At present, this
platform is usually implemented by ap-
plication-level parallel programming
libraries, providing software develop-
ers with distributed communication and
synchronization facilities [1,2]. Our
claim is that the problem can be ad-
dressed in full measure by an operat-
ing system providing processes with
transparent access to all resources of
the distributed system. Such operating
system would allow users and applica-
tion programmers to think of the com-
puter network as a single multiproces-
sor with common memory.

This paper presents the architec-
tural design of a distributed operat-
ing system aimed to make the computing
potential of the network immediately
available to application programmer.

Fundamental Concepts

The proposed operating system ar-
chitecture, called E1, is based on the
following fundamental concepts:

Single system image support. The
single system image abstraction im-
plies that all distributed system re-
sources are uniformly accessible from
any of its nodes. For users and soft-
ware developers such system looks and
feels like a single virtual computer.
Its distributed nature is transparent
to applications.

Efficient access to resources. In a
distributed environment execution
threads and resources they use can be

located in different nodes. However,
efficient access to resources can oc-
cur only locally. E1 enables access
locality by making an object physi-
cally distributed, i.e. storing a com-
plete or partial copy of its state in
several network nodes. The internal
organization of an object allows mini-
mizing interactions with remote nodes
during execution of operations on ob-
jects, thus neutralizing the influence
of communication latencies on overall
system performance.

Load balancing. The E1 operating
system supports load balancing, i.e.
dynamic distribution of computational
payload between system nodes.

Support for redundancy mechanisms.
E1 allows applications to transpar-
ently use distributed algorithms for
redundant data storage and execution.

Component model support. E1 has a
component architecture and supports
component-oriented software develop-
ment paradigm. Both operating system
services and application software are
developed within the framework of a
single E1 component model. The compo-
nent model provides the following ser-
vices:

• global naming service;
• protected object interaction fa-

cilities;
• late binding mechanism;
• persistent objects service.

Distributed objects

The E1 architecture is based on the
abstraction of distributed object.
Distributed object is an object, glob-
ally accessible from all nodes of dis-
tributed system. The important E1
properties like efficient support for
reliable distributed computing and
persistence are based on the corre-
sponding properties of distributed ob-
jects.

Object is an encapsulated abstrac-
tion, including state information and
well defined access protocols.

The E1 distributed object is an ob-
ject having the following additional
properties:

 5

1. Accessibility through interfaces.
A distributed object exposes one or
more well defined interfaces, consist-
ing of methods. The object can be ac-
cessed by means of method invocations
only.

2. Global accessibility. Each object
has a unique identifier associated
with it. Any other object possessing
this identifier can invoke the given
object’s methods from any node of the
system, provided that it has suffi-
cient capabilities.

3. Ability to replicate. The ob-
ject’s state is physically distributed
among its replicas. Object replicas
can exist in several nodes and must
exist in all nodes where object’s
methods are invoked. Replication is a
process of distribution of object’s
state among its replicas and replica
synchronization, aimed to support in-
tegrity of the object.

4. Persistence. Persistence is the
ability of an object to exist for
unlimited time, irrespectively of
whether a system functions continu-
ously. The object is at any time ac-
cessible through its interfaces.

The E1 distributed objects are com-

posed of local objects (Figure 1). A
local object is constrained to one
node of a distributed system. Like
distributed objects, local objects are
accessible through interfaces.

In a trivial case when the distrib-
uted object has only one replica, it
is identified with a single local ob-
ject, semantics object. Semantics ob-
ject contains the distributed object
state, exposes the distributed object
interfaces and implements its func-
tionality.

If the distributed object has sev-
eral replicas, a copy of the semantics
object is placed in each node, where

Semantics
Object

Node 1 Node 2

Node 3

Replication
Object

Semantics
Object

Replication
Object

Semantics
Object

Replication
Object

Object Interface
Figure. 1. Distributed Object

 6

the distributed object is represented.
The distributed object integrity is
maintained by replication objects,
complementing the semantics objects in
each node. Replication objects imple-
ment the distributed object replica-
tion protocol. The distributed object
interfaces are locally exposed by rep-
lication objects. While processing the
distributed object invocation, repli-
cation object can refer to the seman-
tics object to execute necessary op-
erations over the local object state,
as well as communicate with remote
replication objects to perform syn-
chronization and remote execution of
operations.

Local objects

A local object (Figure 2) consists
of interface section and data section.
The interface section contains refer-
ences to object’s method tables. The
data section contains object’s private
data that represents its state.

Class objects

Classes of local objects in E1 are
described by objects of the special
type – class objects. Encapsulation of
class properties by objects allows im-
plementing dynamic class loading.
Class objects provide the following
functionality:

• expose methods for creating and
destroying instances of the given
class;

• store interface implementations.

Replication

The E1 distributed object architec-
ture follows the principle of policy
and mechanism separation that was
first proposed by the developers of
Hydra operating system [3]. The oper-
ating system provides the replication
mechanism while specific replication
strategies are implemented by replica-
tion objects. This architecture allows
applying to each object the most effi-
cient replication algorithm that takes
into account its semantics.

Below we briefly describe several
widely used classes of replication al-
gorithms.

Client/server replication. Cli-
ent/server is a trivial replication
strategy. A single copy of the object
state is maintained by a server rep-
lica. Other replicas are clients. All
client invocations are forwarded to
the server. This strategy is in most
cases inefficient, since it does not
provide local access to resources. An-
other disadvantage is low reliability
due to centralized access to objects.

Master/slave replication is an ex-
tension of client/server strategy.
Each replica stores a copy of an ob-
ject state. One replica is assigned as
primary. Read operations are executed
locally in each node. Modifications
are forwarded to the primary replica,
which executes the required operations
and updates all other replicas. For
this purpose the new object state or
information about state changes is
broadcasted to all secondary replicas.

Active replication. Each replica
stores a copy of an object state. Both
read operations and modifications are
performed locally in each node. To en-
sure replica consistency modifications
are broadcasted to all replicas.

Copy invalidation. This strategy
was proposed by Li [4] as a distrib-
uted shared memory coherence algo-
rithm. It provides strong consistency
of an object, i.e., each read opera-
tion returns the value written by the
last modification.

Release consistency. This strategy
relies on two synchronization primi-
tives: acquire and release. The ac-
quire operation returns a copy of the
object for exclusive use. Release op-
eration finalizes the set of opera-
tions on the object. This strategy re-
quires the developer to explicitly in-
dicate the beginning and the end of
each critical section. Therefore, it
is most appropriate for objects, which
require mandatory access synchroniza-
tion irrespectively of whether they
are used in local or distributed envi-
ronment. For example, an object repre-

 7

senting a shared memory region can ex-
pose acquire and release operations
for access synchronization.

Migration. Migration in E1 refers
to the transfer of object replica be-
tween nodes. Migration is not an inde-
pendent replication strategy. It is
used in conjunction with other strate-
gies to improve the efficiency of ac-
cess to resources by means of load
balancing.

Architectural overview

The E1 operating system consists of
a microkernel and a set of distributed
objects acting at the user level. The
microkernel supports a minimal set of
primitives that are necessary for op-
erating system construction, such as:
address spaces, threads, IPC and in-
terrupts dispatching. All operating
system and application functionality
is implemented by objects.

Object 1

Data
Section

c

get_interface

release
addref

c

get_interface

release
addref

c

get_interface

release
addref

Interface 1

Interface 2

Interface 3

Interface
Section

Class Object

c

get_interface

release
addref

iclass

create_object

Implementation

Data
Section

Interface
 Section

c

get_interface

release
addref

Interface 1

Implementation

Object 2

method1

method1

t

Figure 2. Local Objec
8

Virtual Memory Management IPCThread Switching

Memory
Object 1

Replication
Object

Memory
Object 3 SchedulerMemory

Object 2

Domain

Object Registry

Replication
Object

Replication
Object

Object 2

Microkernel

Application Domain 1 Application Domain 2

Class
Loader

Services

Name
Server

Load
Balancing

File
System

System Domains
Memory Manager

Thread

Thread Manager

Object 1

1

4

3 2

C
ro

s
s

d
o

m
a

in
 C

a
ll

Thread 1
Thread 1

Application Level

Protec

Al
within
bounda
on Fig

Pr
isolat
other
implem
that
means
tation
hardwa
on In
will
dress
proces
single
be us
sented

e

Figure 3. Е1 Architectur
tion domains

l objects in E1 are located
 protection domains. Domain
ries are shown by dashed lines
ure 3.
otection domain is an object that
es one or more objects from
objects in the system. Domains
ent object protection and ensure
objects can communicate only by
of method invocations. Implemen-
 of domains varies for different
re architectures. For instance,
tel x86 [5] architecture domains
be implemented as separate ad-
spaces. In contrast, on 64-bit
sors (MIPS [6], IA-64 [7]) a
 address-space memory model will
ed; and a domain will be repre-
 by a set of virtual memory re-

gions accessible to threads running
within the given domain.

A common domain must be used by in-
tensively communicating objects which
jointly implement some functionality.
For instance, each of the three basic
E1 subsystems: Memory Manager, Thread
Manager and Object Registry, uses a
separate domain.

It is necessary to distinguish be-
tween domains as objects and domains
as resources. These entities are sub-
jects to the following relations:

• the domain-object controls the
domain-resource;

• the domain-resource can be ac-
cessed through the domain-object;

• the domain-resource is a part of
domain-object’s state.

9

Crossdomain calls

Objects located in different do-
mains interact by means of crossdomain
calls.

Crossdomain call is a protected in-
vocation of an interface of an object
located beyond the boundaries of the
calling object’s domain.

A sequence of steps involved in
crossdomain call is shown by arrows on
Figure 3. The calling object (Object2)
transfers control to the microkernel
through a special system call and sup-
plies the following information: an
identifier of the object to be invoked
(Object1), required interface and
method identifiers, and invocation ar-
guments.

In order to complete the invoca-
tion, the kernel requires the follow-
ing additional information:

• whether Object2 is authorized to
invoke the indicated method of Ob-
ject1;

• the identifier of the domain con-
taining Object1 and the required entry
point address.

This information is stored in a
special system object – Object Regis-
try. The microkernel interacts with
Object Registry to obtain the informa-
tion about Object1’s interfaces and to
validate the caller’s rights to per-
form the operation.

If the invoked object does not have
a local replica yet, Registry initi-
ates its replication to the local
node.

Finally, the microkernel transfers
control to Object1 to execute the
call. The return from invocation also
occurs through kernel.

Access control

E1 uses a diminished take-grant ac-
cess control model [8] proposed by
Shapiro as a generalization of the
classical take-grant capability model.
This model provides a number of prop-

erties that can’t be implemented in
the access control list based systems.

Least privilege. It is possible to
grant to each subject only those capa-
bilities that it requires.

Selective Access Right Delegation.
A subject that possesses certain capa-
bilities is able to selectively dele-
gate those capabilities to other sub-
jects.

Rights Transfer Control. A subject
should be able to receive additional
authority only if that authority is
granted via an explicitly authorized
channel.

Endogenous Verification. It must be
possible to verify from within the
system itself that certain restric-
tions on rights transfer and informa-
tion flow are met.

In the E1 access control model ca-
pabilities belong to distributed ob-
jects. Each capability describes
owner’s rights to invoke certain in-
terfaces of another object.

In each E1 node Object Registry
stores objects’ capability lists and
enforces access control policy. It ex-
poses take and grant methods that con-
stitute the only way to pass capabili-
ties between objects. During each
crossdomain call Registry verifies
whether the calling object possesses a
capability to invoke the specified in-
terface of the target object.

Registry itself is a distributed
object. Its replication strategy is
responsible for maintaining consistent
information about objects and capa-
bilities in different nodes.

An object can obtain a capability
for some other object, which does not
have a replica in the local node. On
the first invocation of such non-
existent object Registry turns to
Global Naming Service to locate target
object’s contact points and initiate
its replication to the local node.

 10

Threads

In E1 objects are passive entities,
i.e. an object does not have any
threads permanently associated with
it. Instead, E1 supports a migrating
threads model [9] in which during a
crossdomain call execution of the
calling thread is transferred to the
target object. As shown in [10], mi-
grating threads are more appropriate
for object-oriented environment than
traditional static threads. Static
threads result in significant overhead
for the systems consisting of inter-
acting objects of medium granularity,
since at least one thread must be as-
sociated with each object for dis-
patching incoming messages.

Memory management

The E1 memory management system is
based on the concept of virtual memory
objects introduced by Mach [11]. All
used virtual memory of a domain con-
sists of continuous page regions –
virtual memory objects. Each memory
object can be mapped to one or more
domains in different nodes. Memory ob-
jects control the mapping of virtual
memory pages into external memory.
Main memory is viewed as a high per-
formance cache for the data in exter-
nal storage. Associated with each mem-
ory object is a pager object, support-
ing the exchange of pages between ex-
ternal and main memory.

Efficient distributed shared memory
support is an important component of
distributed operating system. In E1
shared memory is implemented by memory
objects. Memory object is a unit of
memory sharing. Memory coherence algo-
rithm is implemented as memory ob-
ject’s replication strategy. By using
different replication strategies the
distributed shared memory parameters,
such as consistency guarantees and ef-
ficiency of access, can be adjusted to
specific tasks. By default, the copy
invalidation strategy, providing
strong consistency, is used.

Class Loader

Classes of local objects in E1 are de-
scribed by objects of the special
type – Class objects. Class object
stores interface implementations, as-
signed to instances of the given class
upon their creation. All local objects
in the system are created by appropri-
ate Class objects. Before creating an
object in a certain domain, an in-
stance of the corresponding class must
be loaded to this domain. The loading
of Class objects to domains is per-
formed by a special system service –
Class Loader.

Conclusions

The E1 operating system can be used
as an operating system for clusters of
workstations. Currently most of the
computing clusters are using Linux op-
erating system plus PVM parallel pro-
gramming library as their software
platform. Linux was not designed to
support parallel distributed comput-
ing. In contrast, E1 provides the nec-
essary set of primitives on the oper-
ating system level rather than on li-
brary level, which will allow to sig-
nificantly improve performance and re-
liability of a distributed system.

E1 can also be used as an operating
system for distributed data processing
systems, e.g., distributed CAD sys-
tems. In order to support decentral-
ized processing of huge amount of
data, these systems require resources
to be highly available across the net-
work. E1 encourages developing these
systems within the framework of its
component model. The replication
mechanism will then enable efficient
access to resources in distributed en-
vironment, and persistence of objects
will improve reliability of the system
and provide developers with a simple
programming model.

In general, the E1 architecture is
rather universal and can be used in a
variety of distributed environments
including even corporate networks of
personal computers. E1 can also be
used in heterogeneous environments,
consisting of high-performance servers
sharing their resources with low-end

 11

clients, like personal or portable computers and handhelds.

А.Ю. Бурцев, Л.Б. Рыжик, Ю.А. Тимошенко

АРХИТЕКТУРА ОПЕРАЦИОННОЙ СИСТЕМЫ НА
ОСНОВЕ РАСПРЕДЕЛЕННЫХ ОБЪЕКТОВ

Предложена архитектура операционной системы
E1, управляющей ресурсами ЭВМ, объединенных
сетью, для наиболее полного использования вы-
числительного потенциала. Архитектура E1 осно-
вана на абстракции распределенного объекта,
что позволяет реализовать эффективный и надеж-
ный доступ к ресурсам вычислительного комплек-
са из всех его узлов, скрывая при этом распреде-
ленную природу комплекса.

A.Y. Burtsev, L.B. Ryzhyk, Y.A. Timoshenko

OPERATING SYSTEM ARCHITECTURE BASED
ON DISTRIBUTED OBJECTS

The paper presents architecture of E1 operating
system, aimed to control resources of a computer
network. The goal of the operating system design is
to use the computing potential of the network in full
measure. The E1 architecture is based on the ab-
straction of the distributed object, suggested by the
authors. The distributed objects allow implementing
efficient and reliable access to all resources of a
distributed system, while hiding their distributed na-
ture.

1. Sunderam V.S PVM: A Framework for Parallel

Distributed Computing // Journal of Concur-
rency: Practice and Experience. – 1990. –

December. – P. 315–339.

2. MPI: A Message-passing interface standard

// International J. Supercomputing Applica-
tions. – 1994.

3. Wulf W.A., Levin R., Harbison S.P. HY-

DRA/C.mmp An Experimental Computer System.

– N.-Y.: McGraw-Hill, 1981.

4. Li K. Shared Virtual Memory on Loosely
Coupled Multiprocessors: PhD thesis. –

1986. – Yale.

5. Intel Corporation. i486 Processor
Programmer’s Reference Manual. – 1990.

6. Kane G., Heinrich J. MIPS RISC Architecture.

– New Jersey: Prentice Hall, 1992.

7. Intel Corporation. IA-64 Architecture Soft-

ware Developer’s Manual. Volume 2: IA-64
System Architecture, Revision 1.1. – 2000.

8. Shapiro J., Smith J., Farber D. EROS: A

Fast Capability System // 17th ACM

Symposium on Operating System Principles
(SOSP’99). – Charleston, USA, 1999.

9. Ford B., Lepreau J. Evolving Mach 3.0 to

use migrating threads // Technical Report
UUCS-93-022. – University of Utah, 1993.

10. Ford B., Lepreau J. Microkernels Should

Support Passive Objects // Proc. of I-

WOOOS’93.

11. Tevanian A. Architecture-Independent Virtual

Memory Management for Parallel and

Distributed Environments: The Mach
Approach: PhD thesis. – Carnegie Mellon

University, Department of Computer

Science, 1987.

 12

	Introduction
	Fundamental Concepts
	Distributed objects
	Local objects
	Class objects
	Replication
	Architectural overview
	Protection domains
	Crossdomain calls
	Access control
	Threads
	Memory management
	Class Loader
	Conclusions

