

CS5460/6460: Operating Systems

Lecture 3: The First Process

Anton Burtsev
January, 2014

Process

● Illusion of private machine
● CPU
● Memory

● CPU is easy
● Set of registers EAX, EBX, …

Memory

● Private address space
● Other processes can't read or write

● Implemented with virtual memory
● Each process has a page table

● They are switched on context switch
● Page tables “map” which physical pages implement

virtual addresses

Address space layout

Address space layout

● Maps both user and
kernel memory

● Kernel can easily
read/write process
memory from a
system call

● 2GB for user
● 2GB for kernel

Address space
● Maps both user and kernel memory

● This way kernel can easily read/write process
memory from a system call

Processes

● Kernel maintains information about each
process
● Page table
● Kernel stack
● Run state

● Each process has two stacks
● User
● Kernel

PC Boot

BIOS

● Power on → BIOS
● Stored in a non-volatile memory on the

motherboard
● Prepare hardware

● BIOS → boot loader
● Stored in the first 512 byte disk sector
● BIOS loads first sector in memory at 0x7c00
● Jumps to this address (sets EIP to this address)

Boot loader

● Part 1: Hand-written ASM
● Switches CPU from real to protected mode
● We'll discuss details a bit later

● Jump to a C function (bootmain)

● Part 2: C
● Expects to find kernel in the second disk sector
● Kernel is an ELF binary
● Kernel is copied to physical location 0x100000 (1MB)

Kernel

● Boot loader → kernel (0x1000c)
● Page tables are not enabled
● Kernel must map itself to the high location

0x80100000

Kernel maps itself twice

First process: userinit()
● Allocate the proc data structure
● Allocate process kernel stack
● High level plan

1) Pretend inside fork()
2) Return from

3) Return from kernel to user level

How do processes get into kernel?

● fork() is implemented as interrupt
● Saves user registers on top of the kernel stack

How do processes get into kernel?

● fork() is implemented as interrupt
● Saves user registers on top of the kernel stack

Normally kernel returns with trapret

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

