
cs5460/6460: Operating Systems

Address translation
(Segmentation and Paging)

Anton Burtsev

February, 2024

Two programs one memory

Two programs one memory

• How can we do
this?

Relocation

• One way to achieve this is to relocate program
at different addresses

• Remember relocation (from linking and loading)

Relocate binaries to work at different
addresses

• One way to achieve this is to relocate program
at different addresses
• Remember relocation (from linking and loading)

• This works! But not ideal
• What is the problem?

Relocate binaries to work at different
addresses

• What is the problem?

Problem: isolation

• How can we enforce isolation?

Problem: isolation

• How can we enforce isolation?

• Isolation can be enforced in software

• Software Fault Isolation (SFI)

• Google NaCl (Chrome Sandbox)

• WASM (Web Assembly, another sandbox
standard)

Actually, how?
#include <stdio.h>

int main(int ac, char **av)
{

int a = 5, b = 6;
return a + b;

}

00000000 <main>:
0: 55 push ebp
1: 89 e5 mov ebp,esp
3: 83 ec 10 sub esp,0x10
6: c7 45 f8 05 00 00 00 mov DWORD PTR [ebp-0x8],0x5
d: c7 45 fc 06 00 00 00 mov DWORD PTR [ebp-0x4],0x6
14: 8b 45 fc mov eax,DWORD PTR [ebp-0x4]
17: 8b 55 f8 mov edx,DWORD PTR [ebp-0x8]
1a: 01 d0 add eax,edx
1c: c9 leave
1d: c3 ret

PollEv.com/aburtsev
#include <stdio.h>

int main(int ac, char **av)
{

int a = 5, b = 6;
return a + b;

}

00000000 <main>:
0: 55 push ebp
1: 89 e5 mov ebp,esp
3: 83 ec 10 sub esp,0x10
6: c7 45 f8 05 00 00 00 mov DWORD PTR [ebp-0x8],0x5
d: c7 45 fc 06 00 00 00 mov DWORD PTR [ebp-0x4],0x6
14: 8b 45 fc mov eax,DWORD PTR [ebp-0x4]
17: 8b 55 f8 mov edx,DWORD PTR [ebp-0x8]
1a: 01 d0 add eax,edx
1c: c9 leave
1d: c3 ret

https://pollev.com/aburtsev

• Another way is to ask for hardware support

Segmentation

What are we aiming for?

• Illusion of a private address space
• Identical copy of an address space in multiple

programs
• Simplifies software architecture

• One program is not restricted by the memory
layout of the others

Two processes, one memory?

Two processes, one memory?

• We want hardware to add base value to every
address used in the program

Seems easy

• One problem
• Where does this base address come from?

Seems easy

• One problem
• Where does this base address come from?
• Hardware can maintain a table of base

addresses
• One base for each process

• Dedicate a special register to keep an index
into that table

• One problem

• Where does this base address come from?

• Hardware can maintain a table of base
addresses

• One base for each process

• Dedicate a special register to keep an index
into that table

Segmentation: example

Segmentation: address consists of two parts

• Segment register contains segment selector

• General registers contain offsets

• Intel calls this address: “logical address”

Segmentation: Global Descriptor Table

• GDT is an array of segment descriptors
• Each descriptor contains base and limit for the segment
• Plus access control flags

Segmentation: Global Descriptor Table

• Location of GDT in physical memory is pointed by the
GDT register

Segmentation: base + offset

• Segment register (0x1) chooses an entry in GDT

• This entry contains base of the segment (0x110000)
and limit (size) of the segment (not shown)

Segmentation: base + offset

• Physical address:
• 0x410010 = 0x300010 (offset) + 0x110000 (base)
• Intel calls this address “linear”

Segmentation: process 2

• Each process has a private GDT
• OS switches between GDTs

New addressing mode:
“logical addresses”

All addresses are logical address
• They consist of two parts
• Segment selector (16 bit) + offset (32 bit)

• Segment selector (16 bit)
• Is simply an index into an array (Descriptor Table)

• That holds segment descriptors
• Base and limit (size) for each segment

Elements of the descriptor table are
segment descriptors

• Base address
• 0 – 4 GB

• Limit (size)
• 0 – 4 GB

• Access rights
• Executable, readable, writable

• Privilege level (0 - 3)

• Offsets into segments (x in our example) or
“effective addresses” are in registers

• Logical addresses are translated into physical
• Effective address + DescriptorTable[selector].Base

• Logical addresses are translated into physical
• Effective address + DescriptorTable[selector].Base

• Logical addresses are translated into physical
• Effective address + DescriptorTable[selector].Base

• Logical addresses are translated into physical
• Effective address + DescriptorTable[selector].Base

• Physical address = Effective address +
DescriptorTable[selector].Base

• Effective addresses (or offsets) are in registers
• Selector is in a special register

Segment registers

• Hold 16 bit segment selectors
• Indexes into GDT

• Segments are associated with one of three
types of storage
• Code
• Data
• Stack

Programing with segements (not real):

static int x = 1;

int y; // stack

if (x) {

y = 1;

printf (“Boo”);

} else

y = 0;

ds:x = 1; // data

ss:y; // stack

if (ds:x) {

ss:y = 1;

cs:printf(ds:“Boo”);

} else

ss:y = 0;

Programming model
• Segments for: code, data, stack, “extra”

• A program can have up to 6 segments
• Segments identified by registers: cs, ds, ss, es, fs, gs

• Prefix all memory accesses with desired segment:
• mov eax, ds:0x80 (load offset 0x80 from data into eax)
• jmp cs:0xab8 (jump execution to code offset 0xab8)
• mov ss:0x40, ecx (move ecx to stack offset 0x40)

Programming model, cont.

• This is cumbersome,
• Instead the idea is: infer code, data and stack

segments from the instruction type
• Control-flow instructions use code segment (jump, call)
• Stack management (push/pop) uses stack
• Most loads/stores use data segment

• Extra segments (es, fs, gs) must be used
explicitly

Segmentation: what did we achieve

• Illusion of a private address space
• Identical copy of an address space in multiple

programs
• We can implement fork()

• Isolation
• Processes cannot access memory outside of their

segments

Segmentation works for isolation, i.e., it does
provide programs with illusion of private memory

Segmentation is ok... but

What if process needs more
memory?

What if process needs more
memory?

You can move P2 in memory

Or even swap it out to disk

Problems with segments

• Segments are somewhat inconvenient
• Relocating or swapping the entire process takes

time

• Memory gets fragmented
• There might be no space (gap) for the swapped out

process to come in
• Will have to swap out other processes

Paging

Pages

Pages

Paging idea

• Break up memory into 4096-byte chunks called
pages
• Modern hardware supports 2MB, 4MB, and 1GB pages

• Independently control mapping for each page of linear
address space

• Compared with segmentation (single base + limit)
• Much more flexibility

How can we build this translation
mechanism?

Paging: naive approach: translation array

• Linear address 0x410010
• Remember it’s result of logical to linear translation (aka

segmentation)
• 0x410010 = 0x300010 (offset) + 0x110000 (base)

Paging: naive approach: translation array

• Linear address 0x410010
• Remember it’s result of logical to linear translation (aka

segmentation)
• 0x410010 = 0x300010 (offset) + 0x110000 (base)

What is wrong?

What is wrong?

• We need 4 bytes to relocate each page
• 20 bits for physical page number
• 12 bits of access flags

• Therefore, we need array of 4 bytes x 1M
entries
• 4MBs

Paging: naive approach: translation array

Paging: array with size

• The size controls how many entries are required

But still what may go wrong?

Paging: array with size

Paging: array with size

Can we improve?

Paging: array of arrays

Paging: array of arrays

Paging: page table

• Result:
• EAX = 55

Page translation

Page translation

Page directory entry (PDE)

• 20 bit address of the page table

Page directory entry (PDE)

• 20 bit address of the page table
• Wait... 20 bit address, but we need 32 bits

Page directory entry (PDE)

• 20 bit address of the page table
• Wait... 20 bit address, but we need 32 bits

• Pages 4KB each, we need 1M to cover 4GB
• Pages start at 4KB (page aligned boundary)

Page translation

Page table entry (PTE)

• 20 bit address of the 4KB page
• Pages 4KB each, we need 1M to cover 4GB

Page translation

Benefit of page tables
… Compared to arrays?
• Page tables represent sparse address space more

efficiently
• An entire array has to be allocated upfront
• But if the address space uses a handful of pages
• Only page tables (Level 1 and 2 need to be

allocated to describe translation)
• On a dense address space this benefit goes away
• I'll assign a homework!

What about isolation?

• Two programs,
one memory?

• Each process has
its own page table

• OS switches
between them

P1 and P2 can't access each
other memory

Compared to segments pages allow
...

• Emulate large virtual address space on a
smaller physical memory

• In our example we had only 12 physical pages
• But the program can access all 1M pages in its

4GB address space
• The OS will move other pages to disk

Compared to segments pages allow
...

• Share a region of memory across multiple programs
• Well… segments allow this too

• Communication (shared buffer of messages)
• Shared libraries

Recap: complete address
translation

32bit x86 supports two page sizes

• 4KB pages
• 4MB pages

Page translation for 4MB pages

Page translation for 4MB pages

●Virtual addresses are
48 bits
●Physical addresses
are 52 bits

Page translation in 64bit mode

Questions?

What pages are used for

●Protect parts of the program
●E.g., map code as read-only
–Disable code modification attacks
–Remember R/W bit in PTD/PTE entries!
●E.g., map stack as non-executable
–Protects from stack smashing attacks
–Non-executable bit

More paging tricks

●Determine a working set of a program?

More paging tricks

●Determine a working set of a program?
●Use “accessed” bit

More paging tricks

●Determine a working set of a program?
●Use “accessed” bit
●Iterative copy of a working set?
●Used for virtual machine migration

More paging tricks

●Determine a working set of a program?
●Use “accessed” bit
●Iterative copy of a working set?
●Used for virtual machine migration
●Use “dirty” bit

More paging tricks

●Determine a working set of a program?
●Use “accessed” bit
●Iterative copy of a working set?
●Used for virtual machine migration
●Use “dirty” bit
●Copy-on-write memory, e.g. lightweigh fork()?

More paging tricks

●Determine a working set of a program?
●Use “accessed” bit
●Iterative copy of a working set?
●Used for virtual machine migration
●Use “dirty” bit

TLB

●CPU caches results of page table walks
●In translation lookaside buffer (TLB)

Virt Phys

0xf0231000 0x1000

0x00b31000 0x1f000

0xb0002000 0xc1000

- -

TLB invalidation
●After every page table update, OS needs to manually
invalidate cached values
●Flush TLB
–Either one specific entry
–Or entire TLB, e.g., when CR3 register is loaded
–This happens when OS switches from one process
to another
●This is expensive
–Refilling the TLB with new values takes time

Tagged TLBs

●Modern CPUs have “tagged TLBs”,
●Each TLB entry has a “tag” – identifier of a
process
●No need to flush TLBs on context switch
●On Intel this mechanism is called
●Process-Context Identifiers (PCIDs)
Virt Phys Tag

0xf0231000 0x1000 P1

0x00b31000 0x1f000 P2

0xb0002000 0xc1000 P1

When would you disable paging?

When would you disable paging?

●Imagine you're running a memcached
●Key/value cache
●You serve 1024 byte values (typical) on 10Gbps
connection
●1024 byte packets can leave every 835ns, or
1670 cycles (2GHz machine)
●This is your target budget per packet

When would you disable paging?
●Now, to cover 32GB RAM with 4K pages
●You need 64MB space
●64bit architecture, 4-level page tables (or 5-levels
now)
●Page tables do not fit in L3 cache
●Modern servers come with 32MB cache
●Every cache miss results in up to 4 cache misses
due to page walk (remember 4-level page tables)
●Each cache miss is 250 cycles

●Solution: 1GB pages

Back of the envelope
●If a page is 4K and an entry is 4 bytes, how many entries
per page?

Back of the envelope
●If a page is 4K and an entry is 4 bytes, how many entries
per page?
●1k

Back of the envelope
●If a page is 4K and an entry is 4 bytes, how many entries
per page?
●1k

●How large of an address space can 1 page represent?

Back of the envelope
●If a page is 4K and an entry is 4 bytes, how many entries
per page?
●1k

●How large of an address space can 1 page represent?

●1k entries * 1page/entry * 4K/page = 4MB

Back of the envelope
●If a page is 4K and an entry is 4 bytes, how many entries
per page?
●1k

●How large of an address space can 1 page represent?

●1k entries * 1page/entry * 4K/page = 4MB
●How large can we get with a second level of translation?

Back of the envelope
●If a page is 4K and an entry is 4 bytes, how many entries
per page?
●1k
●How large of an address space can 1 page represent?
●1k entries * 1page/entry * 4K/page = 4MB
●How large can we get with a second level of translation?
●1k tables/dir * 1k entries/table * 4k/page = 4 GB
●Nice that it works out that way!

Segment descriptors

Page translation

Page translation

Page directory entry (PDE)

●20 bit address of the page table

Page directory entry (PDE)

●20 bit address of the page table
●Wait... 20 bit address, but we need 32 bits

Page directory entry (PDE)

●20 bit address of the page table
●Wait... 20 bit address, but we need 32 bits

●Pages 4KB each, we need 1M to cover 4GB
●Pages start at 4KB (page aligned boundary)

Page directory entry (PDE)

●Bit #1: R/W – writes allowed?
●But allowed where?

Page directory entry (PDE)

●Bit #1: R/W – writes allowed?
●But allowed where?
●One page directory entry controls 1024 Level 2
page tables
–Each Level 2 maps 4KB page
●So it's a region of 4KB x 1024 = 4MB

The picture can't be displayed.

Page directory entry (PDE)

●Bit #2: U/S – user/supervisor
●If 0 – user-mode access is not allowed
●Allows protecting kernel memory from user-level
applications

Page translation

Page table entry (PTE)

●20 bit address of the 4KB page
●Pages 4KB each, we need 1M to cover 4GB
●Bit #1: R/W – writes allowed?
●To a 4KB page
●Bit #2: U/S – user/supervisor
●If 0 user-mode access is not allowed
●Bit #5: A – accessed
●Bit #6: D – dirty – software has written to this page

Page translation
The picture can't be displayed.

Questions?

