
cs5460/6460 Operating Systems
Lecture 03: x86 instruction set

Anton Burtsev

January, 2024

How do CPUs work internally?

CPU execution
loop

• CPU repeatedly reads
instructions from memory

• Executes them

• Example
ADD EDX, EAX
// EDX = EAX + EDX

What are those instructions?
(a brief introduction to x86

instruction set)

This part is based on David Evans’ x86 Assembly Guide
http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

and Yale FLINT’s group version of the same manual converted to GNU
ASM syntax

https://flint.cs.yale.edu/cs421/papers/x86-asm/asm.html

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
https://flint.cs.yale.edu/cs421/papers/x86-asm/asm.html

Note

• We’ll be talking about 32bit x86 instruction set
• The version of xv6 we will be using in this class

is a 32bit operating system
• You’re welcome to take a look at the 64bit port

x86 instruction set

• The full x86 instruction set is large and complex
• But don’t worry, the core part is simple
• The rest are various extensions (often you can

guess what they do, or quickly look it up in the
manual)

x86 instruction set

• Three main groups
• Data movement (from memory and between

registers)
• Arithmetic operations (addition, subtraction,

etc.)
• Control flow (jumps, function calls)

General registers
● 8 general registers

● 32bits each

● Two (ESP and EBP)
have a special role

● Others are more or less
general

● Used in arithmetic
instructions, control flow
decisions, passing
arguments to functions,
etc.

BTW, where are these registers?

Registers and Memory

Data movement instructions

We use the following notation
<reg32> Any 32-bit register (EAX,EBX,ECX,EDX,ESI,EDI,ESP,EBP)
<reg16> Any 16-bit register (AX, BX, CX, or DX)
<reg8> Any 8-bit register (AH, BH, CH, DH, AL, BL, CL, DL)
<reg> Any register

<mem> A memory address (e.g., [eax], [var + 4],
or dword ptr [eax+ebx])

<con32> Any 32-bit constant
<con16> Any 16-bit constant
<con8> Any 8-bit constant
<con> Any 8-, 16-, or 32-bit constant

mov instruciton
● Copies the data item referred to by its second operand (i.e.

register contents, memory contents, or a constant value) into
the location referred to by its first operand (i.e. a register or
memory).

● Register-to-register moves are possible
● Direct memory-to-memory moves are not
● Syntax
mov <reg>,<reg>
mov <reg>,<mem>
mov <mem>,<reg>
mov <reg>,<const>
mov <mem>,<const>

mov examples
mov eax, ebx ; copy the value in ebx into eax

mov byte ptr [var], 5 ; store 5 into the byte at location var
mov eax, [ebx] ; Move the 4 bytes in memory at the address

; contained in EBX into EAX
mov [var], ebx ; Move the contents of EBX into the 4 bytes

; at memory address var.

; (Note, var is a 32-bit constant).
mov eax, [esi-4] ; Move 4 bytes at memory address ESI + (-4)

; into EAX

mov [esi+eax], cl ; Move the contents of CL into the byte at
; address ESI+EAX

mov: access to data structures
struct point {

int x; // x coordinate (4 bytes)
int y; // y coordinate (4 bytes)

}
struct point points[128]; // array of 128 points

// load y coordinate of i-th point into y
int y = points[i].y;

; ebx is address of the points array, eax is i
mov edx, [ebx + 8*eax + 4] ; Move y of the i-th

; point into edx

lea load effective address

• The lea instruction places the address
specified by its second operand into the register
specified by its first operand

• The contents of the memory location are not
loaded, only the effective address is computed
and placed into the register

• This is useful for obtaining a pointer into a
memory region

lea vs mov access to data structures
• mov
// load y coordinate of i-th point into y
int y = points[i].y;

; ebx is address of the points array, eax is i
mov edx, [ebx + 8*eax + 4] ; Move y of the i-th point into edx

• lea
// load the address of the y coordinate of the i-th point into p

int *p = &points[i].y;

; ebx is address of the points array, eax is i

lea esi, [ebx + 8*eax + 4] ; Move address of y of the i-th point
; into esi

lea is often used instead of add
• Compared to add, lea can
• perform addition with either two or three operands
• store the result in any register; not just one of the source

operands.
• Examples
LEA EAX, [EAX + EBX + 1234567]

; EAX = EAX + EBX + 1234567 (three operands)
LEA EAX, [EBX + ECX] ; EAX = EBX + ECX

; Add without overriding EBX or ECX with the result
LEA EAX, [EBX + N * EBX] ; multiplication by
constant

; (limited set, by 2, 3, 4, 5, 8, and 9 since N is
; limited to 1,2,4, and 8).

Arithmetic and logic instructions

add Integer addition
• The add instruction adds together its two

operands, storing the result in its first operand
• Both operands may be registers
• At most one operand may be a memory location
• Syntax
add <reg>,<reg>
add <reg>,<mem>
add <mem>,<reg>
add <reg>,<con>
add <mem>,<con>

add examples

add eax, 10 ; EAX ← EAX + 10

add BYTE PTR [var], 10 ; add 10 to the

; single byte stored at

; memory address var

sub Integer subtraction

• The sub instruction stores in the value of its
first operand the result of subtracting the value
of its second operand from the value of its first
operand.

• Examples
sub al, ah ; AL ← AL - AH

sub eax, 216 ; subtract 216 from the value

; stored in EAX

inc, dec Increment, decrement
• The inc instruction increments the contents of its

operand by one
• The dec instruction decrements the contents of its

operand by one
• Examples
dec eax ; subtract one from the contents

; of EAX
inc DWORD PTR [var] ; add one to the 32-

; bit integer stored at
; location var

and, or, xor Bitwise logical and, or,
and exclusive or

• These instructions perform the specified logical
operation (logical bitwise and, or, and exclusive
or, respectively) on their operands, placing the
result in the first operand location

• Examples
and eax, 0fH ; clear all but the last 4

; bits of EAX
xor edx, edx ; set the contents of EDX to

; zero

shl, shr shift left, shift right
• These instructions shift the bits in their first operand's contents left and right,

padding the resulting empty bit positions with zeros

• The shifted operand can be shifted up to 31 places. The number of bits to
shift is specified by the second operand, which can be either an 8-bit
constant or the register CL

• In either case, shifts counts of greater then 31 are performed modulo 32.

• Examples
shl eax, 1 ; Multiply the value of EAX by 2

; (if the most significant bit is 0)
shr ebx, cl ; Store in EBX the floor of result of dividing

; the value of EBX by 2^n
; where n is the value in CL.

More instructions… (similar)

• Multiplication imul
imul eax, [var] ; multiply the contents of EAX by the

; 32-bit contents of the memory

; location var. Store result in EAX

imul esi, edi, 25 ; ESI ← EDI * 25

• Division idiv
• not - bitvise logical not (flips all bits)
• neg - negation
neg eax ; EAX ← - EAX

This is enough to do arithmetic

Poll Q1: What is inside ebx?

• After we execute the mov instruction?
; eax = 2

; ebx = 3

mov ebx, eax

; what is the value of eax here?

Poll Q2: What is this instruction
doing?

mov ebx, [eax]

; Is it writing memory? Or reading it?

Poll Q3: Is this a legal instruction
mov [ebx], [eax]

Control flow instructions

EIP instruction pointer

• EIP is a 32bit value indicating the location in
memory where the current instruction starts
(i.e., memory address of the instruction)

• EIP cannot be changed directly
• Normally, it increments to point to the next

instruction in memory
• But it can be updated implicitly by provided

control flow instructions

Labels

• <label> refers to a labeled location in the
program text (code).

• Labels can be inserted anywhere in x86
assembly code text by entering a label name
followed by a colon

• Examples
mov esi, [ebp+8]

begin: xor ecx, ecx
mov eax, [esi]

jump: jump

• Transfers program control flow to the instruction at
the memory location indicated by the operand.

• Syntax
jmp <label>

• Example
begin: xor ecx, ecx

...

jmp begin ; jump to instruction labeled

; begin

jcondition: conditional jump
• Jumps only if a condition is true

• The status of a set of condition codes that are stored in a special
register (EFLAGS)

• EFLAGS stores information about the last arithmetic operation
performedm for example,

• Bit 6 of EFLAGS indicates if the last result was zero

• Bit 7 indicates if the last result was negative

• Based on these bits, different conditional jumps can be performed

• For example, the jz instruction performs a jump to the specified
operand label if the result of the last arithmetic operation was zero

• Otherwise, control proceeds to the next instruction in sequence

Conditional jumps
• Most conditional jump follow the comparison instruction (cmp, we’ll cover it below)

• Syntax

je <label> (jump when equal)
jne <label> (jump when not equal)
jz <label> (jump when last result was zero)

jg <label> (jump when greater than)

jge <label> (jump when greater than or equal to)
jl <label> (jump when less than)
jle <label> (jump when less than or equal to)

• Example: if EAX is less than or equal to EBX, jump to the label done. Otherwise,
continue to the next instruction

cmp eax, ebx
jle done

cmp: compare
• Compare the values of the two specified operands, setting the condition

codes in EFLAGS

• This instruction is equivalent to the sub instruction, except the result of the
subtraction is discarded instead of replacing the first operand.

• Syntax
cmp <reg>,<reg>
cmp <reg>,<mem>
cmp <mem>,<reg>
cmp <reg>,<con>

• Example: if the 4 bytes stored at location var are equal to the 4-byte integer
constant 10, jump to the location labeled loop.
cmp DWORD PTR [var], 10
jeq loop

Stack and procedure calls

What is stack?

Stack

• It's just a region of
memory

• Pointed by a special
register ESP

• You can change ESP
• Get a new stack

Why do we need stack?

Calling functions

// some code...
foo();
// more code..

• Stack contains
information for how to
return from a
subroutine

• i.e., from foo()

• Functions can be
called from different
places in the program
if (a == 0) {

foo();
…

} else {
foo();
…

}

Stack

• Main purpose:
• Store the return address

for the current procedure
• Caller pushes return

address on the stack
• Callee pops it and jumps

Stack

• Main purpose:
• Store the return address

for the current procedure
• Caller pushes return

address on the stack
• Callee pops it and jumps

Call/return

• CALL instruction
• Makes an unconditional jump to a subprogram and

pushes the address of the next instruction on the
stack
push eip + sizeof(CALL) ; save return

; address
jmp _my_function

• RET instruction
• Pops off an address and jumps to that address

Stack

• Other uses:
• Local data storage
• Parameter passing
• Evaluation stack

• Register spill

Manipulating
stack

• ESP register
• Contains the

memory address of
the topmost element
in the stack

• PUSH instruction
push 0xBAR

• Subtract 4 from ESP
• Insert data on the

stack

Manipulating
stack

• POP instruction
pop EAX

• Removes data from
the stack

• Saves in register or
memory

• Adds 4 to ESP

Some examples

Thank you!

