cs5460/6460 Operating Systems
Lecture 03: x86 instruction set

Anton Burtsev
January, 2024

How do CPUs work internally?

o e i o e S e e o o e e e e i e e e e e e e e e i e
1
1
1

IP Generation Exception Handling

i Interrupted? Lyre.. HHEHETUEE |
: ¥ data to exception |
! registers :
! NO 9 l :
i) : Fetch!
i Read the current instruction !
: from the memory at RIP
i . # : Decode !
i Identify the desired operation, !
! inputs, and outputs ,
: y Register Read !
' | Read the current instruction’s '
: input registers
: v Execute!
Execute the current instruction i
Exception Handling
YES-i» Write faL_JIt data_ to the
: exception registers

| 1 """""""""" | Locate the current

| , exception’s handler

' | Write the execution results to 1 e

the current instruction’s output Locate the handler’s
registers exception stack top

;"[é'éé}{ér;{iah"'t """""""""" } ¥
Push RSP and RIP to
YES— ! the exception stack

H v

Output registers
include RIP?

i | Write the exception
| NO i1 | stack top to RSP and
i v ¥ T

‘| Increment RIP by the size of

: : ; | Write the exception
! the current instruction)

i | handler address to RIP

CPU execution

loop

CPU repeatedly reads
instructions from memory

Executes them

Example

ADD EDX, EAX
// EDX = EAX + EDX

' Exception Handling

 VES—» Write interrupt
data to exception |
registers
: T Fetch| RSP Stack
i Read the current instruction :
! from the memory at RIP ' RIP
| I '
| . i' : Decode !
i Identify the desired operation, !
! inputs, and outputs :
—— A— Reaictor Road
: : : REECRICA0: ADD RDX, RAX, RBX
1| Read the current instruction’s
| input registers : _
. : Next instr.
! Y Execute!
| | Execute the current instruction :
Exception Handling
d ! | Write fault data to the
YES> : :
exception registers

‘—

Locate the current
exception’s handler

v

Locate the handler’s
exception stack top

v
Push RSP and RIP to
the exception stack
v

Write the exception
stack top to RSP and

v

Write the exception
handler address to RIP

Commit

the current instruction’s output

Write the execution results to
registers

Increment RIP by the size of
the current instruction

What are those instructions?

(a brief introduction to x86
instruction set)

This part is based on David Evans’ x86 Assembly Guide

http://www.cs.virginia.edu/~evans/cs216/quides/x86.html

and Yale FLINT’s group version of the same manual converted to GNU
ASM syntax

https://flint.cs.yale.edu/cs421/papers/x86-asm/asm.html

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
https://flint.cs.yale.edu/cs421/papers/x86-asm/asm.html

Note

« We'll be talking about 32bit x86 instruction set

* The version of xv6 we will be using in this class
IS a 32bit operating system

* You're welcome to take a look at the 64bit port

X806 Instruction set

The full x86 instruction set is large and complex
But don't worry, the core part is simple

The rest are various extensions (often you can

guess what they do, or quickly look it up in the
manual)

X806 Instruction set

Three main groups

Data movement (from memory and between
registers)

Arithmetic operations (addition, subtraction,
etc.)

Control flow (jumps, function calls)

[EAX

EBX
ECX

EDX

General-purpose Registers
NG

ESI

EDI

ESP
(stack pointer)

EBP
(base pointer)

General registers

+—— 16 bits —

8 bits 8 bits
AX AH AL
BX BH BL
CX CH CL
DX DH DL

32 bits

8 general registers
32Dbits each

Two (ESP and EBP)
have a special role

Others are more or less
general

Used in arithmetic
instructions, control flow
decisions, passing
arguments to functions,
etc.

BTW, where are these registers?

Registers and Memory

Memory
Bus

o000

gooo0aA0

) O

ooo0a0o

Waw />3

am/ nWan

Data movement instructions

We use the following notation

<reg32> Any 32-bit register (EAX,EBX,ECX,EDX,ESI,EDI,ESP,EBP)
<regle> Any 16-bit register (AX, BX, CX, or DX)

<reg8> Any 8-bit register (AH, BH, CH, DH, AL, BL, CL, DL)
<reg> Any register

<mem> A memory address (e.g., [eax], [var + 4],
or dword ptr [eax+ebx])

<con32> Any 32-bit constant

<conl6e> Any 16-bit constant

<con8> Any 8-bit constant

<con> Any 8-, 16-, or 32-bilt constant

mov Instruciton

Copies the data item referred to by its second operand (i.e.
register contents, memory contents, or a constant value) into
the location referred to by its first operand (i.e. a register or
memory).

Register-to-register moves are possible
Direct memory-to-memory moves are not

Syntax
mov <reg>,<reg>
mov <reg>,<mem>
mov <mem>,<reg>
mov <reg>,<const>
mov <mem>,<const>

mov

mov

mov

mov

mov

mov

mov examples

eax, ebx
byte ptr [var], 5

eax, [ebx]

[var], ebx

eax, [esi-4]

[esi+eax], cl

copy the value 1n ebx 1nto eax

store 5 1nto the byte at location var

; Move the 4 bytes 1n memory at the address

contained in EBX into EAX

: Move the contents of EBX 1nto the 4 bytes

at memory address var.

(Note, var is a 32-bit constant).

; Move 4 bytes at memory address ESI + (-4)

into EAX

: Move the contents of CL into the byte at

address ESI+EAX

moVv: access to data structures

struct point {
int x; // x coordinate (4 bytes)
int y; // y coordinate (4 bytes)

}
struct point points[128]; // array of 128 points

// load y coordinate of i-th point into vy
int y = points[i].y;

: ebx 1s address of the poilnts array, eax 1s 1
mov edx, [ebx + 8*eax + 4] ; Move y of the i-th
» polnt 1nto edx

lLea load effective address

 The lLea instruction places the address

specified by its second operand into the register
specified by its first operand

* The contents of the memory location are not
loaded, only the effective address is computed
and placed into the register

« This is useful for obtaining a pointer into a
memory region

Lea vs mov access to data structures

° mov
// load y coordinate of i-th point into vy
int y = points[i].y;

; ebx 1s address of the points array, eax 1s 1
mov edx, [ebx + 8*eax + 4] ; Move y of the i-th point into edx

« lea
// load the address of the y coordinate of the i-th point into p
int *p = §points[i].y;

; ebx 1s address of the points array, eax 1s 1
lea esi, [ebx + 8xeax + 4] ; Move address of y of the i-th point

: 1nto esi1

Lea is often used instead of add

 Compared to add, Lea can

« perform addition with either two or three operands

« store the result in any register; not just one of the source
operands.

« Examples
LEA EAX, [EAX + EBX + 1234567]
» EAX = EAX + EBX + 1234567 (three operands)
LEA EAX, [EBX + ECX] ; EAX = EBX + ECX
» Add without overriding EBX or ECX with the result

LEA EAX, [EBX + N » EBX] ; multiplication by
constant

» (limited set, by 2, 3, 4, 5, 8, and 9 since N is
+ limited to 1,2,4, and 8).

Arithmetic and logic instructions

add Integer addition

The add instruction adds together its two
operands, storing the result in its first operand

Both operands may be registers
At most one operand may be a memory location

dC
dC
dC
dC

dC

Syntax

C
C
C
C
C

<reg>,<reg>
<reg>,<mem>
<mem>,<reg>
<reg>,<con>

<mem>,<con>

dC

dC

C

C

add examples

eax, 10 ; EAX &< EAX + 10
BYTE PTR [var], 10 ; add 10 to the
; single byte stored at

; memory address var

SU

SU

sub Integer subtraction

The sub instruction stores in the value of its

first operand the result of subtracting the value
of its second operand from the value of its first
operand.

Examples
o al,ah ;AL & AL - AH

0 eax, 216 ; subtract 216 from the value

: stored in EAX

1nc, dec Increment, decrement

 The inc instruction increments the contents of its
operand by one

* The dec instruction decrements the contents of its
operand by one

 Examples
dec eax ; subtract one from the contents
; of EAX
inc DWORD PTR [var] ; add one to the 32-
; bit integer stored at
: location var

and, or, xor Bitwise logical and, or,
and exclusive or

* These instructions perform the specified logical
operation (logical bitwise and, or, and exclusive
or, respectively) on their operands, placing the
result in the first operand location

 Examples

and eax, OfH clear all but the last 4
* bits of EAX

set the contents of EDX to

- e

Xxor edx, edx

- e

+ Zero

shl, shr shift left, shift right

« These instructions shift the bits in their first operand's contents left and right,
padding the resulting empty bit positions with zeros

« The shifted operand can be shifted up to 31 places. The number of bits to
shift is specified by the second operand, which can be either an 8-bit
constant or the register CL

« In either case, shifts counts of greater then 31 are performed modulo 32.

« Examples

shl eax, 1 ; Multiply the value of EAX by 2
+ (if the most significant bit is 0)

shr ebx, cl ; Store in EBX the floor of result of dividing
» the value of EBX by 2”n

: where n 1s the value 1n CL.

More instructions... (similar)

* Multiplication imul

imul eax, [var] ; multiply the contents of EAX by the
» 32-bilt contents of the memory
- location var. Store result 1n EAX

imul esi, edi, 25 ; ESI ¢« EDI =% 25
* Division idiv
* not - bitvise logical not (flips all bits)

* neg - negation
neg eax ; EAX ¢ - EAX

This i1s enough to do arithmetic

Poll Q1: What is inside ebx?

« After we execute the mov instruction?
; eax = 2

+ ebx = 3

mov ebx, eax

» what 1s the value of eax here?

What is inside ebx?

ebx is 3

0%
ebx is 2

0%
None of the above

0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Poll Q2: What is this instruction
doing?
mov ebx, [eax]

» Is 1t writing memory? Or reading 1t?

What is this instruciton mov ebx, [eax] doing?

Reading memory

0%
Wrriting memory

0%
None of the above

0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Poll Q3: Is this a legal instruction

mov [ebx], [eax]

“u

Is this a legal x86 instruction? mov [eax], [ebx]

Yes
0%

No
0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Control flow instructions

Write interrupt | !
data to exception |
registers i
— Fetch! RSP Stack
1| Read the current instruction !
! from the memory at RIP ' RIP
———— *_’ """"" —— Decode!
i Identify the desired operation, !
! inputs, and outputs :
i T— Register Read | ADD RDX, RAX, RBX
1| Read the current instruction’s
i input registers !]
l':_‘_‘_":::‘_‘_‘:.‘:‘::::t_‘::_":::_‘.‘:_‘:_‘_‘_‘:_‘:::_‘.‘:::_"_"_‘_‘::::_"_{ Next Instr-
i Execute !
Exception Handling
' | Write fault data to the
exception registers

i—

Locate the current
exception’s handler

v

Locate the handler’s
exception stack top

Write the execution results to
the current instruction’s output
registers

v

the exception stack
v

Write the exception
stack top to RSP and

v

Write the exception
handler address to RIP

Increment RIP by the size of
the current instruction

| Push RSP and RIP to

EIP instruction pointer

EIP is a 32bit value indicating the location in
memory where the current instruction starts
(i.e., memory address of the instruction)

EIP cannot be changed directly

Normally, it increments to point to the next
instruction in memory

But it can be updated implicitly by provided
control flow instructions

Labels

o« <label> refers to a labeled location in the
program text (code).

« Labels can be inserted anywhere in x86
assembly code text by entering a label name

followed by a colon
 Examples
mov esi, [ebp+8]
begin: Xxor ecx, ecx
mov eax, [esi]

jump: jump
* Transfers program control flow to the instruction at
the memory location indicated by the operand.
e Syntax
jmp <label>

 Example

begin: Xxor ecx, ecx

jmp begin ; jump to instruction labeled

» begin

Jcondition: conditional jump

Jumps only if a condition is true

The status of a set of condition codes that are stored in a special
register (EFLAGS)

EFLAGS stores information about the last arithmetic operation
performedm for example,

Bit 6 of EFLAGS indicates if the last result was zero
Bit 7 indicates if the last result was negative
Based on these bits, different conditional jumps can be performed

For example, the jz instruction performs a jump to the specified
operand label if the result of the last arithmetic operation was zero

Otherwise, control proceeds to the next instruction in sequence

Conditional jumps

Most conditional jump follow the comparison instruction (cmp, we’ll cover it below)
Syntax

je <label> (jump when equal)

jne <label> (jump when not equal)

jz <label> (jump when last result was zero)

jg <label> (jump when greater than)

jge <label> (jump when greater than or equal to)

j1 <label> (jump when less than)

jle <label> (jump when less than or equal to)

Example: if EAX is less than or equal to EBX, jump to the label done. Otherwise,
continue to the next instruction

cmp eax, ebx

jle done

cmp: compare

Compare the values of the two specified operands, setting the condition
codes in EFLAGS

This instruction is equivalent to the sub instruction, except the result of the
subtraction is discarded instead of replacing the first operand.

Syntax
cmp <reg>,<reg>
cmp <reg>,<mem>
cmp <mem>,<reg>
cmp <reg>,<con>

Example: if the 4 bytes stored at location var are equal to the 4-byte integer
constant 10, jump to the location labeled loop.

cmp DWORD PTR [var], 10
jeq loop

Stack and procedure calls

What is stack?

Stack

It's just a region of
memory

Pointed by a special
register ESP

You can change ESP
Get a new stack

ESP

EIP

Stack

pop EAX

Next instr.

Stack

0x0

OXFFFFFFFF

Why do we need stack?

Calling functions

* Functions can be

// some code. .. called from different
foo(); places in the program
// more code.. if (a == 0) {
foo();
e Stack contains
information for how to } else {
return from a foo();
subroutine

* i.e., from foo() 1

Stack

ESP

EIP EIP + sizeof(call instr)
Main purpose:
Store the return address call foo
for the current procedure Next instr. | <&

Caller pushes return
address on the stack

Ca”ee pOpS |t and Jumps foo: First instruction

Next instr.

ret

Stack

ESP

EIP EIP + sizeof(call instr)
Main purpose:
Store the return address call foo
for the current procedure Next instr. | ¢

Caller pushes return
address on the stack

Ca”ee pOpS |t and Jumps foo: First instruction

Next instr.

ret

Call/return

CALL instruction

Makes an unconditional jump to a subprogram and
pushes the address of the next instruction on the
stack

push eip + sizeof(CALL) ; save return
- address

Jmp _my_function

RET instruction

Pops off an address and jumps to that address

Stack

ESP

EIp | Stack
Other uses: |
Local data storage call foo
. Next instr.
Parameter passing
ret
Evaluation stack
) RegiSter SpI” foo: First instruction

Next instr.

0x0

Manipulating

Stack

stack csp _E:
ESP register —
Contains the =P
memory address of

the topmost element IAp———
In the stack

PUSH instruction
push OxBAR

Subtract 4 from ESP

Insert data on the
stack

Next instr.

OXFFFFFFFF

0x0

Manipulating

Stack

stack .
POP instruction E: el

EIP
pop EAX
Removes data from pop EAX
Next instr.

the stack

Saves in register or
memory

Adds 4 to ESP EAX = OXBAR

OxXFFFFFFFF

Some examples

Thank you!

