
Lecture 2: OS Interfaces
cs5460/6460 Operating Systems

Anton Burtsev
January, 2023

Recap: role of the operating system
l Share hardware across multiple processes

l Illusion of private CPU, private memory
l Abstract hardware

l Hide details of specific hardware devices
l Provide services

l Serve as a library for applications
l Security

l Isolation of processes
l Controlled ways to communicate (in a secure manner)

Typical UNIX OS

System calls
l Provide user to kernel communication

l Effectively an invocation of a kernel function

l System calls implement the interface of the OS

System call

What system calls do we need?

System calls, interface for...

l Processes
l Creating, exiting, waiting, terminating

l Memory
l Allocation, deallocation

l Files and folders
l Opening, reading, writing, closing

l Inter-process communication
l Pipes

•UNIX (xv6) system calls are designed
around the shell

• Why shell?

Ken Thompson (sitting) and Dennis Ritchie (standing) are working together
on a PDP-11 (around 1970). They are using Teletype Model 33 terminals.

https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/PDP-11

DEC LA36 DECwriter II Terminal

DEC VT100 terminal, 1980

Suddenly this makes sense

l List all files
\> ls
total 9212
drwxrwxr-x 3 aburtsev aburtsev 12288 Oct 1 08:27 ./
drwxrwxr-x 43 aburtsev aburtsev 4096 Oct 1 08:25 ../
-rw-rw-r-- 1 aburtsev aburtsev 936 Oct 1 08:26 asm.h
-rw-rw-r-- 1 aburtsev aburtsev 3397 Oct 1 08:26 bio.c
-rw-rw-r-- 1 aburtsev aburtsev 100 Oct 1 08:26 bio.d
-rw-rw-r-- 1 aburtsev aburtsev 6416 Oct 1 08:26 bio.o
…

l Count number of lines in a file (ls.c
imlements ls)

\> wc -l ls.c
85 ls.c

But what is shell?

But what is shell?
l Normal process

l Kernel starts it for each user that logs into the
system

l In xv6 shell is created after the kernel boots
l Shell interacts with the kernel through system

calls
l E.g., starts other processes

What happens underneath?
\> wc -l ls.c
85 ls.c
\>

l Shell starts wc
l Creates a new process to run wc
l Passes the arguments (-l and ls.c)

l wc sends its output to the terminal (console)
l Exits when done with exit()

l Shell detects that wc is done (wait())
l Prints (to the same terminal) its command prompt
l Ready to execute the next command

•Console and file I/O

File open
l fd = open(“ls.c”, O_READONLY) – open a file

l Operating system returns a file descriptor

File descriptors

File descriptors
l An index into a table, i.e., just an integer
l The table maintains pointers to “file” objects

l Abstracts files, devices, pipes
l In UNIX everything is a file – all objects provide file

interface
l Process may obtain file descriptors through

l Opening a file, directory, device
l By creating a pipe
l Duplicating an existing descriptor

File I/O
l fd = open(“foobar.txt”, O_READONLY) – open a file

l Operating system returns a file desciptor

l read(fd, buf, n) – read n bytes from fd into buf
l write(fd, buf, n) – write n bytes from buf into fd

File descriptors: two processes

•Console I/O

Each process has standard file
descriptors
l Numbers are just a convention

l 0 – standard input
l 1 – standard output
l 2 – standard error

l This convention is used by the shell to
implement I/O redirection and pipes

Console read (read of standard intput)

Console write (write of standard output)

Example: cat
1. char buf[512];
2. int n;
3. for(;;) {
4. n = read(0, buf, sizeof buf);
5. if(n == 0)
6. break;
7. if(n < 0) {
8. fprintf(2, "read error\n");
9. exit(); }
10. if(write(1, buf, n) != n) {
11. fprintf(2, "write error\n");
12. exit();
13. }
14. }

•Creating processes

fork()

fork()

fork() -- creates a new process
1. int pid;
2. pid = fork();
3. if(pid > 0){
4. printf("parent: child=%d\n", pid);
5. pid = wait();
6. printf("child %d is done\n", pid);
7. } else if(pid == 0){
8. printf("child: exiting\n");
9. exit();
10. } else {
11. printf("fork error\n");
12. }

This is weird... fork() creates copies
of the same process, why?

fork() is used together with exec()
l exec() -- replaces memory of a current process

with a memory image (of a program) loaded
from a file
char *argv[3];
argv[0] = "echo";
argv[1] = "hello";
argv[2] = 0;
exec("/bin/echo", argv);
printf("exec error\n");

fork() and exec()

fork() and exec()

l Still weird... why first fork() and then exec()?
l Why not exec() directly?

I/O Redirection

Motivating example #1
l Normally wc sends its output to the

console (screen)
l Count the number of lines in ls.c

\> wc -l ls.c
85 ls.c

l What if we want to save the number of
lines into a file?

Motivating example #1
l Normally wc sends its output to the

console (screen)
l Count the number of lines in ls.c

\> wc -l ls.c
85 ls.c

l What if we want to save the number of
lines into a file?
l We can add an argument

\> wc -l ls.c -o foobar.txt

Motivating example #1

\> wc -l ls.c -o foobar.txt

l But there is a better way
\> wc -l ls.c > foobar.txt

I/O redirection
l > redirect output

l Redirect output of a command into a file
\> wc -l ls.c > foobar.txt
\> cat ls.c > ls-new.c
l < redirect input

l Redirect input to read from a file
\> wc -l < ls.c
\> cat < ls.c
l You can redirect both

\> wc -l < ls.c > foobar.txt

Standard output is now a file

Powerful design choice

l File descriptors don't have to point to files only
l Any object with the same read/write interface is ok
l Files
l Devices

- Console

l Pipes

Example: cat
1. char buf[512]; int n;
2. for(;;) {
3. n = read(0, buf, sizeof buf);
4. if(n == 0)
5. break;
6. if(n < 0) {
7. fprintf(2, "read error\n");

exit(); }
1. if(write(1, buf, n) != n) {
2. fprintf(2, "write error\n");
3. exit();
4. }
5. }

Why do we need I/O redirection?

l We want to see how many strings in ls.c
contain “main”

Motivating example #2

l We want to see how many strings in ls.c contain
“main”
l Imagine we have grep

- grep filters strings matching a pattern
\>grep "main" ls.c
main(int argc, char *argv[])

l Or the same written differently
\>grep "main" < ls.c
main(int argc, char *argv[])

Motivating example #2

l Now we have
l grep

- Filters strings matching a pattern
l wc -l

- Counts lines

l Can we combine them?

Motivating example #2

Pipes

l Imagine we have a way to redirect output
of one process into input of another
\> cat ls.c | grep main

l |(a “pipe”) does redirection

Pipes

l In our example:
\> cat ls.c | grep main

l cat outputs ls.c to its output
l cat's output is connected to grep's input with

the pipe
l grep filters lines that match a specific criteria,

i.e., once that have “main”

pipe - inter-process communication
l Pipe is a kernel buffer exposed as a pair of file

descriptors
l One for reading, one for writing

l Pipes allow processes to communicate
l Send messages to each other

Two file descriptors pointing to a pipe

Pipes allow us to connect programs,
i.e., the output of one program to the input of

another

Composability
l Now if we want to see how many strings in ls.c contain

“main” we do:
\> cat ls.c | grep main | wc -l

1
l .. but if we want to count the once that contain “a”:

cat ls.c | grep a | wc -l

33
l We change only input to grep!

l Small set of tools (ls, grep, wc) compose into complex
workflows

Better than this...

Building I/O redirection

How can we build this?

\> cat ls.c | grep main | wc -l

l wc has to operate on the output of grep
l grep operates on the output of cat

Back to fork()

fork()

File descriptors after fork()

Two system calls for I/O redirection
l close(fd) – closes file descriptor

l The next opened file descriptor will have the
lowest number

File descriptors after close()/open()
Example: \> cat < ls.c

Two system calls for I/O redirection
l close(fd) – closes file descriptor

l The next opened file descriptor will have the
lowest number

l exec() replaces process memory, but
l leaves its file descriptor table intact
l A process can create a copy of itself with fork()

l Change the file descriptors for the next program it is
about to run

l And then execute the program with exec()

File descriptors after exec()
Example: \> cat < ls.c

Example: \> cat < ls.c
1. char *argv[2];
2. argv[0] = "cat";
3. argv[1] = 0;
4. if(fork() == 0) {
5. close(0);
6. open("ls.c", O_RDONLY);
7. exec("cat", argv);
8. }
9. …
l Poll time

l Inside the cat process which file file descriptor 0 points
to?

l Do we reach line 9?

Why fork() not just exec()

l The reason for the pair of fork()/exec()
l Shell can manipulate the new process (the copy

created by fork())
l Before running it with exec()

Back to Motivating example #2
(\> cat ls.c | grep main | wc -l)

Pipes

l We now understand how to use a pipe to
connect two programs
l Create a pipe
l Fork
l Attach one end to standard output

- of the left side of “|”

l Another to the standard input
- of the right side of “|”

wc on the
read end of
the pipe

1. int p[2];
2. char *argv[2]; argv[0] = "wc"; argv[1] = 0;
3. pipe(p);
4. if(fork() == 0) {
5. close(0);
6. dup(p[0]);
7. close(p[0]);
8. close(p[1]);
9. exec("/bin/wc", argv);
10. } else {
11. write(p[1], "hello world\n", 12);
12. close(p[0]);
13. close(p[1]);
14. }

Powerful conclusion

l fork(), standard file descriptors, pipes and exec()
allow complex programs out of simple tools

l They form the core of the UNIX interface

More system calls

Process management

l exit() -- terminate current process

l wait() -- wait for the child to exit
l Any child (can be multiple)

l Return it’s process id (pid)

Creating files
l mkdir() – creates a directory
l open(…, O_CREATE) – creates a file
l mknod() – creates an empty file marked as

device
l Major and minor numbers uniquely identify the

device in the kernel
l fstat() – retrieve information about a file

Links, inodes
l Same file can have multiple names – links

l But unique inode number
l link() – create a link
l unlink() – delete file
l Example, create a temporary file
fd = open("/tmp/xyz", O_CREATE|O_RDWR);
unlink("/tmp/xyz");

Xv6 system
calls

fork() Create a process
exit() Terminate the current process
wait() Wait for a child process to exit
kill(pid) Terminate process pid
getpid() Return the current process’s pid
sleep(n) Sleep for n clock ticks
exec(filename, *argv) Load a file and execute it
sbrk(n) Grow process’s memory by n bytes
open(filename, flags) Open a file; the flags indicate read/write
read(fd, buf, n) Read n bytes from an open file into buf
write(fd, buf, n) Write n bytes to an open file
close(fd) Release open file fd
dup(fd) Duplicate fd
pipe(p) Create a pipe and return fd’s in p
chdir(dirname) Change the current directory
mkdir(dirname) Create a new directory
mknod(name, major, minor) Create a device file
fstat(fd) Return info about an open file
link(f1, f2) Create another name (f2) for the file f1
unlink(filename) Remove a file

In many ways xv6 is very similar to
the operating systems we run today

Evolution of Unix and Unix-like systems

Speakers from the 1984 Summer USENIX Conference (Salt Lake City, UT)

Backup slides

Pipes
l Shell composes simple utilities into more

complex actions with pipes, e.g.
grep FORK sh.c | wc -l

l Create a pipe and connect ends

System call

User address space

Kernel address space

Kernel and user address spaces

