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What does it mean to build an operating system?



  

Startup idea: a wearable that 
measures your UV light exposure



Flora Arduino Board



Si1145: UV light sensor
● IR Sensor Spectrum: 

○ Wavelength: 550nm-
1000nm 

● Visible Light Sensor 
Spectrum: 
○ Wavelength: 400nm-

800nm
● UV Index



Si7021: Humidity and temperature sensor
● Humidity:

± 3% relative humidity

Range of 0–80% RH

● Temperature:

±0.4 °C

Range of -10 to +85 °C



  

How can we run anything on this board?



  

Lets take a brief look at how computers work



  

CPU

● 1 CPU
● 4 cores
● 2 logical (HT) threads each



  

Memory



  

Memory abstraction



  

What does CPU do internally?



  

CPU execution 
loop

● CPU repeatedly reads 
instructions from 
memory

● Executes them
● Example

  ADD EAX, EBX

  // EAX = EAX + EBX



  



  

Simple observation

● Hardware executes instructions one by one



  

What is an operating system?



  

Task #1: Run your code on a piece of hardware

● Read CPU manual
● A tiny boot layer

● Initialize CPU
● Jump to the entry point of 

your program
– main()

● This can be the beginning 
of your OS!



  

Task #2: Print something on the screen
● On the screen or serial line



  

I/O Devices



  

Task #2: Print something on the screen
● On the screen or serial line



  

A more general interface
● First device driver



  

Device drivers

● Abstract hardware
● Provide high-level interface
● Hide minor differences
● Implement some optimizations

– Batch requests

● Examples
● Console, disk, network interface
● ...virtually any piece of hardware you know



  

OS is like a library that provides a 
collection of useful functions



  

Task #3: Want to run two programs

● What does it mean?
● Only one CPU

● Run one, then run 
another one



  

Very much like car sharing



  

Time sharing

● Programs use CPU in turns
● One program runs
● Then OS takes control
● Launches another program 
● Then another program runs
● OS takes control again
● ...



  

Task #3: Want to run two programs

● Exit into the kernel 
periodically

● Context switch
● Save state of one 

program
● Restore state of 

another program



  

What is this state?



  

State of the program

● Roughly it’s
● Registers
● Memory

● Plus some state (data structures) in the kernel 
associated with the program
– Information about files opened by the program, i.e. file 

descriptors
– Information about network flows
– Information about address space, loaded libraries, 

communication channels to other programs, etc.



  

What about memory?



  

● Two programs, one memory? 



  

Time-share memory

● Well you can copy in and out the state of the 
program into a region of memory where it can 
run
● Similar to time-sharing the CPU



  

Time-share memory

● Well you can copy in and out the state of the 
program into a region of memory where it can 
run
● Similar to time-sharing the CPU

● What do you think is wrong with this approach?



  

Time-share memory

● Well you can copy in and out the state of the 
program into a region of memory where it can 
run
● Similar to time-sharing the CPU

● What do you think is wrong with this approach?
● Unlike registers the state of the program in memory 

can be large
● Takes time to copy it in and out



  

Virtual address spaces

● Illusion of a private memory for each application
● Keep a description of an address space
● In one of the registers

● OS maintains description of address spaces
● Switches between them



  

Address spaces with page tables



  

Staying in control



  

● What if one program fails to release the CPU?
● It will run forever. Need a way to preempt it. 

How? 



  

Scheduling

● Pick which application to run next
● And for how long

● Illusion of a private CPU for each task
● Frequent context switching



  

Isolation



  

● What if one faulty program corrupts the kernel?
● Or other programs? 



  

No isolation: open space office



  

Isolated rooms



  

Each process has a private address space



  

P1 and P2 can't access each 
other memory



  

● What about communication? 
● Can we invoke a function in a kernel? 



  

Files and network



  

● Want to save some data to a file? 



  

● Want to save some data to a file? 
● Permanent storage

● E.g., disks
● Disks are just arrays of blocks

● write(block_number, block_data)



  

● File system and block device provide similar 
abstractions

● Permanent storage
● E.g., disks

● Disks are just arrays of blocks
● write(block_number, block_data)

● Files
● High level abstraction for saving data
● fd = open(“contacts.txt”);
● fpritnf(fd, “Name:%s\n”, name);



  

File system



  

● Linux/Windows/Mac 



  

Recap
● Run multiple programs

● Each has illusion of a private memory and CPU
– Context switching
– Isolation and protection

● Management of resources
– Scheduling (management of CPU)
– Memory management (management of physical memory)

● High-level abstractions for I/O
● File systems

– Multiple files, concurrent I/O requests
– Consistency, caching

● Network protocols
– Multiple virtual network connections



  

Questions?
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