

cs5460/6460: Operating Systems:
Lecture 01: Introduction

Anton Burtsev
Spring 2024

What does it mean to build an operating system?

Startup idea: a wearable that
measures your UV light exposure

Flora Arduino Board

Si1145: UV light sensor
● IR Sensor Spectrum:

○ Wavelength: 550nm-
1000nm

● Visible Light Sensor
Spectrum:
○ Wavelength: 400nm-

800nm
● UV Index

Si7021: Humidity and temperature sensor
● Humidity:

± 3% relative humidity

Range of 0–80% RH

● Temperature:

±0.4 °C

Range of -10 to +85 °C

How can we run anything on this board?

Lets take a brief look at how computers work

CPU

● 1 CPU
● 4 cores
● 2 logical (HT) threads each

Memory

Memory abstraction

What does CPU do internally?

CPU execution
loop

● CPU repeatedly reads
instructions from
memory

● Executes them
● Example

 ADD EAX, EBX

 // EAX = EAX + EBX

Simple observation

● Hardware executes instructions one by one

What is an operating system?

Task #1: Run your code on a piece of hardware

● Read CPU manual
● A tiny boot layer

● Initialize CPU
● Jump to the entry point of

your program
– main()

● This can be the beginning
of your OS!

Task #2: Print something on the screen
● On the screen or serial line

I/O Devices

Task #2: Print something on the screen
● On the screen or serial line

A more general interface
● First device driver

Device drivers

● Abstract hardware
● Provide high-level interface
● Hide minor differences
● Implement some optimizations

– Batch requests

● Examples
● Console, disk, network interface
● ...virtually any piece of hardware you know

OS is like a library that provides a
collection of useful functions

Task #3: Want to run two programs

● What does it mean?
● Only one CPU

● Run one, then run
another one

Very much like car sharing

Time sharing

● Programs use CPU in turns
● One program runs
● Then OS takes control
● Launches another program
● Then another program runs
● OS takes control again
● ...

Task #3: Want to run two programs

● Exit into the kernel
periodically

● Context switch
● Save state of one

program
● Restore state of

another program

What is this state?

State of the program

● Roughly it’s
● Registers
● Memory

● Plus some state (data structures) in the kernel
associated with the program
– Information about files opened by the program, i.e. file

descriptors
– Information about network flows
– Information about address space, loaded libraries,

communication channels to other programs, etc.

What about memory?

● Two programs, one memory?

Time-share memory

● Well you can copy in and out the state of the
program into a region of memory where it can
run
● Similar to time-sharing the CPU

Time-share memory

● Well you can copy in and out the state of the
program into a region of memory where it can
run
● Similar to time-sharing the CPU

● What do you think is wrong with this approach?

Time-share memory

● Well you can copy in and out the state of the
program into a region of memory where it can
run
● Similar to time-sharing the CPU

● What do you think is wrong with this approach?
● Unlike registers the state of the program in memory

can be large
● Takes time to copy it in and out

Virtual address spaces

● Illusion of a private memory for each application
● Keep a description of an address space
● In one of the registers

● OS maintains description of address spaces
● Switches between them

Address spaces with page tables

Staying in control

● What if one program fails to release the CPU?
● It will run forever. Need a way to preempt it.

How?

Scheduling

● Pick which application to run next
● And for how long

● Illusion of a private CPU for each task
● Frequent context switching

Isolation

● What if one faulty program corrupts the kernel?
● Or other programs?

No isolation: open space office

Isolated rooms

Each process has a private address space

P1 and P2 can't access each
other memory

● What about communication?
● Can we invoke a function in a kernel?

Files and network

● Want to save some data to a file?

● Want to save some data to a file?
● Permanent storage

● E.g., disks
● Disks are just arrays of blocks

● write(block_number, block_data)

● File system and block device provide similar
abstractions

● Permanent storage
● E.g., disks

● Disks are just arrays of blocks
● write(block_number, block_data)

● Files
● High level abstraction for saving data
● fd = open(“contacts.txt”);
● fpritnf(fd, “Name:%s\n”, name);

File system

● Linux/Windows/Mac

Recap
● Run multiple programs

● Each has illusion of a private memory and CPU
– Context switching
– Isolation and protection

● Management of resources
– Scheduling (management of CPU)
– Memory management (management of physical memory)

● High-level abstractions for I/O
● File systems

– Multiple files, concurrent I/O requests
– Consistency, caching

● Network protocols
– Multiple virtual network connections

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

