

Q1 OS interfaces
15 Points

Write the C or pseudocode for the simple function that constructs the
following pipeline that counts the number of main() strings in all the
files in the current directory.

grep main -r ./* | wc -l

No files uploaded

Q2 Assembly
19 Points

Below is C and assembly code for the strlen() function from the xv6
operating system (i.e., strlen() computes the length of the string). In
C strings are represented as continuous arrays of bytes (each
character is a byte) that end with a 0 (or NULL) to designate the end
of the string.

96 int

97 strlen(const char *s)

98 {

99 int n;

100

101 for(n = 0; s[n]; n++)

102 ;

103 return n;

104 }

199 00000200 <strlen>:

200 200: 55 push ebp

201 201: 89 e5 mov ebp,esp

202 203: 8b 4d 08 mov ecx,DWORD PTR [ebp+0x8]

203 206: 80 39 00 cmp BYTE PTR [ecx],0x0

204 209: 74 15 je 220 <strlen+0x20>

205 20b: 31 d2 xor edx,edx

206 20d: 8d 76 00 lea esi,[esi+0x0]

207 210: 83 c2 01 add edx,0x1

208 213: 80 3c 11 00 cmp BYTE PTR [ecx+edx*1],0x0

209 217: 89 d0 mov eax,edx

210 219: 75 f5 jne 210 <strlen+0x10>

211 21b: 5d pop ebp

212 21c: c3 ret

213 21d: 8d 76 00 lea esi,[esi+0x0]

214 220: 31 c0 xor eax,eax

215 222: 5d pop ebp

216 223: c3 ret

217 224: 8d b6 00 00 00 00 lea esi,[esi+0x0]

218 22a: 8d bf 00 00 00 00 lea edi,[edi+0x0]

Explain the role of ach line of assembly code (i.e., what function each
line performs) (1 point for each line):

No files uploaded

Q3 Calling conventions
5 Points

Write the call site assembly code for the following function (assume
that variable a is in register EBX , and you want to place the returned
value back into a , i.e., back in EBX .

a = foo(a, 1, 2);

No files uploaded

Q4 Relocation
20 Points

In the following code of the wc() (word count) function from the xv6
operating system which lines will result in assembly code that would
require relocation if loaded at a different memory address. Explain
your answer. Assume that all functions that wc() uses are external,
i.e., come from different object files. Xv6 is compiled without support
for position independent code. (1 point for each non-trivial line)

5 char buf[512];

6

7 void

8 wc(int fd, char *name)

9 {

10 int i, n;

11 int l, w, c, inword;

12

13 l = w = c = 0;

14 inword = 0;

15 while((n = read(fd, buf, sizeof(buf))) > 0){

16 for(i=0; i<n; i++){

17 c++;

18 if(buf[i] == '\n')

19 l++;

20 if(strchr(" \r\t\n\v", buf[i]))

21 inword = 0;

22 else if(!inword){

23 w++;

24 inword = 1;

25 }

26 }

27 }

28 if(n < 0){

29 printf(1, "wc: read error\n");

30 exit();

31 }

32 printf(1, "%d %d %d %s\n", l, w, c, name);

33 }

No files uploaded

Q5 Stacks
20 Points

Typically, the stack is implemented as a continuous region of memory
that is pre-allocated by the operating system when the process (or a
thread) start executing. This, however, has certain limitations: i.e.,
some programs need tiny stacks, and some large, so there is no size
that fits all. As a system designer you decide to support stacks of
variable length. Specifically, on entry to each function you want to
check the size of the current stack and if it is less then a certain
constant (which you can define) allocate more memory for the stack.
Of course the stack is no longer a single continuous region of
memory, but a collection of regions that are somehow linked together
(it's your choice how to link them).

How do you need to change the prologue and epilogue of the
function (i.e., what assembly code the compiler should generate on
entry and return from a function for this idea to work). Explain your
solution.

No files uploaded

Q6 Address translation
10 Points

Consider the following 32-bit x86 page table

CR3 holds 0x0 .

The Page Directory Page is at physical address 0x0 (the flags are
PTE_P (present), PTE_U (user-accessible), and PTE_W (writable):

PDE 0: PPN=0x00001, PTE_P, PTE_U, PTE_W

PDE 1: PPN=0x00001, PTE_P, PTE_U, PTE_W

PDE 2: PPN=0x00002, PTE_P, PTE_U, PTE_W

... all other PDEs are zero

The Page Table Page is at physical address 0x00001000 (which is PPN
0x00001):

PTE 0: PPN=0x00005, PTE_P, PTE_U, PTE_W

PTE 1: PPN=0x00006, PTE_P, PTE_U, PTE_W

... all other PTEs are zero

Another Page Table Page is at physical address 0x00002000 (which is
PPN 0x00002):

PTE 0: PPN=0x00006, PTE_P, PTE_U, PTE_W

PTE 1: PPN=0x00005, PTE_P, PTE_U, PTE_W

... all other PTEs are zero

What physical address does the virtual (or if you like to be more
specific linear) address 0x1000 translates to? Explain your answer.

No files uploaded

Q7 More page tables
10 Points

Using the same format for describing the page table as in the
question above construct a page table that maps three pages at
virtual addresses 0x8010 0000 , 0x8010 1000 , and 0x8010 2000 to physical
addresses 0x0 , 0x8000_1000 , and 0xFFFF_F000 . Use x86-32, 4KB pages.

No files uploaded

