

cs5460/6460: Operating Systems

Midterm recap, sample questions

Anton Burtsev
February, 2023

Describe the x86 address translation pipeline
(draw figure), explain stages.

Address translation

What is the linear address? What address is in
the registers, e.g., in %eax?

Logical and linear addresses

● Segment selector (16 bit) + offset (32 bit)

What segments do the following instructions
use? push, jump, mov

Programming model

● Segments for: code, data, stack, “extra”
● A program can have up to 6 total segments
● Segments identified by registers: cs, ds, ss, es, fs, gs

● Prefix all memory accesses with desired segment:
● mov eax, ds:0x80 (load offset 0x80 from data into eax)
● jmp cs:0xab8 (jump execution to code offset 0xab8)
● mov ss:0x40, ecx (move ecx to stack offset 0x40)

Segmented programming (not real)

static int x = 1;

int y; // stack

if (x) {

 y = 1;

 printf (“Boo”);

} else

 y = 0;

ds:x = 1; // data

ss:y; // stack

if (ds:x) {

 ss:y = 1;

 cs:printf(ds:“Boo”);

} else

 ss:y = 0;

Describe the linear to physical address
translation with the paging mechanism (use
provided diagram, mark and explain the steps).

Page translation

Page translation

Page directory entry (PDE)

● 20 bit address of the page table
● Pages 4KB each, we need 1M to cover 4GB

● R/W – writes allowed?
● To a 4MB region controlled by this entry

● U/S – user/supervisor
● If 0 – user-mode access is not allowed

● A – accessed

Page translation

Page table entry (PTE)

● 20 bit address of the 4KB page
● Pages 4KB each, we need 1M to cover 4GB

● R/W – writes allowed?
● To a 4KB page

● U/S – user/supervisor
● If 0 user-mode access is not allowed

● A – accessed
● D – dirty – software has written to this page

Page translation

Consider the following 32-bit x86 page table setup.
%cr3 holds 0x00001000.
The Page Directory Page at physical address 0x00001000:
PDE 0: PPN=0x00002, PTE_P, PTE_U, PTE_W
PDE 1: PPN=0x00003, PTE_P, PTE_U, PTE_W
PDE 2: PPN=0x00002, PTE_P, PTE_U, PTE_W
... all other PDEs are zero
The Page Table Page at physical address 0x00002000 (which is PPN
0x00002):
PTE 0: PPN=0x00005, PTE_P, PTE_U, PTE_W
PTE 1: PPN=0x00006, PTE_P, PTE_U, PTE_W
... all other PTEs are zero
The Page Table Page at physical address 0x00003000:
PTE 0: PPN=0x00005, PTE_P, PTE_U, PTE_W
PTE 1: PPN=0x00005, PTE_P, PTE_U, PTE_W
... all other PTEs are zero

List all virtual addresses that map to physical address 0x00005555

Consider the following 32-bit x86 page table setup.
%cr3 holds 0x00001000.
The Page Directory Page at physical address 0x00001000:
PDE 0: PPN=0x00002, PTE_P, PTE_U, PTE_W
PDE 1: PPN=0x00003, PTE_P, PTE_U, PTE_W
PDE 2: PPN=0x00002, PTE_P, PTE_U, PTE_W
... all other PDEs are zero
The Page Table Page at physical address 0x00002000 (which is PPN
0x00002):
PTE 0: PPN=0x00005, PTE_P, PTE_U, PTE_W
PTE 1: PPN=0x00006, PTE_P, PTE_U, PTE_W
... all other PTEs are zero
The Page Table Page at physical address 0x00003000:
PTE 0: PPN=0x00005, PTE_P, PTE_U, PTE_W
PTE 1: PPN=0x00005, PTE_P, PTE_U, PTE_W
... all other PTEs are zero

List all virtual addresses that map to physical address 0x00005555
Answer: 0x00000555, 0x00400555, 0x00401555, 0x00800555

What's on the stack? Describe layout of a stack
and how it changes during function invocation?

Example stack

: :
| 10 | [ebp + 16] (3rd function argument)
| 5 | [ebp + 12] (2nd argument)
| 2 | [ebp + 8] (1st argument)
| RA | [ebp + 4] (return address)
| FP | [ebp] (old ebp value)
| | [ebp - 4] (1st local variable)
: :
: :
| | [ebp - X] (esp - the current stack pointer)

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

