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Describe the x86 address translation pipeline 
(draw figure), explain stages. 



  

Address translation



  



  



  



  



  



  



  



  



  

What is the linear address? What address is in 
the registers, e.g., in %eax?



  

Logical and linear addresses

● Segment selector (16 bit) + offset (32 bit)



  

What segments do the following instructions 
use? push, jump, mov



  

Programming model

● Segments for: code, data, stack, “extra”
● A program can have up to 6 total segments
● Segments identified by registers: cs, ds, ss, es, fs, gs

● Prefix all memory accesses with desired segment:
● mov eax, ds:0x80    (load offset 0x80 from data into eax)
● jmp cs:0xab8          (jump execution to code offset 0xab8)
● mov ss:0x40, ecx    (move ecx to stack offset 0x40)



  

Segmented programming (not real)

static int x = 1;

int y; // stack

if (x) {

    y = 1;

    printf (“Boo”);

} else

    y = 0;

ds:x = 1; // data

ss:y;     // stack

if (ds:x) {

   ss:y = 1;

   cs:printf(ds:“Boo”);

} else

   ss:y = 0;



  

Describe the linear to physical address 
translation with the paging mechanism (use 
provided diagram, mark and explain the steps). 



  

Page translation



  

Page translation



  

Page directory entry (PDE)

● 20 bit address of the page table
● Pages 4KB each, we need 1M to cover 4GB

● R/W – writes allowed? 
● To a 4MB region controlled by this entry

● U/S – user/supervisor
● If 0 – user-mode access is not allowed

● A – accessed



  

Page translation



  

Page table entry (PTE)

● 20 bit address of the 4KB page
● Pages 4KB each, we need 1M to cover 4GB

● R/W – writes allowed? 
● To a 4KB page

● U/S – user/supervisor
● If 0 user-mode access is not allowed

● A – accessed
● D – dirty – software has written to this page



  

Page translation



  

Consider the following 32-bit x86 page table setup.
%cr3 holds 0x00001000.
The Page Directory Page at physical address 0x00001000:
PDE 0: PPN=0x00002, PTE_P, PTE_U, PTE_W
PDE 1: PPN=0x00003, PTE_P, PTE_U, PTE_W
PDE 2: PPN=0x00002, PTE_P, PTE_U, PTE_W
... all other PDEs are zero
The Page Table Page at physical address 0x00002000 (which is PPN 
0x00002):
PTE 0: PPN=0x00005, PTE_P, PTE_U, PTE_W
PTE 1: PPN=0x00006, PTE_P, PTE_U, PTE_W
... all other PTEs are zero
The Page Table Page at physical address 0x00003000:
PTE 0: PPN=0x00005, PTE_P, PTE_U, PTE_W
PTE 1: PPN=0x00005, PTE_P, PTE_U, PTE_W
... all other PTEs are zero

List all virtual addresses that map to physical address 0x00005555



  

Consider the following 32-bit x86 page table setup.
%cr3 holds 0x00001000.
The Page Directory Page at physical address 0x00001000:
PDE 0: PPN=0x00002, PTE_P, PTE_U, PTE_W
PDE 1: PPN=0x00003, PTE_P, PTE_U, PTE_W
PDE 2: PPN=0x00002, PTE_P, PTE_U, PTE_W
... all other PDEs are zero
The Page Table Page at physical address 0x00002000 (which is PPN 
0x00002):
PTE 0: PPN=0x00005, PTE_P, PTE_U, PTE_W
PTE 1: PPN=0x00006, PTE_P, PTE_U, PTE_W
... all other PTEs are zero
The Page Table Page at physical address 0x00003000:
PTE 0: PPN=0x00005, PTE_P, PTE_U, PTE_W
PTE 1: PPN=0x00005, PTE_P, PTE_U, PTE_W
... all other PTEs are zero

List all virtual addresses that map to physical address 0x00005555
Answer: 0x00000555, 0x00400555, 0x00401555, 0x00800555



  

What's on the stack? Describe layout of a stack 
and how it changes during function invocation?



  

Example stack

:    : 
| 10 | [ebp + 16] (3rd function argument)
|  5 | [ebp + 12] (2nd argument)
|  2 | [ebp + 8]  (1st argument)
| RA | [ebp + 4]  (return address)
| FP | [ebp]      (old ebp value)
|    | [ebp - 4]  (1st local variable)
:    :
:    :
|    | [ebp - X]  (esp - the current stack pointer)



  

Thank you!
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