
Q1 Operating system interface
25 Points

Q1.1 Simple programs with I/O redirection
15 Points

Write a program in C, using the UNIX system call API that implements the

following pipeline cat < foo.txt | grep main | wc -l > bar.txt , i.e., it launches

cat , grep, and wc with appropriate I/O redirection and connects them with

pipes. Limit your use of system calls to the following, i.e., the xv6 subset:

void fork();

void exec(path, args);

void wait();

int open(fd, R|W);

void close(fd);

void pipe(fd[2]);

int dup(fd);

int read(fd, buf, n);

int write(fd, buf, n);

Q1.2 Stack
5 Points

You are trying to implement a fork bomb, i.e., the program that forks endlessly

until it exhaust the memory of the system, with the code below. You're running

on a beefy machine that has a ton of memory and can support a ton of

processes. However each process is configured with a 4096 byte stack.

void recursive_fork() {

fork();

recursive_fork();

return;

}

main() {

recursive_fork();

}

How many processes you will be able to create? Explain your answer.

Q1.3
5 Points

Can you change the program above(Q1.2) to really exhaust all available

memory on the machine by forking endlessly?

Q2 ASM and calling conventions
16 Points

Consider the following assembly program:

1 foo:

2 push ebp

3 mov ebp, esp

4 sub esp, 16

5 mov DWORD PTR [ebp-4], 43

6 mov edx, DWORD PTR [ebp+8]

7 mov eax, DWORD PTR [ebp-4]

8 add eax, edx

9 mov esp, ebp

10 pop ebp

11 ret

12 main:

13 push ebp

14 mov ebp, esp

15 sub esp, 16

16 mov DWORD PTR [ebp-4], 17

17 push DWORD PTR [ebp-4]

18 call foo

19 add esp, 4

20 mov DWORD PTR [ebp-4], eax

21 add DWORD PTR [ebp-4], 23

22 mov eax, DWORD PTR [ebp-4]

23 mov esp, ebp

24 pop ebp

25 ret

Q2.1 Assembly
10 Points

Explain the purpose of each line of the assembly code.

Q2.2 Stack
5 Points

Draw and upload a diagram/picture of the call-stack generated right before

the add instruction inside foo (or use the text field to provide an ASCII

drawing). Explain every value on the stack.

No files uploaded

Q2.3 Return values
1 Point

What value is returned by main?

Q3 Linking and loading
10 Points



1 #include <stdio.h>

2 #include <string.h>

3 #include <stdlib.h>

4

5 char hello[] = "Hello";

6 int main(int ac, char **av)

 7 {

8 char world[] = "world!";

9 char *str = malloc(64);

10 memcpy(str, "beautiful", 64);

11 printf("%s %s %s\n", hello, str, world);

12 return 0;

13 }

Q3.1 Allocation
5 Points

For each variable used in the program above, explain where (stack/heap/data

section) this variable is allocated.

Q3.2 Rellocation
5 Points

If the program is relocated in memory by the linker, which lines in the

program will result in assembly instructions that require relocation?

Sometimes a single line results in multiple relocations, as it gets translated to

multiple assembly lines (please explain them all).

