
Q1 Address translation
25 Points

Consider the following 32-bit x86 page table setup.

CR3 holds 0x0.

The Page Directory Page at physical address 0x0 (the flags are PTE_P

(present), PTE_U (user-accessible), and PTE_W (writable):

PDE 0: PPN=0x00001, PTE_P, PTE_U, PTE_W

PDE 1: PPN=0x00001, PTE_P, PTE_U, PTE_W

PDE 2: PPN=0x00002, PTE_P, PTE_U, PTE_W

... all other PDEs are zero

The Page Table Page at physical address 0x00001000 (which is PPN

0x00001):

PTE 0: PPN=0x00005, PTE_P, PTE_U, PTE_W

PTE 1: PPN=0x00006, PTE_P, PTE_U, PTE_W

... all other PTEs are zero

The Page Table Page at physical address 0x00002000 (which is PPN

0x00002):

PTE 0: PPN=0x00006, PTE_P, PTE_U, PTE_W

PTE 1: PPN=0x00005, PTE_P, PTE_U, PTE_W

... all other PTEs are zero

Find all virtual addresses that map to physical address 0x00005005

Q1.1
3 Points

Can you update the page table directory, i.e., write into it, while this page

table is used? Explain your answer.

Q1.2 Physical pages
5 Points

What physical pages (provide physical page numbers) are mapped by this

page table?

Q1.3 Virtual addresses
7 Points

What virtual addresses are mapped by this page table?

Q1.4 More page tables
10 Points

Using the same format for describing the page table as in the questions above

construct a page table that maps the following virtual addresses [4MB; 8MB]

to physical addresses [0; 4MB] (here we map up to 4MB boundary, i.e., the

page 4MB and up doesn't have to be mapped). Note: you should use 4KB page

tables.

Q2 Process organization
10 Points

Q2.1
5 Points

Imagine you would double the size of the stack for user-level processes in xv6,

which lines of the xv6 you have to change? (explain your answer using

relevant xv6 code)

Q2.2
5 Points

You want to maximize the amount of physical memory xv6 can handle. What is

the max number you can change PHYSTOP to without crashing an xv6

system? Explain your answer.

Q3 Interrupts
15 Points

Q3.1
5 Points

An xv6 process executes a system call in the kernel, can it be preempted with

a timer interrupt? (Explain your answer using relevant xv6 source code)

Relevant xv6 source code:

Explanation:

Q3.2
5 Points

If an xv6 process is preempted with a timer interrupt and is executing the

timer interrupt handler in the kernel, can it be preempted with another timer

Yes

No

interrupt? (Explain your answer using relevant xv6 source code)

Relevant xv6 source code:

Explanation:

Q3.3
5 Points

You're executing line 2581 (i.e., just starting inside fork() in which lines the

execution can be preempted with the timer interrupt? Explain your answer.

2579 int

2580 fork(void)

2581 {

2582 int i, pid;

2583 struct proc *np;

2584 struct proc *curproc = myproc();

2585

2586 // Allocate process.

2587 if((np = allocproc()) == 0){

2588 return −1;

2589 }

2590

2591 // Copy process state from proc.

2592 if((np−>pgdir = copyuvm(curproc−>pgdir, curproc−>sz)) == 0){

2593 kfree(np−>kstack);

2594 np−>kstack = 0;

2595 np−>state = UNUSED;

2596 return −1;

2597 }

2598 np−>sz = curproc−>sz;

2599 np−>parent = curproc;

2600 *np−>tf = *curproc−>tf;

2601

2602 // Clear %eax so that fork returns 0 in the child.

Yes

No

2603 np−>tf−>eax = 0;

2604

2605 for(i = 0; i < NOFILE; i++)

2606 if(curproc−>ofile[i])

2607 np−>ofile[i] = filedup(curproc−>ofile[i]);

2608 np−>cwd = idup(curproc−>cwd);

2609

2610 safestrcpy(np−>name, curproc−>name, sizeof(curproc−>name));

2611

2612 pid = np−>pid;

2613

2614 acquire(&ptable.lock);

2615

2616 np−>state = RUNNABLE;

2617

2618 release(&ptable.lock);

2619

2620 return pid;

2621 }

Explanation:

Q4 System call arguments
15 Points

Q4.1
5 Points

Alice is confused about the checks in line 3618, specifically she argues that

she can remove the following code || (uint)i+size > curproc−>sz from that

line.

3610 int

3611 argptr(int n, char **pp, int size)

3612 {

3613 int i;

3614 struct proc *curproc = myproc();

3615

3616 if(argint(n, &i) < 0)

3617 return −1;

3618 if(size < 0 || (uint)i >= curproc−>sz || (uint)i+size > curproc−>sz)

3619 return −1;

3620 *pp = (char*)i;

3621 return 0;

3622 }

Can you explain what can go wrong if she does this change?

Q4.2
10 Points

Alice wants to make system calls in xv6 a bit faster. Specifically she wants to

pass the first 3 arguments to the system call in EDI, ESI, and EDX registers.

What changes she needs to do to make it work (explain your answer using

relevant xv6 code)?

Q5 A pipe under the sync
14 Points

Here's the source code of piperead() .

6850 int

6851 piperead(struct pipe *p, char *addr, int n)

6852 {

6853 int i;

6854

6855 acquire(&p−>lock);

6856 while(p−>nread == p−>nwrite && p−>writeopen){

6857 if(myproc()−>killed){

6858 release(&p−>lock);

6859 return −1;

6860 }

6861 sleep(&p−>nread, &p−>lock);

6862 }

6863 for(i = 0; i < n; i++){

6864 if(p−>nread == p−>nwrite)

6865 break;

6866 addr[i] = p−>data[p−>nread++ % PIPESIZE];

6867 }

6868 wakeup(&p−>nwrite);

6869 release(&p−>lock);

6870 return i;

6871 }

Q5.1 Acquire what lock?
2 Points

What is the role of line 6855, i.e., acquire(&p−>lock);?

Q5.2 Grind never rest
4 Points

What could happen if line 6861 sleep(&p−>nread, &p−>lock); is removed?

Q5.3 Lock the door before sleep?
4 Points

Why does the sleep function in line 6861, sleep(&p−>nread, &p−>lock); ,

takes &p->lock as an argument?

"Because sleep takes two arguments" is not an acceptable answer.

Q5.4 Return what eye?
4 Points

Two readers reading from the pipe at the same time will read the same data

out twice.

Two writers writing to the pipe at the same time will overwrite each other's

data.

Both the first option and the second option. Both the readers and the

writers can cause data races and lead to incorrect behaviors.

Some programs might run slower.

xv6 will freeze if it runs on a single-core CPU.

None of the above.

Can the return value of piperead be greater than PIPESIZE?

Explanation:

