
CS 143A Name (Print):

Fall 2018
Midterm
11/15/2018
Time Limit: 2:00pm - 3:20pm

• Don’t forget to write your name on this exam.

• This is an open book, open notes exam. But no online or in-class chatting.

• Ask us if something is confusing in the questions.

• Organize your work, in a reasonably neat and coherent way, in the space provided. Work
scattered all over the page without a clear ordering will receive very little credit.

• Mysterious or unsupported answers will not receive full credit. A correct answer,
unsupported by explanation will receive no credit; an incorrect answer supported by substan-
tially correct explanations might still receive partial credit.

• If you need more space, use the back of the pages; clearly indicate when you have done this.

Problem Points Score

1 15

2 5

3 10

4 16

5 5

6 5

7 5

8 5

9 3

Total: 69

CS 143A Midterm - Page 2 of 13

1. OS Interfaces

(a) (5 points) Heres a program that uses the UNIX system call API, as described in Chapter
0 of the xv6 book:

#include "param.h"

#include "types.h"

#include "user.h"

#include "syscall.h"

int main() {

char * message = "aaa\n";

int pid = fork();

if(pid != 0){

char *echoargv[] = { "echo", "Hello\n", 0 };

message = "bbb\n";

exec("echo", echoargv);

write(1, message, 4);

}

write(1, message, 4);

exit();

}

Assume that fork() succeeds, that file descriptor 1 is connected to the terminal when
the program starts, and echo program exists. What possible outputs this program can
produce (explain your answer)?

Answer: The proccess forks() and execs() the “echo” program that prints “Hello” inside
the parent. Since exec() overloads the address space of the parent the write(1, message,
4)line never gets executed (we assume that “echo” exists and exec() succeeds). The child
prints “aaa”. Two possible outputs depending on the order in which parent and child
execute are

aaa

Hello

or

Hello

aaa

CS 143A Midterm - Page 3 of 13

(b) (10 points) Write a program that uses the UNIX system call API, as described in Chapter
0 of the xv6 book. The program forks and creates a pipeline of 10 stages. I.e., each stage
is a separate process. Each two consequtive stages are connected with a pipe, i.e., the
standard output of each stage is connected to the standard input of the next stage. Each
stage reads a character from its standard input and sends it to the standard output. The
last stage outputs the character it reads from the pipe to the standard output.

CS 143A Midterm - Page 4 of 13

2. Basic page tables.

(a) (5 points) Alice wants to construct a page table that maps virtual addresses 0x0, 0x1000
and 0x2000 into physical addresses 0x1000, 0x2000, and 0x3000. Assume that the Page
Directory Page is at physical address 0x0, and the Page Table Page is at physical address
0x00001000 (which is PPN 0x00001).

Draw a picture of the page table Alice will construct (or alternatively simply write it down
in the format similar to the one below): :

Page Directory Page:

PDE 0: PPN=0x1, PTE_P, PTE_U, PTE_W

... all other PDEs are zero

The Page Table Page:

PTE 0: PPN=0x1, PTE_P, PTE_U, PTE_W

PTE 1: PPN=0x2, PTE_P, PTE_U, PTE_W

PTE 2: PPN=0x3, PTE_P, PTE_U, PTE_W

... all other PTEs are zero

CS 143A Midterm - Page 5 of 13

3. Stack and calling conventions.

Alice developed a program that has a function foo() that is called from two other functions
bar() and baz():

int foo(int a) {

...

}

int bar(int a, int b) {

...

foo(x);

printf("bar:%d\n", x);

...

}

int baz(int a, int b, int c) {

...

foo(x);

printf("baz:%d\n", x);

...

}

While debugging her program Alice observes the following state when she hits a breakpoint
of the program inside foo() (assume that the compiler does not inline invocations of foo(),
bar(), and baz(), and follows the calling conventions that we’ve covered in the class):

The bottom of the stack:

0x8010b5b4: ...

0x8010b5b0: 0x00000003

0x8010b5ac: 0x00000002

0x8010b5a8 0x80102e80

0x8010b5a4: 0x8010b5b4

0x8010b5a0: 0x80112780

0x8010b59c: 0x00000001

0x8010b598: 0x80102e32

0x8010b594: 0x8010b5a4 <-- ebp

0x8010b590: 0x00000000 <-- esp

(a) (5 points) Provide a short explanation for each line of the stack dump above (you can
annotate the printout above).

The bottom of the stack:

0x8010b5b4: ... // ebp

0x8010b5b0: 0x00000003 // argument #2 to the function that called foo()’s caller

0x8010b5ac: 0x00000002 // argument #1 to the function that called foo()’s caller

0x8010b5a8 0x80102e80 // return address

0x8010b5a4: 0x8010b5b4 // ebp

CS 143A Midterm - Page 6 of 13

0x8010b5a0: 0x80112780 // (local variable, argument to a funciton, or register spill inside function that called foo)

0x8010b59c: 0x00000001 // arg to foo

0x8010b598: 0x80102e32 // return address for foo()

0x8010b594: 0x8010b5a4 <-- ebp

0x8010b590: 0x00000000 <-- esp (local variable, argument to a funciton, or register spill inside foo)

CS 143A Midterm - Page 7 of 13

(b) (5 points) If Alice continues execution of her program what output will she see on the
screen (justify your answer).

We know that foo() can be called from bar() or baz(), but we also know that the caller of
foo()’s caller i.e., either bar() or baz(), got two arguments. Hence, it’s bar(). And since
we know that foo() got 0x1 as argument the string Alice will see on the screen should be

bar:1

4. Xv6 process organization.

In xv6, in the address space of the process, what does the following virtual addresses contain?

(a) (3 points) Virtual address 0x0

The memory at virtual address 0x0 contains the text section (code) of the user process.

(b) (3 points) Virtual address 0x80100000

The memory at virtual address 0x80100000 contains the text section (code) of the kernel.
During the boot the kernel was loaded at physical address 0x100000 (1MB) and then later
this address was mapped at 2GBs + 1MB or (0x80000000 + 0x100000).

(c) (3 points) What physical address is mapped at virtual address 0x80000000

Physical address 0x0.

CS 143A Midterm - Page 8 of 13

(d) (7 points) Is there a way for the kernel to find out what physical address is mapped at a
specific virtual address? Provide an explanation and a code sketch (pseudocode is ok, no
need to worry about correct C syntax). Your code should take a virtual address as an input
and resolve it into the physical address that is mapped into that virtual address by the
process page table (in your code feel free to re-use functions that are already implemented
in the xv6 kernel).

CS 143A Midterm - Page 9 of 13

5. Protection and isolation

(a) (5 points) In xv6 all segments are configured to have the base of 0 and limit of 4GBs,
which means that segmentation does not prevent user programs from accessing kernel
memory. Nevertheless, user programs can’t read and write kernel memory. How (through
what mechanisms) such isolation is achieved?

6. System calls

(a) (5 points) How do system calls access their arguments that are passed from the user level?
After all, all system calls are declared as void functions that return an integer, i.e., visibly
they don’t take any arguments. For example, the read() system call is declared as:

6131 int

6132 sys_read(void)

But user code can invoke it as

int read(int, void*, int);

CS 143A Midterm - Page 10 of 13

7. Physical and virtual memory allocation

(a) (5 points) What is the purpose of the V2P macro? Specifically, the allocuvm() function
(see the listing below) uses kalloc() to allocate and map a region of memory into the
address space of a process. Explain, why the V2P macro is used in line 1946 below?

1926 int

1927 allocuvm(pde_t *pgdir, uint oldsz, uint newsz)

1928 {

1929 char *mem;

1930 uint a;

1931

1932 if(newsz >= KERNBASE)

1933 return 0;

1934 if(newsz < oldsz)

1935 return oldsz;

1936

1937 a = PGROUNDUP(oldsz);

1938 for(; a < newsz; a += PGSIZE){

1939 mem = kalloc();

1940 if(mem == 0){

1941 cprintf("allocuvm out of memory\n");

1942 deallocuvm(pgdir, newsz, oldsz);

1943 return 0;

1944 }

1945 memset(mem, 0, PGSIZE);

1946 if(mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0){

1947 cprintf("allocuvm out of memory (2)\n");

1948 deallocuvm(pgdir, newsz, oldsz);

1949 kfree(mem)

1950 return 0;

1951 }

1952 }

1953 return newsz;

1954 }

CS 143A Midterm - Page 11 of 13

8. Initial page tables

Bob looks at the piece of code in entry.S where the initial page tables are set and thinks
he doesn’t need the entry that maps the 0-4MB of virtual page to 0-4MB of physical page.
Accordingly he modifies the entrypgdir as below.

__attribute__((__aligned__(PGSIZE)))

pde_t entrypgdir[NPDENTRIES] = {

// Map VA’s [KERNBASE, KERNBASE+4MB) to PA’s [0, 4MB)

[KERNBASE>>PDXSHIFT] = (0) | PTE_P | PTE_W | PTE_PS,

};

(a) (5 points) Explain what will go wrong with Bob’s change?

CS 143A Midterm - Page 12 of 13

9. 143A organization and teaching

(a) (3 points) If there is one single most important thing you would like to improve in the
CS143A class, what would it be?

CS 143A Midterm - Page 13 of 13

