
Principles of Operating Systems Name (Print):
Winter 2017
Final
03/22/2017
Time Limit: 8:00am - 10:00am

• Don’t forget to write your name on this exam.

• This is an open book, open notes exam. But no online or in-class chatting.

• Ask me if something is not clear in the questions.

• Organize your work, in a reasonably neat and coherent way, in the space provided. Work
scattered all over the page without a clear ordering will receive very little credit.

• Mysterious or unsupported answers will not receive full credit. A correct answer,
unsupported by explanation will receive no credit; an incorrect answer supported by substan-
tially correct explanations might still receive partial credit.

• If you need more space, use the back of the pages; clearly indicate when you have done this.

Problem Points Score

1 20

2 10

3 20

4 20

5 15

6 5

Total: 90

Principles of Operating Systems Final - Page 2 of 10 03/22/2017

1. File system

Xv6 lays out the file system on disk as follows:

1 2

super log

header
log inode bmap data

3 32 58 59

Block 1 contains the super block. Blocks 2 through 31 contain the log header and the log.
Blocks 32 through 57 contain inodes. Block 58 contains the bitmap of free blocks. Blocks 59
through the end of the disk contain data blocks.

Ben modifies the function bwrite in bio.c to print the block number of each block written.

Ben boots xv6 with a fresh fs.img and types in the command ln cat cat2. This command creates
a symbolic link cat2 to file cat. This command produces the following trace:

$ ln cat cat2

write 3

write 4

write 2

write 32

write 59

write 2

$

(a) (5 points) Why is block 2 written twice?

(b) (5 points) Briefly explain what block 32 contains in the above trace. Why is it written?

Principles of Operating Systems Final - Page 3 of 10 03/22/2017

(c) (5 points) What does block 3 contain?

(d) (5 points) If writes to 32 and 59 are reordered like below, will it violate correctness of the
file system, explain why?

$ ln cat cat2

write 3

write 4

write 2

write 59

write 32

write 2

$

Principles of Operating Systems Final - Page 4 of 10 03/22/2017

2. Memory management.

(a) (5 points) Explain organization of the xv6 memory allocator.

(b) (5 points) Why do you think xv6 does not have buddy or slab allocators? Under what
conditions you would have to add these allocators to the xv6 kernel?

Principles of Operating Systems Final - Page 5 of 10 03/22/2017

3. Synchronization

(a) (10 points) The code below is the xv6’s sleep() function. Remember the whole idea of
passing a lock inside sleep() is to make sure it is released before the process goes to
sleep (otherwise it will never be woken up). However, it looks like that if the lock passed
inside sleep is ptable.lock (i.e., lk == &ptable.lock) the lock remains acquired and is never
released. But xv6 does call sleep with ptable.lock as an argument and it works, can you
explain why?

2806 // Atomically release lock and sleep on chan.

2807 // Reacquires lock when awakened.

2808 void

2809 sleep(void *chan, struct spinlock *lk)

2810 {

2811 if(proc == 0)

2812 panic("sleep");

2813

2814 if(lk == 0)

2815 panic("sleep without lk");

2816

2817 // Must acquire ptable.lock in order to 2818 // change p>state and

2818 // change p>state and then call sched.

2819 // Once we hold ptable.lock, we can be

2820 // guaranteed that we wont miss any wakeup

2821 // (wakeup runs with ptable.lock locked),

2822 // so its okay to release lk.

2823 if(lk != &ptable.lock){

2824 acquire(&ptable.lock);

2825 release(lk);

2826 }

2827

2828 // Go to sleep.

2829 proc>chan = chan;

2830 proc>state = SLEEPING;

2831 sched();

2832

2833 // Tidy up.

2834 proc>chan = 0;

2835

2836 // Reacquire original lock.

2837 if(lk != &ptable.lock){

2838 release(&ptable.lock);

2839 acquire(lk);

2840 }

2841 }

Principles of Operating Systems Final - Page 6 of 10 03/22/2017

(b) (10 points) Alyssa runs xv6 on a machine with 8 processors and 8 processes. Each process
calls uptime() (3738) system call continuously, reading the number of ticks passed since
boot. Alyssa measures the number of uptime() system calls per second and notices that 8
processes achieve the same total throughput as 1 process, even though each process runs
on a different processor. Why is the throughput of 8 processes the same as that of 1
process?

Principles of Operating Systems Final - Page 7 of 10 03/22/2017

4. Scheduling

(a) (10 points) You would like to extend xv6 with priority based scheduler, i.e., each process
has a priority, and processes with a higher priority are scheduled first. Write the code for
your implementation below (which xv6 functions need to be changed?)

Principles of Operating Systems Final - Page 8 of 10 03/22/2017

(b) (10 points) Now you would like to extend your priority scheduler with support for inter-
active tasks, e.g., a task that spends a lot of time waiting, should run first (i.e., receive
priority boost). Provide code that handles waiting tasks and implements priority boost
(again, just change related xv6 functions).

Principles of Operating Systems Final - Page 9 of 10 03/22/2017

5. Page tables.

Xv6 uses 4MB page table during boot. It is defined as:

1406 // The boot page table used in entry.S and entryother.S.

1407 // Page directories (and page tables) must start on page boundaries,

1408 // hence the __aligned__ attribute.

1409 // PTE_PS in a page directory entry enables 4Mbyte pages.

1410

1411 __attribute__((__aligned__(PGSIZE)))

1412 pde_t entrypgdir[NPDENTRIES] = {

1413 // Map VAs [0, 4MB) to PAs [0, 4MB)

1414 [0] = (0) | PTE_P | PTE_W | PTE_PS,

1415 // Map VAs [KERNBASE, KERNBASE+4MB) to PAs [0, 4MB)

1416 [KERNBASE>>PDXSHIFT] = (0) | PTE_P | PTE_W | PTE_PS,

1417 };

(a) (5 points) What virtual addresses (and to what physical addresses) does this page table
map?

(b) (10 points) Imagine now that 4MB pages are not available, and you have to use regular
4KB pages. How do you need to change the definition of entrypgdir for xv6 to work
correctly (provide code and short explanation).

Principles of Operating Systems Final - Page 10 of 10 03/22/2017

6. ics143A. I would like to hear your opinions about 6.828, so please answer the following questions.
(Any answer, except no answer, will receive full credit.)

(a) (1 point) Grade ics143A on a scale of 0 (worst) to 10 (best)?

(b) (2 points) Any suggestions for how to improve ics143A?

(c) (1 point) What is the best aspect of ics143A?

(d) (1 point) What is the worst aspect of ics143A?

