
CS/EE 3810 Name (Print):

Fall 2022 uid:

Midterm Left person:

10/24/2022 Right person:

Time Limit: 11:50am - 1:10pm

• Don’t forget to write your name on this exam.

• This is an open book, open notes exam. But no online or in-class chatting.

• Ask us if something is confusing in the questions.

• Organize your work, in a reasonably neat and coherent way, in the space provided. Work
scattered all over the page without a clear ordering will receive very little credit.

• Mysterious or unsupported answers will not receive full credit. A correct answer,
unsupported by explanation will receive no credit; an incorrect answer supported by substan-
tially correct explanations might still receive partial credit.

• If you need more space, use the back of the pages; clearly indicate when you have done this.

Problem Points Score

1 20

2 45

3 10

4 20

5 25

Total: 120

CS/EE 3810 Midterm - Page 2 of 10

1. Performance equation

Compilers can have a profound impact on the performance of an application. Assume that
for a program, compiler A results in a dynamic instruction count of 1.0E9 (i.e., counted by
the CPU with a hardware performance counter during execution of the program) and has an
execution time of 1.1 s, while compiler B results in a dynamic instruction count of 1.2E9 and
an execution time of 1.5 s.

(a) (10 points) Find the average CPI for each program given that the processor has a clock
cycle time of 1 ns.

Answer: We know that,

CPUtime = InstructioncountCPIClockcycletime

So,

CPI = CPUtime/(InstructioncountClockcycletime)

Compiler A:

CPI = 1.1/(1.0E91.0E − 9) = 1.1

Compiler B:

CPI = 1.5/(1.2E91.0E − 9) = 1.25

(b) (10 points) Assume the compiled programs run on two different processors. If the execu-
tion times on the two processors are the same, how much faster is the clock of the processor
running compiler As code versus the clock of the processor running compiler Bs code?

Answer: We know that, 1/Clockcycletime = InstructioncountCPI/CPUtime

So,

Clockrate(Frequency) = InstructioncountCPI/CPUtime

For the same CPU or execution time on both processors (here we assume that CPI of each
program stays the same as in part above),

fB/fA = (Instructioncount(B)CPI(B))/(Instructioncount(A)CPI(A)) = (1.2E91.25)/1.0E91.1) =
1.36

CS/EE 3810 Midterm - Page 3 of 10

2. MIPS assembly

(a) (5 points) Which address is accessed by the following lw instruction, $s0 contains 1234?

lw $s0, 4000($s0)

Answer: 4000 + 1234 = 5234

(b) (5 points) The address field of the jump (j) instruction contains 1234? What is the value
of the pc (program counter) register after this jump instruction is executed? The initial
value of the pc is 2147483648.

Answer: We will take a simple answer 1234 ∗ 4 = 4936, but will give extra 5 points for
mentioning that j uses pseudodirect addressing which means that the top 4 bits of the PC
are not changed, hence the address is 2147488584.

(c) (5 points) The address field of the branch when equal (beq) instruction contains 1234, and
the value of the program couner is 4000. What is the value of the pc (program counter)
register after this beq instruction is executed (assume the condition is true and the branch
is taken)?

Answer: 4000 + 4 + 1234 ∗ 4 = 8940

CS/EE 3810 Midterm - Page 4 of 10

(d) (10 points) Below is the source code a simple C program translate it into MIPS assembly
(assume a is in t0, b is in t1, c is in t2, d is in t3, e is in t4, and f should be in s0.

f = foo(a, b, c, d, e);

I.e., you only have to write assembly for calling the function and getting the result back
(you don’t really care what the function is doing).

However, you need to know the signature of the function, foo function takes 5 integers
and returns an integer, i.e.:

int foo(int a, int b, int c, int d, int e);

Answer:

mov $a0, $t0 # first 4 arguments are in registers

mov $a1, $t1

mov $a2, $t2

mov $a3, $t3

addi $sp, $sp, -4 # stack grows down

sw $t4, $sp # 5th arg is on the stack

jal foo

mov $s0, $v0

addi $sp, $sp, 4 # restore the stack

CS/EE 3810 Midterm - Page 5 of 10

(e) (20 points) Below is the source code a simple C program translate it into MIPS assembly

int foo(int a) {

int sum = 0;

for (int i = 0; i < a; i++)

sum = sum + i;

return sum;

}

int bar(int n)

{

return foo(n);

}

Answer:

foo:

this is a leaf function, no need to save/restore $ra

move $v0, $zero # sum is in $v0

move $t0, $zero # i is in $t0

forloop:

slt $t1, $t0, $a0 # set $t1 to 1 if $t0 is less then $a0 (i < n)

beq $t1, $zero, exit # $t1 is 0 (not set) only when i >= n

add $v0, $v0, $t0 # sum = sum + i

addi $t0, $t0, 1 # i += 1

j forloop

exit:

jr $ra # return, sum is already in $v0

bar:

addi $sp, $sp, -4 # stack grows down (reserve space for $ra)

sw $ra, $sp # save $ra

jal foo # call foo

lw $ra, $sp # restore $ra

addi $sp, $sp, 4 # restore stack

jr $ra # return

CS/EE 3810 Midterm - Page 6 of 10

3. Linking and loading: relocation

Alice compiles the following C file.

#include<stdio.h>

int add (int a, int b) {

printf("Numbers are added together\n");

return a+b;

}

int main() {

int a,b;

a = 3;

b = 4;

int ret = add(a,b);

printf("Result: %u\n", ret);

return 0;

}

(a) (10 points) Which symbols need to be relocated? Note, that C treats string constants as
globals allocated in the read-only data section. Explain your answer.

#include<stdio.h>

int add (int a, int b) {

printf("Numbers are added together\n"); # access to string in the data section

requires relocation,

i.e., move $a0, <str_addr>

return a+b;

}

int main() {

int a,b; # a and b are local (on the stack or

in registers

a = 3; # no need to relocate

b = 4;

int ret = add(a,b); # invocation of a function "add" (i.e.,

jal <some addr>)

ret is local (on the stack or in

registers)

printf("Result: %u\n", ret); # access to string (move $a0, <str_addr>

return 0;

}

CS/EE 3810 Midterm - Page 7 of 10

4. Floating point

(a) (10 points) Provide an example of two IEEE 754 single precision floating point numbers
and an operation on them which results in an overflow when performed.

Answer: Overflow occurs when a positive exponent becomes too large to fit in the expo-
nent field.

Note that we cannot pick exponent to be 255 (all 1 in binary) since it represents NaN, so
let’s pick to floating points with exponents of 254 and a fraction of all 0. This represents
a floating point number that is 1 ∗ 2127 (here we assume that the sign is 0). If we multiply
two such numbers the overflow occurs since the exponent that is 127 + 127 + BIAS = 381
does not fit in the exponent field.

(b) (10 points) Provide an example of two IEEE 754 single precision floating point numbers
and an operation on them which results in rounding when performed.

Answer: Rounding is required when the fraction of the floating point number does not
fit into the 23 bits allocated to store it (for single precision).

Again we should be careful and avoid picking a floating point number with exponent of
0 as it represents a denormalized number. We therefore pick two numbers that have 1 as
exponent and all 23 bits as 1 in the fraction field. Adding these two numbers will result
in a fraction that is one bit larger than the fraction field, hence ronding is required.

CS/EE 3810 Midterm - Page 8 of 10

5. Data path

Use the figure below to explain execution of the branch on equal (beq) instruction in the MIPS
datapath.

(a) (10 points) Explain the general flow of (beq) through the datapath.

Answer: The datapath reads the beq instruction from the instruction memory at the
address contained in the PC register. Bits [31-26] are read by the control unit to detect
that this is a beq instruction. Bits [25-21] and [20-16] select two registers from the register
file. The values from these registers are routed to the ALU unit for comparison (note
that the multiplexor controlled by the ALUSrc signal selects a register (deasserted). The
control unit configures the ALU control unit to perform subtraction operation on the ALU.
If register values are equal the Zero signal is asserted.

The AND gate that takes Branch and Zero selects the final value of the PC. In any case the
PC is already incremented by 4. If the Zero is deaserted the branch is not taken and the
multiplexor selects this PC + 4 value for the next instruction. However if Zero is asserted,
the multiplexor selects the value computed by another ALU, which is defined as a sum of
PC + 4 and by the bits [15-0] of the beq instruction that are sign extended to 32 bits and
shifted by two.

CS/EE 3810 Midterm - Page 9 of 10

(b) (5 points) Which control signals are asserted, i.e., true or 1.

Control bits:

ALUSrc - deasserted RegWrite - deasserted RegDst - don’t care Jump - deasserted Branch
- asserted Zero - asserted (if taken) MemRead - deasserted MemWrite - deasserted Mem-
toReg - don’t care

ALU Control bits are set for Bnegate, CarryIn and to select the addition operation.

(c) (10 points) (and a badge of honor) The datapath has an error (with respect to how oper-
ation of the CPU was explained in Chapter 2 of the book). Find and explain the error.

Answer: If you read the book carefully you will notice the following explanation for the
j (jump) instruction:

Specifically, “leaving the upper 4 bits of the PC unchanged”. Seemingly this hints that the
datapath should concatenate the jump target (bits [25-0] shifted by 2) with the PC and
not PC + 4. And hance a different wire in the datapath should exist.

However, if you look at the MIPS specification https://www.cs.cornell.edu/courses/

cs3410/2008fa/MIPS_Vol2.pdf (page 115, J instruction) you notice the following expla-
nation:

“The remaining upper bits are the corresponding bits of the address of the instruction in
the delay slot (not the branch itself)”

I.e., really it’s the upper bits of the next instruction or PC + 4. So the datapath seems to
be correct with respect to the MIPS specification but incorrect with respect to the earlier
explanation in the book.

Finally, note that the MIPS specification seems to have a bug in how it explainst behavior
of the jump instruction

Specifically, it again mentions PCGPRLEN..28 instead of (PC + 4)GPRLEN..28, which is
obscure.

CS/EE 3810 Midterm - Page 10 of 10

