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MIPS Datapath
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Designing a Latch

• An S-R latch: set-reset latch
 When Set is high, a 1 is stored
 When Reset is high, a 0 is stored
 When both are low, the previous state is preserved (hence,
   known as a storage or memory element)
 Both are high – this set of inputs is not allowed

Verify the above behavior!

Source: H&P textbook
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D Latch

• Incorporates a clock

• The value of the input D signal (data) is stored only when the clock
  is high – the previous state is preserved when the clock is low

Source: H&P textbook
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D Flip Flop

• Terminology:
   Latch: outputs can change any time the clock is high (asserted) 
   Flip flop: outputs can change only on a clock edge

• Two D latches in series – ensures that a value is stored only on
   the falling edge of the clock

Source: H&P textbook



Register file

● Two read ports
● One write port



Register file (read ports)

● Build from D-flops
● Read ports

● Multiplexors
● N-to-1, 32bit wide
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Common Logic Blocks – Multiplexor

• Multiplexor or selector: one of N inputs is reflected on the
  output depending on the value of the log2N selector bits

    

                                 2-input mux
Source: H&P textbook



Register file (write ports)

● Decoder
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Common Logic Blocks – Decoder

Takes in N inputs and activates one of 2N outputs

I0    I1     I2                O0   O1   O2   O3   O4   O5   O6   O7

0    0     0                  1     0     0     0     0     0     0      0
0    0     1                  0     1     0     0     0     0     0      0
0    1     0                  0     0     1     0     0     0     0      0
0    1     1                  0     0     0     1     0     0     0      0
1    0     0                  0     0     0     0     1     0     0      0
1    0     1                  0     0     0     0     0     1     0      0
1    1     0                  0     0     0     0     0     0     1      0
1    1     1                  0     0     0     0     0     0     0      1

3-to-8
Decoder

I0-2 O0-7



Register file (write ports)

● What if we 
read and write 
the register in 
the same 
cycle?

● add $s0, $s0, $s1
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MIPS Datapath



Pipelining
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Building a Car

Time
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Building a Car

Start and finish a job before moving to the next

Time

Jobs

Unpipelined
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The Assembly Line

A

Time

Jobs

Pipelined

B C

A B C

A B C

A B C

Break the job into smaller stages
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Performance Improvements?

 Does it take longer to finish each individual job?

 Does it take shorter to finish a series of jobs?

 What assumptions were made while answering  these  questions?

Is a 10-stage pipeline better than a 5-stage pipeline?



Quantitative Effects

●  As a result of pipelining:
● Time in ns per instruction goes up
● Each instruction takes more cycles to execute
● But… average CPI remains roughly the same
● Clock speed goes up
● Total execution time goes down, resulting in lower average 

time per instruction
● Under ideal conditions, speedup 

= ratio of elapsed times between successive instruction completions 

= number of pipeline stages = increase in clock speed
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Clocks and Latches

Stage 1 Stage 2
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Clocks and Latches

Stage 1 Stage 2L

Clk

L



22

Some Equations

• Unpipelined: time to execute one instruction = T + Tovh

• For an N-stage pipeline, time per stage = T/N + Tovh

• Total time per instruction = N (T/N + Tovh) = T + N Tovh

• Clock cycle time = T/N + Tovh

• Clock speed = 1 / (T/N + Tovh)
• Ideal speedup = (T + Tovh) / (T/N + Tovh)
• Cycles to complete one instruction = N
• Average CPI (cycles per instr) = 1



Hazards
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A 5-Stage Pipeline

Source: H&P textbook
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Hazards

• Structural hazards: different instructions in different stages
  (or the same stage) conflicting for the same resource

• Data hazards: an instruction cannot continue because it
  needs a value that has not yet been generated by an
  earlier instruction

• Control hazard: fetch cannot continue because it does
  not know the outcome of an earlier branch – special case
  of a data hazard – separate category because they are
  treated in different ways



Structural hazards



27

A 5-Stage Pipeline

Source: H&P textbook
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Structural Hazards

• Example: a unified instruction and data cache 
  stage 4 (MEM) and stage 1 (IF) can never coincide

• The later instruction and all its successors are delayed
  until a cycle is found when the resource is free  these
  are pipeline bubbles

• Structural hazards are easy to eliminate – increase the
  number of resources (for example, implement a separate
  instruction and data cache)



Data hazards
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A 5-Stage Pipeline

Source: H&P textbook
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Pipeline Implementation

• Signals for the muxes have to be generated – some of this can happen during ID
• Need look-up tables to identify situations that merit bypassing/stalling – the 
  number of inputs to the muxes goes up
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Example

add   R1, R2, R3

lw      R4, 8(R1)

Source: H&P textbook
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Example

 lw    R1, 8(R2) 

 lw    R4, 8(R1)

Source: H&P textbook
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 lw    R1, 8(R2) 

 sw    R1, 8(R3)

Source: H&P textbook

Example
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• For the 5-stage pipeline, bypassing can eliminate delays
   between the following example pairs of instructions:
        add/sub             R1, R2, R3
        add/sub/lw/sw   R4, R1, R5

        lw        R1, 8(R2)
        sw       R1, 4(R3)

• The following pairs of instructions will have intermediate
   stalls:
         lw                    R1, 8(R2)
        add/sub/lw      R3, R1, R4       or   sw   R3, 8(R1)

         fmul       F1, F2, F3
         fadd       F5, F1, F4

Summary



Control hazards
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Hazards

●  Structural hazards

●  Data hazards

●  Control hazards
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Control Hazards

• Simple techniques to handle control hazard stalls:
 for every branch, introduce a stall cycle (note: every
    6th instruction is a branch on average!)
 assume the branch is not taken and start fetching the
    next instruction – if the branch is taken, need hardware
    to cancel the effect of the wrong-path instructions
 predict the next PC and fetch that instr – if the prediction
    is wrong, cancel the effect of the wrong-path instructions
 fetch the next instruction (branch delay slot) and
    execute it anyway – if the instruction turns out to be
    on the correct path, useful work was done – if the
    instruction turns out to be on the wrong path,
    hopefully program state is not lost
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Branch delay slot



Branch prediction
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Control Hazards

•  Simple techniques to handle control hazard stalls:
 for every branch, introduce a stall cycle (note: every

    6th instruction is a branch!)
 assume the branch is not taken and start fetching the

    next instruction – if the branch is taken, need hardware
    to cancel the effect of the wrong-path instruction

 fetch the next instruction (branch delay slot) and
    execute it anyway – if the instruction turns out to be
    on the correct path, useful work was done – if the
    instruction turns out to be on the wrong path,
    hopefully program state is not lost
 make a smarter guess and fetch instructions from the
     expected target
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Branch Delay Slots

Source: H&P textbook
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● Pipeline without Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-target

PC + 4

In the 5-stage pipeline, a branch completes in two cycles 
If the branch went the wrong way, one incorrect instr is fetched 
One stall cycle per incorrect branch
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● Pipeline with Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-target

In the 5-stage pipeline, a branch completes in two cycles 
If the branch went the wrong way, one incorrect instr is fetched 
One stall cycle per incorrect branch

Branch
Predictor
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● 1-Bit Bimodal Prediction

• For each branch, keep track of what happened last time
  and use that outcome as the prediction

• What are prediction accuracies for branches 1 and 2 below:

     while (1) {
            for (i=0;i<10;i++) {                     branch-1
                …
            }
            for (j=0;j<20;j++) {                     branch-2
               …
            }
     }
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● 2-Bit Bimodal Prediction

• For each branch, maintain a 2-bit saturating counter:
   if the branch is taken: counter = min(3,counter+1)
   if the branch is not taken: counter = max(0,counter-1)

• If (counter >= 2), predict taken, else predict not taken

• Advantage: a few atypical branches will not influence the
  prediction (a better measure of “the common case”)

• Especially useful when multiple branches share the same
  counter (some bits of the branch PC are used to index
  into the branch predictor)

• Can be easily extended to N-bits (in most processors, N=2)
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Bimodal Predictor

Branch PC

14 bits
Table of

16K entries
of 2-bit

saturating
counters
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Multicycle Instructions

•  Multiple parallel pipelines – each pipeline can have a different
   number of stages

•  Instructions can now complete out of order – must make sure
   that writes to a register happen in the correct order 
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● The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2



● Logical and physical registers
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● Managing Register Names

Logical
Registers
R1-R32

Physical
Registers
P1-P64

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34

At the start, R1-R32 can be found in P1-P32
Instructions stop entering the pipeline when P64 is assigned

What happens on commit?

Temporary values are stored in the register file and not the ROB
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● The Commit Process

• On commit, no copy is required

• The register map table is updated – the “committed” value
  of R1 is now in P33 and not P1 – on an exception, P33 is
  copied to memory and not P1

• An instruction in the issue queue need not modify its
  input operand when the producer commits

• When instruction-1 commits, we no longer have any use
  for P1 – it is put in a free pool and a new instruction can
  now enter the pipeline  for every instr that commits, a
  new instr can enter the pipeline  number of in-flight 
  instrs is a constant = number of extra (rename) registers
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● Additional Details

• When does the decode stage stall?  When we either run
   out of registers, or ROB entries, or issue queue entries

• Issue width: the number of instructions handled by each
  stage in a cycle.  High issue width  high peak ILP

• Window size: the number of in-flight instructions in the
   pipeline.  Large window size  high ILP

• No more WAR and WAW hazards because of rename
  registers – must only worry about RAW hazards
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● The Alpha 21264 Out-of-Order 
Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2
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● Additional 
Details
• When does the decode stage stall?  When we either run
   out of registers, or ROB entries, or issue queue entries

• Issue width: the number of instructions handled by each
  stage in a cycle.  High issue width  high peak ILP

• Window size: the number of in-flight instructions in the
   pipeline.  Large window size  high ILP

• No more WAR and WAW hazards because of rename
  registers – must only worry about RAW hazards
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● The Alpha 21264 Out-of-Order 
Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2



  

Caches
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Cache Hierarchies

•  Data and instructions are stored on DRAM chips – DRAM
   is a technology that has high bit density, but relatively poor
   latency – an access to data in memory can take as many
   as 300 cycles today!

•  Hence, some data is stored on the processor in a structure
   called the cache – caches employ SRAM technology, which
   is faster, but has lower bit density

•  Internet browsers also cache web pages – same concept
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Memory Hierarchy

•  As you go further, capacity and latency increase

Registers
1KB

1 cycle

L1 data or
instruction

Cache
32KB

2 cycles

L2 cache
2MB

15 cycles

Memory
16GB

300 cycles
Disk
1 TB

10M cycles
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Locality

•  Why do caches work?
  Temporal locality: if you used some data recently, you

   will likely use it again
  Spatial locality: if you used some data recently, you

   will likely access its neighbors

•  No hierarchy: average access time for data = 300 cycles

•  32KB 1-cycle L1 cache that has a hit rate of 95%: 
                        average access time = 0.95 x 1 + 0.05 x (301)
                                                             = 16 cycles
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Accessing the Cache

8-byte words

                                 101000

Direct-mapped cache:
each address maps to

a unique location in cache

8 words: 3 index bits

Byte address

Data array

Sets

Offset
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The Tag Array

8-byte words

                                  101000

Direct-mapped cache:
each address maps to

a unique address

Byte address

Tag

Compare

Data arrayTag array
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Example Access Pattern

8-byte words

                                  101000

Direct-mapped cache:
each address maps to

a unique address

Byte address

Tag

Compare

Data arrayTag array

Assume that addresses are 8 bits long
How many of the following address requests
are hits/misses?
4, 7, 10, 13, 16, 68, 73, 78, 83, 88, 4, 7, 10…
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Increasing Line Size

32-byte cache
line size or 
block size

                               10100000

Byte address

Tag

Data arrayTag array

Offset

A large cache line size  smaller tag array,
fewer misses because of spatial locality
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Associativity

                         10100000

Byte address

Tag

Data arrayTag array

Set associativity  fewer conflicts; wasted power
 because multiple data and tags are read

Way-1 Way-2

Compare
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Associativity

                         10100000

Byte address

Tag

Data arrayTag array

How many offset/index/tag bits if the cache has
64 sets,

each set has 64 bytes,
4 ways

Way-1 Way-2

Compare



  

Memory and virtual memory



  

Paging



  

Pages



  

Pages



  

Paging idea

● Break up memory into 4096-byte chunks called 
pages
● Modern hardware supports 2MB, 4MB, and 1GB pages

● Independently control mapping for each page of 
linear address space

● Compare with segmentation (single base + limit)
● many more degrees of freedom



  

How can we build this translation 
mechanism?



  

Paging: naive approach: translation array

● Virtual address 0x410010



  

What is wrong? 



  

What is wrong? 

● We need 4 bytes to relocate each page
● 20 bits for physical page number
● 12 bits of access flags

● Therefore, we need array of 4 bytes x 1M entries
– 4MBs



  

Paging: page table



  



  



  



  



  



  

● Result: 
● EAX = 55



  

Cache-coherence
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Snooping-Based Protocols

•  Three states for a block: invalid, shared, modified
•  A write is placed on the bus and sharers invalidate themselves
•  The protocols are referred to as MSI, MESI, etc.

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System
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Example

•  P1 reads X: not found in cache-1, request sent on bus, memory responds,
   X is placed in cache-1 in shared state
•  P2 reads X: not found in cache-2, request sent on bus, everyone snoops
   this request, cache-1does nothing because this is just a read request,
   memory responds, X is placed in cache-2 in shared state

P1

Cache-1

P2

Cache-2

Main Memory

•  P1 writes X: cache-1 has data in shared
   state (shared only provides read perms),
   request sent on bus, cache-2 snoops and
   then invalidates its copy of X, cache-1
   moves its state to modified
•  P2 reads X: cache-2 has data in invalid
   state, request sent on bus, cache-1 snoops
   and realizes it has the only valid copy, so it
   downgrades itself to shared state and
   responds with data, X is placed in cache-2
   in shared state, memory is also updated
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Example

Request Cache
Hit/Miss

Request
on the bus

Who responds State in 
Cache 1

State in 
Cache 2

State in 
Cache 3

State in 
Cache 4

Inv Inv Inv Inv

P1: Rd X Miss Rd X Memory S Inv Inv Inv

P2: Rd X Miss Rd X Memory S S Inv Inv

P2: Wr X Perms 
Miss

Upgrade X No response.
Other caches 

invalidate.

Inv M Inv Inv

P3: Wr X Write 
Miss

Wr X P2 responds Inv Inv M Inv

P3: Rd X Read Hit - - Inv Inv M Inv

P4: Rd X Read 
Miss

Rd X P3 responds. 
Mem wrtbk

Inv Inv S S



  

Before midterm



Simple program: String Copy 
● MIPS code:
strcpy:
    addi $sp, $sp, -4      # adjust stack for 1 item
    sw   $s0, 0($sp)       # save $s0
    add  $s0, $zero, $zero # i = 0
L1: add  $t1, $s0, $a1     # addr of y[i] in $t1
    lbu  $t2, 0($t1)       # $t2 = y[i]
    add  $t3, $s0, $a0     # addr of x[i] in $t3
    sb   $t2, 0($t3)       # x[i] = y[i]
    beq  $t2, $zero, L2    # exit loop if y[i] == 0  
    addi $s0, $s0, 1       # i = i + 1
    j    L1                # next iteration of loop
L2: lw   $s0, 0($sp)       # restore saved $s0
    addi $sp, $sp, 4       # pop 1 item from stack
    jr   $ra               # and return



● Where is this program stored?
● How does it get executed?
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Instruction Fetch

32-bit 
register

Increment by 4 
for next 

instruction



Three types of instructions

● R-Type
● Add, and, jr, nor, or, slt, sll, sub

● I-Type
● addi, beq, bne, lw (and other loads), ori, slti, sw 

(and other stores)
● J-Type

● j, jal



Fits on one page



Three types of instructions

● R-Type

● I-Type

● J-Type

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits
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Datapath With Control
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Datapath With Jumps Added



How do we get from high-level languages to MIPS 
instructions?



The HW/SW Interface

Hardware

Systems software
(OS, compiler)

Application software
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Translation and Startup

Many compilers produce 
object modules directly

Static linking

§2.12 T
ranslat ing and  S

tartin g a P
ro gram



If then .. else … 

if (i == j) f = g + h; else f = g – h;
● Assume that f,g, h, i, and j are in $s0, $s1, etc.



If then .. else … 

if (i == j) f = g + h; else f = g – h;
● Assume that f,g, h, i, and j are in $s0, $s1, etc.

     bne $s3,$s4,Else # go to Else if i  j≠ j

     add $s0,$s1,$s2  # f = g + h (skipped if i  j)≠ j

     j Exit           # unconditional jump to Exit

Else:

     sub $s0,$s1,$s2  # f = g – h (skipped if i = j)

Exit:



Loops

while (save[i] == k)

    i += 1;
● Assume that i and k are in $s3 and $s5



Loops

while (save[i] == k)

    i += 1;
● Assume that i and k are in $s3 and $s5

Loop: sll $t1,$s3,2

      add $t1,$t1,$s6   # $t1 = address of save[i]

      lw $t0,0($t1)     # Temp reg $t0 = save[i]

      bne $t0,$s5, Exit # go to Exit if save[i]  k≠ j

      addi $s3,$s3,1    # i = i + 1

      j Loop            # go to Loop

Exit:



Procedures



  

Calling functions

// some code...
foo();
// more code..

● $ra contains information 
for how to return from a 
subroutine 
● i.e., from foo()

● Functions can be called 
from different places in the 
program

       if (a == 0) {
        foo();
        …

    } else {

        foo();

        …

    }
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Procedure Call Instructions
● Procedure call: jump and link
jal ProcedureLabel

● Address of following instruction put in $ra
● Jumps to target address

● Procedure return: jump register
jr $ra

● Copies $ra to program counter
● Can also be used for computed jumps

– e.g., for case/switch statements



  

Calling conventions

● Goal: re-entrant programs
● How to pass arguments

– On the stack? 
– In registers?

● How to return values
– On the stack? 
– In registers?  

● What registers have to be preserved
– All? Some subset?

● Conventions differ from compiler, optimizations, etc.



  

Passing arguments

● First 4 arguments in registers
● $a0 - $a3

● Other arguments on the stack
● Return values in registers

● $v0 - $v1



  

Preserving registers
● $t0 – $t9: temporaries

● Can be overwritten by callee
● $s0 – $s7: saved

● Must be saved/restored by callee
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Leaf Procedure Example
● C code:
int leaf_example (int g, h, i, j)
{ int f;
  f = (g + h) - (i + j);
  return f;
}

● Arguments g, …, j in $a0, …, $a3
● f in $s0 (hence, need to save $s0 on stack)
● Result in $v0
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Leaf Procedure Example
● MIPS code:
leaf_example:
  addi $sp, $sp, -4
  sw   $s0, 0($sp)
  add  $t0, $a0, $a1
  add  $t1, $a2, $a3
  sub  $s0, $t0, $t1
  add  $v0, $s0, $zero
  lw   $s0, 0($sp)
  addi $sp, $sp, 4
  jr   $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return



  

Recursive invocations

foo(int a) {
    if (a == 0)
        return;
    a--;
    foo(a);
    return;
}

foo(4);
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Non-Leaf Procedures
● Procedures that call other procedures
● For nested call, caller needs to save on 

the stack:
● Its return address
● Any arguments and temporaries needed after 

the call
● Restore from the stack after the call
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Non-Leaf Procedure Example
● C code:
int fact (int n)
{ 
  if (n < 1) return f;
  else return n * fact(n - 1);
}

● Argument n in $a0
● Result in $v0



Non-Leaf Procedure Example
● MIPS code:
fact:
    addi $sp, $sp, -8     # adjust stack for 2 items
    sw   $ra, 4($sp)      # save return address
    sw   $a0, 0($sp)      # save argument
    slti $t0, $a0, 1      # test for n < 1
    beq  $t0, $zero, L1
    addi $v0, $zero, 1    # if so, result is 1
    addi $sp, $sp, 8      #   pop 2 items from stack
    jr   $ra              #   and return
L1: addi $a0, $a0, -1     # else decrement n  
    jal  fact             # recursive call
    lw   $a0, 0($sp)      # restore original n
    lw   $ra, 4($sp)      #   and return address
    addi $sp, $sp, 8      # pop 2 items from stack
    mul  $v0, $a0, $v0    # multiply to get result
    jr   $ra              # and return



Calling convention (again)



Chapter 2 — Instructions: Language of the Computer — 116

Translation and Startup

Many compilers produce 
object modules directly

Static linking

§2.12 T
ranslat ing and  S

tartin g a P
ro gram
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Translation and Startup

Many compilers produce 
object modules directly

Static linking

§2.12 T
ranslat ing and  S

tartin g a P
ro gram
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Translation and Startup

Many compilers produce 
object modules directly

Static linking

§2.12 T
ranslat ing and  S

tartin g a P
ro gram
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Translation and Startup

Many compilers produce 
object modules directly

Static linking
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Relocation
(What needs to be done to move the program in 

memory?)



  

What types of variables do you 
know? 

● Or where these variables are allocated in 
memory?



  

What types of variables do you 
know? 

● Global variables
● Initialized → data section
● Uninitalized → BSS

● Dynamic variables
● Heap

● Local variables
● Stack



  

Global variables

1. #include <stdio.h>
2.
3. char hello[] = "Hello";
4. int main(int ac, char **av)
5. {
6.     static char world[] = "world!";
7.     printf("%s %s\n", hello, world);
8.     return 0;
9. }



  

Global variables

1. #include <stdio.h>
2.
3. char hello[] = "Hello";
4. int main(int ac, char **av)
5. {
6.     static char world[] = "world!";
7.     printf("%s %s\n", hello, world);
8.     return 0;
9. }
● Allocated in the data section

● It is split in initialized (non-zero), and non-initialized (zero)
● As well as read/write, and read only data section



  

Global variables



  

Dynamic variables (heap)

1. #include <stdio.h>
2. #include <string.h>
3. #include <stdlib.h>
4.
5. char hello[] = "Hello";
6. int main(int ac, char **av)
7. {   
8.     char world[] = "world!";
9.     char *str = malloc(64); 
10.     memcpy(str, "beautiful", 64);
11.     printf("%s %s %s\n", hello, str, world);
12.     return 0;
13. }



  

Dynamic variables (heap)

1. #include <stdio.h>
2. #include <string.h>
3. #include <stdlib.h>
4.
5. char hello[] = "Hello";
6. int main(int ac, char **av)
7. {   
8.     char world[] = "world!";
9.     char *str = malloc(64); 
10.     memcpy(str, "beautiful", 64);
11.     printf("%s %s %s\n", hello, str, world);
12.     return 0;
13. }
● Allocated on the heap

● Special area of memory provided by the OS from where malloc() can allocate memory



  

Local variables

● Local variables

1. #include <stdio.h>
2.
3. char hello[] = "Hello";
4. int main(int ac, char **av)
5. {
6.     //static char world[] = "world!";
7.     char world[] = "world!";
8.     printf("%s %s\n", hello, world);
9.     return 0;
10. }



  

  1 # "Hello World" in MIPS assembly
  2 # From: http://labs.cs.upt.ro/labs/so2/html/resources/nachos-doc/mipsf.html
  3 
  4 # All program code is placed after the
  5 # .text assembler directive
  6 .text
  7 
  8 # Declare main as a global function
  9 .globl  main
 10 
 11 # The label 'main' represents the starting point
 12 main:
 13         # Run the print_string syscall which has code 4
 14         li      $v0,4           # Code for syscall: print_string
 15         la      $a0, msg        # Pointer to string (load the address of msg)
 16         syscall
 17         li      $v0,10          # Code for syscall: exit
 18         syscall
 19 
 20 # All memory structures are placed after the
 21 # .data assembler directive
 22         .data
 23 
 24         # The .asciiz assembler directive creates
 25         # an ASCII string in memory terminated by
 26         # the null character. Note that strings are
 27         # surrounded by double-quotes
 28 msg:    .asciiz "Hello World!\n"



  

User Text Segment [00400000]..[00440000]

[00400000] 8fa40000  lw $4, 0($29)            ; 183: lw $a0 0($sp) # argc 
[00400004] 27a50004  addiu $5, $29, 4         ; 184: addiu $a1 $sp 4 # argv 
[00400008] 24a60004  addiu $6, $5, 4          ; 185: addiu $a2 $a1 4 # envp 
[0040000c] 00041080  sll $2, $4, 2            ; 186: sll $v0 $a0 2 
[00400010] 00c23021  addu $6, $6, $2          ; 187: addu $a2 $a2 $v0 
[00400014] 0c100009  jal 0x00400024 [main]    ; 188: jal main 
[00400018] 00000000  nop                      ; 189: nop 
[0040001c] 3402000a  ori $2, $0, 10           ; 191: li $v0 10 
[00400020] 0000000c  syscall                  ; 192: syscall # syscall 10 (exit) 
[00400024] 34020004  ori $2, $0, 4            ; 14: li $v0,4 # Code for syscall: 
                                              ; print_string 
[00400028] 3c011001  lui $1, 4097 [msg]       ; 15: la $a0, msg # Pointer to string 
                                              ; (load the address of msg) 
[0040002c] 34240000  ori $4, $1, 0 [msg]      
[00400030] 0000000c  syscall                  ; 16: syscall 
[00400034] 3402000a  ori $2, $0, 10           ; 17: li $v0,10 # Code for syscall:   
                                              ; exit 
[00400038] 0000000c  syscall                  ; 18: syscall 

What needs to be relocated?



  

User Text Segment [00400000]..[00440000]

[00400000] 8fa40000  lw $4, 0($29)            ; 183: lw $a0 0($sp) # argc 
[00400004] 27a50004  addiu $5, $29, 4         ; 184: addiu $a1 $sp 4 # argv 
[00400008] 24a60004  addiu $6, $5, 4          ; 185: addiu $a2 $a1 4 # envp 
[0040000c] 00041080  sll $2, $4, 2            ; 186: sll $v0 $a0 2 
[00400010] 00c23021  addu $6, $6, $2          ; 187: addu $a2 $a2 $v0 
[00400014] 0c100009  jal 0x00400024 [main]    ; 188: jal main 
[00400018] 00000000  nop                      ; 189: nop 
[0040001c] 3402000a  ori $2, $0, 10           ; 191: li $v0 10 
[00400020] 0000000c  syscall                  ; 192: syscall # syscall 10 (exit) 
[00400024] 34020004  ori $2, $0, 4            ; 14: li $v0,4 # Code for syscall: 
                                              ; print_string 
[00400028] 3c011001  lui $1, 4097 [msg]       ; 15: la $a0, msg # Pointer to string 
                                              ; (load the address of msg) 
[0040002c] 34240000  ori $4, $1, 0 [msg]      
[00400030] 0000000c  syscall                  ; 16: syscall 
[00400034] 3402000a  ori $2, $0, 10           ; 17: li $v0,10 # Code for syscall:   
                                              ; exit 
[00400038] 0000000c  syscall                  ; 18: syscall 

What needs to be relocated?
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Memory layout of a process



  

Where do these areas come from?



  

Memory layout of a process

Compiler and linker

OS kernel



  

Load program in memory
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Thank you!
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