
  

CS/EE 3810: Computer 
Organization

Lecture 19: Final Recap

Anton Burtsev
December

, 2022



Chapter 4 — The Processor — 2

MIPS Datapath





4

Designing a Latch

• An S-R latch: set-reset latch
 When Set is high, a 1 is stored
 When Reset is high, a 0 is stored
 When both are low, the previous state is preserved (hence,
   known as a storage or memory element)
 Both are high – this set of inputs is not allowed

Verify the above behavior!

Source: H&P textbook



5

D Latch

• Incorporates a clock

• The value of the input D signal (data) is stored only when the clock
  is high – the previous state is preserved when the clock is low

Source: H&P textbook



6

D Flip Flop

• Terminology:
   Latch: outputs can change any time the clock is high (asserted) 
   Flip flop: outputs can change only on a clock edge

• Two D latches in series – ensures that a value is stored only on
   the falling edge of the clock

Source: H&P textbook



Register file

● Two read ports
● One write port



Register file (read ports)

● Build from D-flops
● Read ports

● Multiplexors
● N-to-1, 32bit wide



9

Common Logic Blocks – Multiplexor

• Multiplexor or selector: one of N inputs is reflected on the
  output depending on the value of the log2N selector bits

    

                                 2-input mux
Source: H&P textbook



Register file (write ports)

● Decoder



11

Common Logic Blocks – Decoder

Takes in N inputs and activates one of 2N outputs

I0    I1     I2                O0   O1   O2   O3   O4   O5   O6   O7

0    0     0                  1     0     0     0     0     0     0      0
0    0     1                  0     1     0     0     0     0     0      0
0    1     0                  0     0     1     0     0     0     0      0
0    1     1                  0     0     0     1     0     0     0      0
1    0     0                  0     0     0     0     1     0     0      0
1    0     1                  0     0     0     0     0     1     0      0
1    1     0                  0     0     0     0     0     0     1      0
1    1     1                  0     0     0     0     0     0     0      1

3-to-8
Decoder

I0-2 O0-7



Register file (write ports)

● What if we 
read and write 
the register in 
the same 
cycle?

● add $s0, $s0, $s1



Chapter 4 — The Processor — 13

MIPS Datapath



Pipelining



15

Building a Car

Time



16

Building a Car

Start and finish a job before moving to the next

Time

Jobs

Unpipelined



17

The Assembly Line

A

Time

Jobs

Pipelined

B C

A B C

A B C

A B C

Break the job into smaller stages



18

Performance Improvements?

 Does it take longer to finish each individual job?

 Does it take shorter to finish a series of jobs?

 What assumptions were made while answering  these  questions?

Is a 10-stage pipeline better than a 5-stage pipeline?



Quantitative Effects

●  As a result of pipelining:
● Time in ns per instruction goes up
● Each instruction takes more cycles to execute
● But… average CPI remains roughly the same
● Clock speed goes up
● Total execution time goes down, resulting in lower average 

time per instruction
● Under ideal conditions, speedup 

= ratio of elapsed times between successive instruction completions 

= number of pipeline stages = increase in clock speed



20

Clocks and Latches

Stage 1 Stage 2



21

Clocks and Latches

Stage 1 Stage 2L

Clk

L



22

Some Equations

• Unpipelined: time to execute one instruction = T + Tovh

• For an N-stage pipeline, time per stage = T/N + Tovh

• Total time per instruction = N (T/N + Tovh) = T + N Tovh

• Clock cycle time = T/N + Tovh

• Clock speed = 1 / (T/N + Tovh)
• Ideal speedup = (T + Tovh) / (T/N + Tovh)
• Cycles to complete one instruction = N
• Average CPI (cycles per instr) = 1



Hazards



24

A 5-Stage Pipeline

Source: H&P textbook



25

Hazards

• Structural hazards: different instructions in different stages
  (or the same stage) conflicting for the same resource

• Data hazards: an instruction cannot continue because it
  needs a value that has not yet been generated by an
  earlier instruction

• Control hazard: fetch cannot continue because it does
  not know the outcome of an earlier branch – special case
  of a data hazard – separate category because they are
  treated in different ways



Structural hazards



27

A 5-Stage Pipeline

Source: H&P textbook



28

Structural Hazards

• Example: a unified instruction and data cache 
  stage 4 (MEM) and stage 1 (IF) can never coincide

• The later instruction and all its successors are delayed
  until a cycle is found when the resource is free  these
  are pipeline bubbles

• Structural hazards are easy to eliminate – increase the
  number of resources (for example, implement a separate
  instruction and data cache)



Data hazards



30

A 5-Stage Pipeline

Source: H&P textbook



31

Pipeline Implementation

• Signals for the muxes have to be generated – some of this can happen during ID
• Need look-up tables to identify situations that merit bypassing/stalling – the 
  number of inputs to the muxes goes up



32

Example

add   R1, R2, R3

lw      R4, 8(R1)

Source: H&P textbook



33

Example

 lw    R1, 8(R2) 

 lw    R4, 8(R1)

Source: H&P textbook



34

 lw    R1, 8(R2) 

 sw    R1, 8(R3)

Source: H&P textbook

Example



35

• For the 5-stage pipeline, bypassing can eliminate delays
   between the following example pairs of instructions:
        add/sub             R1, R2, R3
        add/sub/lw/sw   R4, R1, R5

        lw        R1, 8(R2)
        sw       R1, 4(R3)

• The following pairs of instructions will have intermediate
   stalls:
         lw                    R1, 8(R2)
        add/sub/lw      R3, R1, R4       or   sw   R3, 8(R1)

         fmul       F1, F2, F3
         fadd       F5, F1, F4

Summary



Control hazards



37

Hazards

●  Structural hazards

●  Data hazards

●  Control hazards



38

Control Hazards

• Simple techniques to handle control hazard stalls:
 for every branch, introduce a stall cycle (note: every
    6th instruction is a branch on average!)
 assume the branch is not taken and start fetching the
    next instruction – if the branch is taken, need hardware
    to cancel the effect of the wrong-path instructions
 predict the next PC and fetch that instr – if the prediction
    is wrong, cancel the effect of the wrong-path instructions
 fetch the next instruction (branch delay slot) and
    execute it anyway – if the instruction turns out to be
    on the correct path, useful work was done – if the
    instruction turns out to be on the wrong path,
    hopefully program state is not lost



39

Branch delay slot



Branch prediction



41

Control Hazards

•  Simple techniques to handle control hazard stalls:
 for every branch, introduce a stall cycle (note: every

    6th instruction is a branch!)
 assume the branch is not taken and start fetching the

    next instruction – if the branch is taken, need hardware
    to cancel the effect of the wrong-path instruction

 fetch the next instruction (branch delay slot) and
    execute it anyway – if the instruction turns out to be
    on the correct path, useful work was done – if the
    instruction turns out to be on the wrong path,
    hopefully program state is not lost
 make a smarter guess and fetch instructions from the
     expected target



42

Branch Delay Slots

Source: H&P textbook



43

● Pipeline without Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-target

PC + 4

In the 5-stage pipeline, a branch completes in two cycles 
If the branch went the wrong way, one incorrect instr is fetched 
One stall cycle per incorrect branch



44

● Pipeline with Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-target

In the 5-stage pipeline, a branch completes in two cycles 
If the branch went the wrong way, one incorrect instr is fetched 
One stall cycle per incorrect branch

Branch
Predictor



45

● 1-Bit Bimodal Prediction

• For each branch, keep track of what happened last time
  and use that outcome as the prediction

• What are prediction accuracies for branches 1 and 2 below:

     while (1) {
            for (i=0;i<10;i++) {                     branch-1
                …
            }
            for (j=0;j<20;j++) {                     branch-2
               …
            }
     }



46

● 2-Bit Bimodal Prediction

• For each branch, maintain a 2-bit saturating counter:
   if the branch is taken: counter = min(3,counter+1)
   if the branch is not taken: counter = max(0,counter-1)

• If (counter >= 2), predict taken, else predict not taken

• Advantage: a few atypical branches will not influence the
  prediction (a better measure of “the common case”)

• Especially useful when multiple branches share the same
  counter (some bits of the branch PC are used to index
  into the branch predictor)

• Can be easily extended to N-bits (in most processors, N=2)



47

Bimodal Predictor

Branch PC

14 bits
Table of

16K entries
of 2-bit

saturating
counters



48

Multicycle Instructions

•  Multiple parallel pipelines – each pipeline can have a different
   number of stages

•  Instructions can now complete out of order – must make sure
   that writes to a register happen in the correct order 



49

● The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2



● Logical and physical registers



51

● Managing Register Names

Logical
Registers
R1-R32

Physical
Registers
P1-P64

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34

At the start, R1-R32 can be found in P1-P32
Instructions stop entering the pipeline when P64 is assigned

What happens on commit?

Temporary values are stored in the register file and not the ROB



52

● The Commit Process

• On commit, no copy is required

• The register map table is updated – the “committed” value
  of R1 is now in P33 and not P1 – on an exception, P33 is
  copied to memory and not P1

• An instruction in the issue queue need not modify its
  input operand when the producer commits

• When instruction-1 commits, we no longer have any use
  for P1 – it is put in a free pool and a new instruction can
  now enter the pipeline  for every instr that commits, a
  new instr can enter the pipeline  number of in-flight 
  instrs is a constant = number of extra (rename) registers



53

● Additional Details

• When does the decode stage stall?  When we either run
   out of registers, or ROB entries, or issue queue entries

• Issue width: the number of instructions handled by each
  stage in a cycle.  High issue width  high peak ILP

• Window size: the number of in-flight instructions in the
   pipeline.  Large window size  high ILP

• No more WAR and WAW hazards because of rename
  registers – must only worry about RAW hazards



54

● The Alpha 21264 Out-of-Order 
Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2



55

● Additional 
Details
• When does the decode stage stall?  When we either run
   out of registers, or ROB entries, or issue queue entries

• Issue width: the number of instructions handled by each
  stage in a cycle.  High issue width  high peak ILP

• Window size: the number of in-flight instructions in the
   pipeline.  Large window size  high ILP

• No more WAR and WAW hazards because of rename
  registers – must only worry about RAW hazards



56

● The Alpha 21264 Out-of-Order 
Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2



  

Caches



58

Cache Hierarchies

•  Data and instructions are stored on DRAM chips – DRAM
   is a technology that has high bit density, but relatively poor
   latency – an access to data in memory can take as many
   as 300 cycles today!

•  Hence, some data is stored on the processor in a structure
   called the cache – caches employ SRAM technology, which
   is faster, but has lower bit density

•  Internet browsers also cache web pages – same concept



59

Memory Hierarchy

•  As you go further, capacity and latency increase

Registers
1KB

1 cycle

L1 data or
instruction

Cache
32KB

2 cycles

L2 cache
2MB

15 cycles

Memory
16GB

300 cycles
Disk
1 TB

10M cycles



60

Locality

•  Why do caches work?
  Temporal locality: if you used some data recently, you

   will likely use it again
  Spatial locality: if you used some data recently, you

   will likely access its neighbors

•  No hierarchy: average access time for data = 300 cycles

•  32KB 1-cycle L1 cache that has a hit rate of 95%: 
                        average access time = 0.95 x 1 + 0.05 x (301)
                                                             = 16 cycles



61

Accessing the Cache

8-byte words

                                 101000

Direct-mapped cache:
each address maps to

a unique location in cache

8 words: 3 index bits

Byte address

Data array

Sets

Offset



62

The Tag Array

8-byte words

                                  101000

Direct-mapped cache:
each address maps to

a unique address

Byte address

Tag

Compare

Data arrayTag array



63

Example Access Pattern

8-byte words

                                  101000

Direct-mapped cache:
each address maps to

a unique address

Byte address

Tag

Compare

Data arrayTag array

Assume that addresses are 8 bits long
How many of the following address requests
are hits/misses?
4, 7, 10, 13, 16, 68, 73, 78, 83, 88, 4, 7, 10…



64

Increasing Line Size

32-byte cache
line size or 
block size

                               10100000

Byte address

Tag

Data arrayTag array

Offset

A large cache line size  smaller tag array,
fewer misses because of spatial locality



65

Associativity

                         10100000

Byte address

Tag

Data arrayTag array

Set associativity  fewer conflicts; wasted power
 because multiple data and tags are read

Way-1 Way-2

Compare



66

Associativity

                         10100000

Byte address

Tag

Data arrayTag array

How many offset/index/tag bits if the cache has
64 sets,

each set has 64 bytes,
4 ways

Way-1 Way-2

Compare



  

Memory and virtual memory



  

Paging



  

Pages



  

Pages



  

Paging idea

● Break up memory into 4096-byte chunks called 
pages
● Modern hardware supports 2MB, 4MB, and 1GB pages

● Independently control mapping for each page of 
linear address space

● Compare with segmentation (single base + limit)
● many more degrees of freedom



  

How can we build this translation 
mechanism?



  

Paging: naive approach: translation array

● Virtual address 0x410010



  

What is wrong? 



  

What is wrong? 

● We need 4 bytes to relocate each page
● 20 bits for physical page number
● 12 bits of access flags

● Therefore, we need array of 4 bytes x 1M entries
– 4MBs



  

Paging: page table



  



  



  



  



  



  

● Result: 
● EAX = 55



  

Cache-coherence



84

Snooping-Based Protocols

•  Three states for a block: invalid, shared, modified
•  A write is placed on the bus and sharers invalidate themselves
•  The protocols are referred to as MSI, MESI, etc.

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System



85

Example

•  P1 reads X: not found in cache-1, request sent on bus, memory responds,
   X is placed in cache-1 in shared state
•  P2 reads X: not found in cache-2, request sent on bus, everyone snoops
   this request, cache-1does nothing because this is just a read request,
   memory responds, X is placed in cache-2 in shared state

P1

Cache-1

P2

Cache-2

Main Memory

•  P1 writes X: cache-1 has data in shared
   state (shared only provides read perms),
   request sent on bus, cache-2 snoops and
   then invalidates its copy of X, cache-1
   moves its state to modified
•  P2 reads X: cache-2 has data in invalid
   state, request sent on bus, cache-1 snoops
   and realizes it has the only valid copy, so it
   downgrades itself to shared state and
   responds with data, X is placed in cache-2
   in shared state, memory is also updated



86

Example

Request Cache
Hit/Miss

Request
on the bus

Who responds State in 
Cache 1

State in 
Cache 2

State in 
Cache 3

State in 
Cache 4

Inv Inv Inv Inv

P1: Rd X Miss Rd X Memory S Inv Inv Inv

P2: Rd X Miss Rd X Memory S S Inv Inv

P2: Wr X Perms 
Miss

Upgrade X No response.
Other caches 

invalidate.

Inv M Inv Inv

P3: Wr X Write 
Miss

Wr X P2 responds Inv Inv M Inv

P3: Rd X Read Hit - - Inv Inv M Inv

P4: Rd X Read 
Miss

Rd X P3 responds. 
Mem wrtbk

Inv Inv S S



  

Before midterm



Simple program: String Copy 
● MIPS code:
strcpy:
    addi $sp, $sp, -4      # adjust stack for 1 item
    sw   $s0, 0($sp)       # save $s0
    add  $s0, $zero, $zero # i = 0
L1: add  $t1, $s0, $a1     # addr of y[i] in $t1
    lbu  $t2, 0($t1)       # $t2 = y[i]
    add  $t3, $s0, $a0     # addr of x[i] in $t3
    sb   $t2, 0($t3)       # x[i] = y[i]
    beq  $t2, $zero, L2    # exit loop if y[i] == 0  
    addi $s0, $s0, 1       # i = i + 1
    j    L1                # next iteration of loop
L2: lw   $s0, 0($sp)       # restore saved $s0
    addi $sp, $sp, 4       # pop 1 item from stack
    jr   $ra               # and return



● Where is this program stored?
● How does it get executed?



Chapter 4 — The Processor — 90

Instruction Fetch

32-bit 
register

Increment by 4 
for next 

instruction



Three types of instructions

● R-Type
● Add, and, jr, nor, or, slt, sll, sub

● I-Type
● addi, beq, bne, lw (and other loads), ori, slti, sw 

(and other stores)
● J-Type

● j, jal



Fits on one page



Three types of instructions

● R-Type

● I-Type

● J-Type

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits



Chapter 4 — The Processor — 94

Datapath With Control



Chapter 4 — The Processor — 95

Datapath With Jumps Added



How do we get from high-level languages to MIPS 
instructions?



The HW/SW Interface

Hardware

Systems software
(OS, compiler)

Application software



Chapter 2 — Instructions: Language of the Computer — 98

Translation and Startup

Many compilers produce 
object modules directly

Static linking

§2.12 T
ranslat ing and  S

tartin g a P
ro gram



If then .. else … 

if (i == j) f = g + h; else f = g – h;
● Assume that f,g, h, i, and j are in $s0, $s1, etc.



If then .. else … 

if (i == j) f = g + h; else f = g – h;
● Assume that f,g, h, i, and j are in $s0, $s1, etc.

     bne $s3,$s4,Else # go to Else if i  j≠ j

     add $s0,$s1,$s2  # f = g + h (skipped if i  j)≠ j

     j Exit           # unconditional jump to Exit

Else:

     sub $s0,$s1,$s2  # f = g – h (skipped if i = j)

Exit:



Loops

while (save[i] == k)

    i += 1;
● Assume that i and k are in $s3 and $s5



Loops

while (save[i] == k)

    i += 1;
● Assume that i and k are in $s3 and $s5

Loop: sll $t1,$s3,2

      add $t1,$t1,$s6   # $t1 = address of save[i]

      lw $t0,0($t1)     # Temp reg $t0 = save[i]

      bne $t0,$s5, Exit # go to Exit if save[i]  k≠ j

      addi $s3,$s3,1    # i = i + 1

      j Loop            # go to Loop

Exit:



Procedures



  

Calling functions

// some code...
foo();
// more code..

● $ra contains information 
for how to return from a 
subroutine 
● i.e., from foo()

● Functions can be called 
from different places in the 
program

       if (a == 0) {
        foo();
        …

    } else {

        foo();

        …

    }



Chapter 2 — Instructions: Language of the Computer — 105

Procedure Call Instructions
● Procedure call: jump and link
jal ProcedureLabel

● Address of following instruction put in $ra
● Jumps to target address

● Procedure return: jump register
jr $ra

● Copies $ra to program counter
● Can also be used for computed jumps

– e.g., for case/switch statements



  

Calling conventions

● Goal: re-entrant programs
● How to pass arguments

– On the stack? 
– In registers?

● How to return values
– On the stack? 
– In registers?  

● What registers have to be preserved
– All? Some subset?

● Conventions differ from compiler, optimizations, etc.



  

Passing arguments

● First 4 arguments in registers
● $a0 - $a3

● Other arguments on the stack
● Return values in registers

● $v0 - $v1



  

Preserving registers
● $t0 – $t9: temporaries

● Can be overwritten by callee
● $s0 – $s7: saved

● Must be saved/restored by callee



Chapter 2 — Instructions: Language of the Computer — 109

Leaf Procedure Example
● C code:
int leaf_example (int g, h, i, j)
{ int f;
  f = (g + h) - (i + j);
  return f;
}

● Arguments g, …, j in $a0, …, $a3
● f in $s0 (hence, need to save $s0 on stack)
● Result in $v0



Chapter 2 — Instructions: Language of the Computer — 110

Leaf Procedure Example
● MIPS code:
leaf_example:
  addi $sp, $sp, -4
  sw   $s0, 0($sp)
  add  $t0, $a0, $a1
  add  $t1, $a2, $a3
  sub  $s0, $t0, $t1
  add  $v0, $s0, $zero
  lw   $s0, 0($sp)
  addi $sp, $sp, 4
  jr   $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return



  

Recursive invocations

foo(int a) {
    if (a == 0)
        return;
    a--;
    foo(a);
    return;
}

foo(4);



Chapter 2 — Instructions: Language of the Computer — 112

Non-Leaf Procedures
● Procedures that call other procedures
● For nested call, caller needs to save on 

the stack:
● Its return address
● Any arguments and temporaries needed after 

the call
● Restore from the stack after the call



Chapter 2 — Instructions: Language of the Computer — 113

Non-Leaf Procedure Example
● C code:
int fact (int n)
{ 
  if (n < 1) return f;
  else return n * fact(n - 1);
}

● Argument n in $a0
● Result in $v0



Non-Leaf Procedure Example
● MIPS code:
fact:
    addi $sp, $sp, -8     # adjust stack for 2 items
    sw   $ra, 4($sp)      # save return address
    sw   $a0, 0($sp)      # save argument
    slti $t0, $a0, 1      # test for n < 1
    beq  $t0, $zero, L1
    addi $v0, $zero, 1    # if so, result is 1
    addi $sp, $sp, 8      #   pop 2 items from stack
    jr   $ra              #   and return
L1: addi $a0, $a0, -1     # else decrement n  
    jal  fact             # recursive call
    lw   $a0, 0($sp)      # restore original n
    lw   $ra, 4($sp)      #   and return address
    addi $sp, $sp, 8      # pop 2 items from stack
    mul  $v0, $a0, $v0    # multiply to get result
    jr   $ra              # and return



Calling convention (again)



Chapter 2 — Instructions: Language of the Computer — 116

Translation and Startup

Many compilers produce 
object modules directly

Static linking

§2.12 T
ranslat ing and  S

tartin g a P
ro gram



Chapter 2 — Instructions: Language of the Computer — 117

Translation and Startup

Many compilers produce 
object modules directly

Static linking

§2.12 T
ranslat ing and  S

tartin g a P
ro gram



Chapter 2 — Instructions: Language of the Computer — 118

Translation and Startup

Many compilers produce 
object modules directly

Static linking

§2.12 T
ranslat ing and  S

tartin g a P
ro gram



Chapter 2 — Instructions: Language of the Computer — 119

Translation and Startup

Many compilers produce 
object modules directly

Static linking

§2.12 T
ranslat ing and  S

tartin g a P
ro gram



  



  

Relocation
(What needs to be done to move the program in 

memory?)



  

What types of variables do you 
know? 

● Or where these variables are allocated in 
memory?



  

What types of variables do you 
know? 

● Global variables
● Initialized → data section
● Uninitalized → BSS

● Dynamic variables
● Heap

● Local variables
● Stack



  

Global variables

1. #include <stdio.h>
2.
3. char hello[] = "Hello";
4. int main(int ac, char **av)
5. {
6.     static char world[] = "world!";
7.     printf("%s %s\n", hello, world);
8.     return 0;
9. }



  

Global variables

1. #include <stdio.h>
2.
3. char hello[] = "Hello";
4. int main(int ac, char **av)
5. {
6.     static char world[] = "world!";
7.     printf("%s %s\n", hello, world);
8.     return 0;
9. }
● Allocated in the data section

● It is split in initialized (non-zero), and non-initialized (zero)
● As well as read/write, and read only data section



  

Global variables



  

Dynamic variables (heap)

1. #include <stdio.h>
2. #include <string.h>
3. #include <stdlib.h>
4.
5. char hello[] = "Hello";
6. int main(int ac, char **av)
7. {   
8.     char world[] = "world!";
9.     char *str = malloc(64); 
10.     memcpy(str, "beautiful", 64);
11.     printf("%s %s %s\n", hello, str, world);
12.     return 0;
13. }



  

Dynamic variables (heap)

1. #include <stdio.h>
2. #include <string.h>
3. #include <stdlib.h>
4.
5. char hello[] = "Hello";
6. int main(int ac, char **av)
7. {   
8.     char world[] = "world!";
9.     char *str = malloc(64); 
10.     memcpy(str, "beautiful", 64);
11.     printf("%s %s %s\n", hello, str, world);
12.     return 0;
13. }
● Allocated on the heap

● Special area of memory provided by the OS from where malloc() can allocate memory



  

Local variables

● Local variables

1. #include <stdio.h>
2.
3. char hello[] = "Hello";
4. int main(int ac, char **av)
5. {
6.     //static char world[] = "world!";
7.     char world[] = "world!";
8.     printf("%s %s\n", hello, world);
9.     return 0;
10. }



  

  1 # "Hello World" in MIPS assembly
  2 # From: http://labs.cs.upt.ro/labs/so2/html/resources/nachos-doc/mipsf.html
  3 
  4 # All program code is placed after the
  5 # .text assembler directive
  6 .text
  7 
  8 # Declare main as a global function
  9 .globl  main
 10 
 11 # The label 'main' represents the starting point
 12 main:
 13         # Run the print_string syscall which has code 4
 14         li      $v0,4           # Code for syscall: print_string
 15         la      $a0, msg        # Pointer to string (load the address of msg)
 16         syscall
 17         li      $v0,10          # Code for syscall: exit
 18         syscall
 19 
 20 # All memory structures are placed after the
 21 # .data assembler directive
 22         .data
 23 
 24         # The .asciiz assembler directive creates
 25         # an ASCII string in memory terminated by
 26         # the null character. Note that strings are
 27         # surrounded by double-quotes
 28 msg:    .asciiz "Hello World!\n"



  

User Text Segment [00400000]..[00440000]

[00400000] 8fa40000  lw $4, 0($29)            ; 183: lw $a0 0($sp) # argc 
[00400004] 27a50004  addiu $5, $29, 4         ; 184: addiu $a1 $sp 4 # argv 
[00400008] 24a60004  addiu $6, $5, 4          ; 185: addiu $a2 $a1 4 # envp 
[0040000c] 00041080  sll $2, $4, 2            ; 186: sll $v0 $a0 2 
[00400010] 00c23021  addu $6, $6, $2          ; 187: addu $a2 $a2 $v0 
[00400014] 0c100009  jal 0x00400024 [main]    ; 188: jal main 
[00400018] 00000000  nop                      ; 189: nop 
[0040001c] 3402000a  ori $2, $0, 10           ; 191: li $v0 10 
[00400020] 0000000c  syscall                  ; 192: syscall # syscall 10 (exit) 
[00400024] 34020004  ori $2, $0, 4            ; 14: li $v0,4 # Code for syscall: 
                                              ; print_string 
[00400028] 3c011001  lui $1, 4097 [msg]       ; 15: la $a0, msg # Pointer to string 
                                              ; (load the address of msg) 
[0040002c] 34240000  ori $4, $1, 0 [msg]      
[00400030] 0000000c  syscall                  ; 16: syscall 
[00400034] 3402000a  ori $2, $0, 10           ; 17: li $v0,10 # Code for syscall:   
                                              ; exit 
[00400038] 0000000c  syscall                  ; 18: syscall 

What needs to be relocated?



  

User Text Segment [00400000]..[00440000]

[00400000] 8fa40000  lw $4, 0($29)            ; 183: lw $a0 0($sp) # argc 
[00400004] 27a50004  addiu $5, $29, 4         ; 184: addiu $a1 $sp 4 # argv 
[00400008] 24a60004  addiu $6, $5, 4          ; 185: addiu $a2 $a1 4 # envp 
[0040000c] 00041080  sll $2, $4, 2            ; 186: sll $v0 $a0 2 
[00400010] 00c23021  addu $6, $6, $2          ; 187: addu $a2 $a2 $v0 
[00400014] 0c100009  jal 0x00400024 [main]    ; 188: jal main 
[00400018] 00000000  nop                      ; 189: nop 
[0040001c] 3402000a  ori $2, $0, 10           ; 191: li $v0 10 
[00400020] 0000000c  syscall                  ; 192: syscall # syscall 10 (exit) 
[00400024] 34020004  ori $2, $0, 4            ; 14: li $v0,4 # Code for syscall: 
                                              ; print_string 
[00400028] 3c011001  lui $1, 4097 [msg]       ; 15: la $a0, msg # Pointer to string 
                                              ; (load the address of msg) 
[0040002c] 34240000  ori $4, $1, 0 [msg]      
[00400030] 0000000c  syscall                  ; 16: syscall 
[00400034] 3402000a  ori $2, $0, 10           ; 17: li $v0,10 # Code for syscall:   
                                              ; exit 
[00400038] 0000000c  syscall                  ; 18: syscall 

What needs to be relocated?



Chapter 2 — Instructions: Language of the Computer — 133

Translation and Startup

Many compilers produce 
object modules directly

Static linking

§2.12 T
ranslat ing and  S

tartin g a P
ro gram



  

Memory layout of a process



  

Where do these areas come from?



  

Memory layout of a process

Compiler and linker

OS kernel



  

Load program in memory



Chapter 2 — Instructions: Language of the Computer — 138

Translation and Startup

Many compilers produce 
object modules directly

Static linking

§2.12 T
ranslat ing and  S

tartin g a P
ro gram



Thank you!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Instruction Fetch
	Slide 91
	Slide 92
	Slide 93
	Datapath With Control
	Datapath With Jumps Added
	Slide 96
	Slide 97
	Translation and Startup
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Procedure Call Instructions
	Slide 106
	Slide 107
	Slide 108
	Leaf Procedure Example
	Slide 110
	Slide 111
	Non-Leaf Procedures
	Non-Leaf Procedure Example
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139

