

CS/EE3810: Computer Organization

Lecture 17: Cache-Coherence and
synchronization

Anton Burtsev
November, 2022

Memory organization

3

Memory Organization - I

• Centralized shared-memory multiprocessor or
 Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized
 memory – since all processors see the same memory
 organization uniform memory access (UMA)

• Shared-memory because all processors can access the
 entire memory address space

• Can centralized memory emerge as a bandwidth
 bottleneck? – not if you have large caches and employ
 fewer than a dozen processors

4

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
 of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
 status of that block – all cache controllers monitor the
 shared bus so they can update the sharing status of the
 block, if necessary

 Write-invalidate: a processor gains exclusive access of
 a block before writing by invalidating all other copies
 Write-update: when a processor writes, it updates other
 shared copies of that block

5

Multiprocs -- Memory Organization - I

• Centralized shared-memory multiprocessor or
 Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized
 memory – since all processors see the same memory
 organization uniform memory access (UMA)

• Shared-memory because all processors can access the
 entire memory address space

• Can centralized memory emerge as a bandwidth
 bottleneck? – not if you have large caches and employ
 fewer than a dozen processors

6

Snooping-Based Protocols

• Three states for a block: invalid, shared, modified
• A write is placed on the bus and sharers invalidate themselves
• The protocols are referred to as MSI, MESI, etc.

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

7

Example

• P1 reads X: not found in cache-1, request sent on bus, memory responds,
 X is placed in cache-1 in shared state
• P2 reads X: not found in cache-2, request sent on bus, everyone snoops
 this request, cache-1does nothing because this is just a read request,
 memory responds, X is placed in cache-2 in shared state

P1

Cache-1

P2

Cache-2

Main Memory

• P1 writes X: cache-1 has data in shared
 state (shared only provides read perms),
 request sent on bus, cache-2 snoops and
 then invalidates its copy of X, cache-1
 moves its state to modified
• P2 reads X: cache-2 has data in invalid
 state, request sent on bus, cache-1 snoops
 and realizes it has the only valid copy, so it
 downgrades itself to shared state and
 responds with data, X is placed in cache-2
 in shared state, memory is also updated

8

Example

Request Cache
Hit/Miss

Request
on the bus

Who responds State in
Cache 1

State in
Cache 2

State in
Cache 3

State in
Cache 4

Inv Inv Inv Inv

P1: Rd X Miss Rd X Memory S Inv Inv Inv

P2: Rd X Miss Rd X Memory S S Inv Inv

P2: Wr X Perms
Miss

Upgrade X No response.
Other caches

invalidate.

Inv M Inv Inv

P3: Wr X Write
Miss

Wr X P2 responds Inv Inv M Inv

P3: Rd X Read Hit - - Inv Inv M Inv

P4: Rd X Read
Miss

Rd X P3 responds.
Mem wrtbk

Inv Inv S S

9

Multiprocs -- Memory Organization - II

• For higher scalability, memory is distributed among
 processors distributed memory multiprocessors

• If one processor can directly address the memory local
 to another processor, the address space is shared
 distributed shared-memory (DSM) multiprocessor

• If memories are strictly local, we need messages to
 communicate data cluster of computers or multicomputers

• Non-uniform memory architecture (NUMA) since local
 memory has lower latency than remote memory

10

Distributed Memory Multiprocessors

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

Directory-based protocol

Synchronization

13

Constructing Locks

• Applications have phases (consisting of many instructions)
 that must be executed atomically, without other parallel
 processes modifying the data

• A lock surrounding the data/code ensures that only one
 program can be in a critical section at a time

• The hardware must provide some basic primitives that
 allow us to construct locks with different properties

• Lock algorithms assume an underlying cache coherence
 mechanism – when a process updates a lock, other
 processes will eventually see the update

Race conditions

● Example:
● Global list of, for example, requests
● Each thread can add requests to the list

1 struct list {

2 int data;

3 struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11 struct list *l;

12

13 l = malloc(sizeof *l);

14 l->data = data;

15 l->next = list;

16 list = l;

17 }

List implementation
(no locks)

● List
● One data element
● Pointer to the next element

1 struct list {

2 int data;

3 struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11 struct list *l;

12

13 l = malloc(sizeof *l);

14 l->data = data;

15 l->next = list;

16 list = l;

17 }

List implementation
(no locks)

● Global head

1 struct list {

2 int data;

3 struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11 struct list *l;

12

13 l = malloc(sizeof *l);

14 l->data = data;

15 l->next = list;

16 list = l;

17 }

List implementation
(no locks)

● Insertion
● Allocate new list element

1 struct list {

2 int data;

3 struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11 struct list *l;

12

13 l = malloc(sizeof *l);

14 l->data = data;

15 l->next = list;

16 list = l;

17 }

List implementation
(no locks)

● Insertion
● Allocate new list element
● Save data into that element

1 struct list {

2 int data;

3 struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11 struct list *l;

12

13 l = malloc(sizeof *l);

14 l->data = data;

15 l->next = list;

16 list = l;

17 }

List implementation
(no locks)

● Insertion
● Allocate new list element
● Save data into that element
● Insert into the list

Now what happens when two CPUs access the
same list

Request queue (e.g.
pending disk requests)

● Linked list, list is pointer
to the first element

CPU1 allocates new
request

CPU2 allocates new
request

b

CPUs 1 and 2 update
next pointer

CPU1 updates head
pointer

CPU2 updates head
pointer

State after the race
(red element is lost)

Mutual exclusion

● Only one CPU can update list at a time

1 struct list {

2 int data;

3 struct list *next;

4 };

6 struct list *list = 0;

 struct lock listlock;

9 insert(int data)

10 {

11 struct list *l;

13 l = malloc(sizeof *l);

 acquire(&listlock);

14 l->data = data;

15 l->next = list;

16 list = l;

 release(&listlock);

17 }

List implementation
with locks

● Critical section

● How can we implement acquire()?

21 void

22 acquire(struct spinlock *lk)

23 {

24 for(;;) {

25 if(!lk->locked) {

26 lk->locked = 1;

27 break;

28 }

29 }

30 }

Spinlock

● Spin until lock is 0
● Set it to 1

21 void

22 acquire(struct spinlock *lk)

23 {

24 for(;;) {

25 if(!lk->locked) {

26 lk->locked = 1;

27 break;

28 }

29 }

30 }

Still incorrect

● Two CPUs can reach
line #25 at the same
time
● See not locked, and
● Acquire the lock

● Lines #25 and #26 need
to be atomic
● I.e. indivisible

33

Synchronization

• The simplest hardware primitive that greatly facilitates
 synchronization implementations (locks, barriers, etc.)
 is an atomic read-modify-write

• Atomic exchange: swap contents of register and memory

• Special case of atomic exchange: test & set: transfer
 memory location into register and write 1 into memory

• acquire: t&s register, location
 bnz register, acquire
 CS
 release: st location, #0

34

How does it work?

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

35

How does it work for directory based protocol

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

What is the main problem with
locks?

What is the main problem with
locks?

● Scalability

48-core AMD server

Exim collapse

Oprofile results

Exim collapse

● sys_open eventually calls:

Exim collapse

● sys_open eventually calls:

● spin_lock and spin_unlock use many more cycles than the
critical section

struct spinlock_t {

 int current_ticket ;

 int next_ticket ;

}

void spin_lock (spinlock_t *lock)

{

 int t = atomic_fetch_and_inc (&lock -> next_ticket);

 while (t != lock -> current_ticket)

 ; /* spin */

}

void spin_unlock (spinlock_t *lock)

{

 lock -> current_ticket ++;

}

Ticket lock in Linux

Spin lock implementation

Spin lock implementationAllocate a ticket

Spin lock implementationAllocate a ticket

Spin lock implementationAllocate a ticket

Spin lock implementationAllocate a ticket

120-420 cycles

Spin lock implementationUpdate the ticket value

Spin lock implementation
Bunch of cores are

spinning

Spin lock implementation

Broadcast message
(invalidate the value)

Spin lock implementation

Cores don't have the
value of current_ticket

Spin lock implementation

Re-read the value

Spin lock implementation

(120-420) * N/2 cycles

● In most architectures, the cache-coherence reads
are serialized (either by a shared bus or at the
cache line’s home or directory node)

● Thus completing them all takes time proportional
to the number of cores.

● The core that is next in line for the lock can
expect to receive its copy of the cache line
midway through this process.
● N/2

Atomic synchronization primitives
do not scale well

Atomic increment on 64 cores

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

