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Memory Organization - I

•  Centralized shared-memory multiprocessor   or
   Symmetric shared-memory multiprocessor (SMP)

•  Multiple processors connected to a single centralized
   memory – since all processors see the same memory
   organization  uniform memory access (UMA)

•  Shared-memory because all processors can access the
   entire memory address space

•  Can centralized memory emerge as a bandwidth
   bottleneck? – not if you have large caches and employ
   fewer than a dozen processors
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Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
  of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
  status of that block – all cache controllers monitor the
  shared bus so they can update the sharing status of the
  block, if necessary

 Write-invalidate: a processor gains exclusive access of
    a block before writing by invalidating all other copies
 Write-update: when a processor writes, it updates other
    shared copies of that block
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Multiprocs -- Memory Organization - I

• Centralized shared-memory multiprocessor   or
  Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized
  memory – since all processors see the same memory
  organization  uniform memory access (UMA)

• Shared-memory because all processors can access the
  entire memory address space

• Can centralized memory emerge as a bandwidth
  bottleneck? – not if you have large caches and employ
  fewer than a dozen processors
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Snooping-Based Protocols

•  Three states for a block: invalid, shared, modified
•  A write is placed on the bus and sharers invalidate themselves
•  The protocols are referred to as MSI, MESI, etc.

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System
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Example

•  P1 reads X: not found in cache-1, request sent on bus, memory responds,
   X is placed in cache-1 in shared state
•  P2 reads X: not found in cache-2, request sent on bus, everyone snoops
   this request, cache-1does nothing because this is just a read request,
   memory responds, X is placed in cache-2 in shared state

P1

Cache-1

P2

Cache-2

Main Memory

•  P1 writes X: cache-1 has data in shared
   state (shared only provides read perms),
   request sent on bus, cache-2 snoops and
   then invalidates its copy of X, cache-1
   moves its state to modified
•  P2 reads X: cache-2 has data in invalid
   state, request sent on bus, cache-1 snoops
   and realizes it has the only valid copy, so it
   downgrades itself to shared state and
   responds with data, X is placed in cache-2
   in shared state, memory is also updated
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Example

Request Cache
Hit/Miss

Request
on the bus

Who responds State in 
Cache 1

State in 
Cache 2

State in 
Cache 3

State in 
Cache 4

Inv Inv Inv Inv

P1: Rd X Miss Rd X Memory S Inv Inv Inv

P2: Rd X Miss Rd X Memory S S Inv Inv

P2: Wr X Perms 
Miss

Upgrade X No response.
Other caches 

invalidate.

Inv M Inv Inv

P3: Wr X Write 
Miss

Wr X P2 responds Inv Inv M Inv

P3: Rd X Read Hit - - Inv Inv M Inv

P4: Rd X Read 
Miss

Rd X P3 responds. 
Mem wrtbk

Inv Inv S S
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Multiprocs -- Memory Organization - II

• For higher scalability, memory is distributed among
  processors  distributed memory multiprocessors

• If one processor can directly address the memory local
  to another processor, the address space is shared 
  distributed shared-memory (DSM) multiprocessor

• If memories are strictly local, we need messages to
  communicate data  cluster of computers or multicomputers

• Non-uniform memory architecture (NUMA) since local
  memory has lower latency than remote memory
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Distributed Memory Multiprocessors

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network



Directory-based protocol



Synchronization
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Constructing Locks

• Applications have phases (consisting of many instructions)
  that must be executed atomically, without other parallel
  processes modifying the data

• A lock surrounding the data/code ensures that only one
  program can be in a critical section at a time

• The hardware must provide some basic primitives that
  allow us to construct locks with different properties

• Lock algorithms assume an underlying cache coherence
  mechanism – when a process updates a lock, other
  processes will eventually see the update



  

Race conditions

● Example:
● Global list of, for example, requests
● Each thread can add requests to the list



  

1 struct list {

2   int data;

3   struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11   struct list *l;

12

13   l = malloc(sizeof *l);

14   l->data = data;

15   l->next = list;

16   list = l;

17 }

List implementation 
(no locks)

● List
● One data element
● Pointer to the next element



  

1 struct list {

2   int data;

3   struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11   struct list *l;

12

13   l = malloc(sizeof *l);

14   l->data = data;

15   l->next = list;

16   list = l;

17 }

List implementation 
(no locks)

● Global head



  

1 struct list {

2   int data;

3   struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11   struct list *l;

12

13   l = malloc(sizeof *l);

14   l->data = data;

15   l->next = list;

16   list = l;

17 }

List implementation 
(no locks)

● Insertion
● Allocate new list element



  

1 struct list {

2   int data;

3   struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11   struct list *l;

12

13   l = malloc(sizeof *l);

14   l->data = data;

15   l->next = list;

16   list = l;

17 }

List implementation 
(no locks)

● Insertion
● Allocate new list element
● Save data into that element



  

1 struct list {

2   int data;

3   struct list *next;

4 };

...

6 struct list *list = 0;

...

9 insert(int data)

10 {

11   struct list *l;

12

13   l = malloc(sizeof *l);

14   l->data = data;

15   l->next = list;

16   list = l;

17 }

List implementation 
(no locks)

● Insertion
● Allocate new list element
● Save data into that element
● Insert into the list



  

Now what happens when two CPUs access the 
same list



  

Request queue (e.g. 
pending disk requests)

● Linked list, list is pointer 
to the first element
 



  

CPU1 allocates new 
request



  

CPU2 allocates new 
request

b



  

CPUs 1 and 2 update 
next pointer



  

CPU1 updates head 
pointer



  

CPU2 updates head 
pointer



  

State after the race
(red element is lost)



  

Mutual exclusion

● Only one CPU can update list at a time



  

1 struct list {

2   int data;

3   struct list *next;

4 };

6 struct list *list = 0;

  struct lock listlock;

9 insert(int data)

10 {

11   struct list *l;

13   l = malloc(sizeof *l);

     acquire(&listlock);

14   l->data = data;

15   l->next = list;

16   list = l;

     release(&listlock);

17 }

List implementation 
with locks

● Critical section



  

● How can we implement acquire()?



  

21 void

22 acquire(struct spinlock *lk)

23 {

24   for(;;) {

25     if(!lk->locked) {

26       lk->locked = 1;

27       break;

28     }

29   }

30 }

Spinlock

● Spin until lock is 0
● Set it to 1



  

21 void

22 acquire(struct spinlock *lk)

23 {

24   for(;;) {

25     if(!lk->locked) {

26       lk->locked = 1;

27       break;

28     }

29   }

30 }

Still incorrect

● Two CPUs can reach 
line #25 at the same 
time
● See not locked, and
● Acquire the lock

● Lines #25 and #26 need 
to be atomic
● I.e. indivisible
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Synchronization

• The simplest hardware primitive that greatly facilitates
  synchronization implementations (locks, barriers, etc.)
  is an atomic read-modify-write

• Atomic exchange: swap contents of register and memory

• Special case of atomic exchange: test & set: transfer
  memory location into register and write 1 into memory

• acquire:   t&s    register, location
                  bnz   register, acquire
                  CS
  release:   st      location, #0
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How does it work?

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System
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How does it work for directory based protocol

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network



  

What is the main problem with 
locks?



  

What is the main problem with 
locks?

● Scalability



  

48-core AMD server



  

Exim collapse



  

Oprofile results



  

Exim collapse

● sys_open eventually calls:



  

Exim collapse

● sys_open eventually calls:

● spin_lock and spin_unlock use many more cycles than the 
critical section



  

struct spinlock_t {

  int current_ticket ;

  int next_ticket ;

}

void spin_lock ( spinlock_t *lock)

{

  int t = atomic_fetch_and_inc (&lock -> next_ticket );

  while (t != lock -> current_ticket )

  ; /* spin */

}

void spin_unlock ( spinlock_t *lock)

{

  lock -> current_ticket ++;

}

Ticket lock in Linux



  

Spin lock implementation



  

Spin lock implementationAllocate a ticket



  

Spin lock implementationAllocate a ticket



  

Spin lock implementationAllocate a ticket



  

Spin lock implementationAllocate a ticket

120-420  cycles



  

Spin lock implementationUpdate the ticket value



  

Spin lock implementation
Bunch of cores are 

spinning



  

Spin lock implementation

Broadcast message
(invalidate the value)



  

Spin lock implementation

Cores don't have the 
value of current_ticket



  

Spin lock implementation

Re-read the value



  

Spin lock implementation

(120-420) * N/2 cycles



  

● In most architectures, the cache-coherence reads 
are serialized (either by a shared bus or at the 
cache line’s home or directory node)

● Thus completing them all takes time proportional 
to the number of cores. 

● The core that is next in line for the lock can 
expect to receive its copy of the cache line 
midway through this process.
● N/2



  

Atomic synchronization primitives
do not scale well



  

Atomic increment on 64 cores



  

Thank you!
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