

CS/EE 3810: Computer
Organization

Lecture 13: Branch Prediction &
Out-of-order execution

Anton Burtsev
November, 2022

Branch prediction

3

Control Hazards

• Simple techniques to handle control hazard stalls:
 for every branch, introduce a stall cycle (note: every

 6th instruction is a branch!)
 assume the branch is not taken and start fetching the

 next instruction – if the branch is taken, need hardware
 to cancel the effect of the wrong-path instruction

 fetch the next instruction (branch delay slot) and
 execute it anyway – if the instruction turns out to be
 on the correct path, useful work was done – if the
 instruction turns out to be on the wrong path,
 hopefully program state is not lost
 make a smarter guess and fetch instructions from the
 expected target

4

Branch Delay Slots

Source: H&P textbook

5

Pipeline without Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-target

PC + 4

In the 5-stage pipeline, a branch completes in two cycles
If the branch went the wrong way, one incorrect instr is fetched
One stall cycle per incorrect branch

6

Pipeline with Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-target

In the 5-stage pipeline, a branch completes in two cycles
If the branch went the wrong way, one incorrect instr is fetched
One stall cycle per incorrect branch

Branch
Predictor

7

1-Bit Bimodal Prediction

• For each branch, keep track of what happened last time
 and use that outcome as the prediction

• What are prediction accuracies for branches 1 and 2 below:

 while (1) {
 for (i=0;i<10;i++) { branch-1
 …
 }
 for (j=0;j<20;j++) { branch-2
 …
 }
 }

8

2-Bit Bimodal Prediction

• For each branch, maintain a 2-bit saturating counter:
 if the branch is taken: counter = min(3,counter+1)
 if the branch is not taken: counter = max(0,counter-1)

• If (counter >= 2), predict taken, else predict not taken

• Advantage: a few atypical branches will not influence the
 prediction (a better measure of “the common case”)

• Especially useful when multiple branches share the same
 counter (some bits of the branch PC are used to index
 into the branch predictor)

• Can be easily extended to N-bits (in most processors, N=2)

9

Bimodal Predictor

Branch PC

14 bits
Table of

16K entries
of 2-bit

saturating
counters

10

Multicycle Instructions

• Multiple parallel pipelines – each pipeline can have a different
 number of stages

• Instructions can now complete out of order – must make sure
 that writes to a register happen in the correct order

11

An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

R1 R1+R2
R2 R1+R3

BEQZ R2
R3 R1+R2
R1 R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1 R1+R2
T2 T1+R3

BEQZ T2
T4 T1+T2
T5 T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ

12

Example Code

Completion times with in-order with ooo

ADD R1, R2, R3 5 5
ADD R4, R1, R2 6 6
LW R5, 8(R4) 7 7
ADD R7, R6, R5 9 9
ADD R8, R7, R5 10 10
LW R9, 16(R4) 11 7
ADD R10, R6, R9 13 9
ADD R11, R10, R9 14 10

13

An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

R1 R1+R2
R2 R1+R3

BEQZ R2
R3 R1+R2
R1 R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1 R1+R2
T2 T1+R3

BEQZ T2
T4 T1+T2
T5 T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ

14

Design Details - I

• Instructions enter the pipeline in order

• No need for branch delay slots if prediction happens in time

• Instructions leave the pipeline in order – all instructions
 that enter also get placed in the ROB – the process of an
 instruction leaving the ROB (in order) is called commit –
 an instruction commits only if it and all instructions before
 it have completed successfully (without an exception)

• To preserve precise exceptions, a result is written into the
 register file only when the instruction commits – until then,
 the result is saved in a temporary register in the ROB

15

Design Details - II

• Instructions get renamed and placed in the issue queue –
 some operands are available (T1-T6; R1-R32), while
 others are being produced by instructions in flight (T1-T6)

• As instructions finish, they write results into the ROB (T1-T6)
 and broadcast the operand tag (T1-T6) to the issue queue –
 instructions now know if their operands are ready

• When a ready instruction issues, it reads its operands from
 T1-T6 and R1-R32 and executes (out-of-order execution)

• Can you have WAW or WAR hazards? By using more
 names (T1-T6), name dependences can be avoided

16

Design Details - III

• If instr-3 raises an exception, wait until it reaches the top
 of the ROB – at this point, R1-R32 contain results for all
 instructions up to instr-3 – save registers, save PC of instr-3,
 and service the exception

• If branch is a mispredict, flush all instructions after the
 branch and start on the correct path – mispredicted instrs
 will not have updated registers (the branch cannot commit
 until it has completed and the flush happens as soon as the
 branch completes)

• Potential problems: ?

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

