CS/EE 3810: Computer
Organization

Lecture 13: Branch Prediction &
Out-of-order execution

Anton Burtsev
November, 2022

Branch prediction

Control Hazards

* Simple techniques to handle control hazard stalls:

> for every branch, introduce a stall cycle (note: every
6t instruction is a branch!)

» assume the branch is not taken and start fetching the
next instruction - if the branch is taken, need hardware
to cancel the effect of the wrong-path instruction

> fetch the next instruction (branch delay slot) and
execute it anyway - if the instruction turns out to be
on the correct path, useful work was done - if the
instruction turns out to be on the wrong path,
hopefully program state is not lost

» make a smarter guess and fetch instructions from the
expected target

Branch Delay Slots

a. From before b. From target
add $s1, $s2, $s3 sub $t4, $t5, $t6 =—
if $s2 = 0 then ——
Delay slot add $s1, $s2, $s3
if $s1 = 0 then —
< Delay slot
Becomes Becomes
y Y
-
if $s2 = 0 then ——

dd $s1, $s2. $s3
add $51. $52, $s3 add $s1, $s2, $s

if $s1 = 0 then ——

r

sub $t4, $t5, $t6

Source: H&P textbook

Pipeline without Branch Predictor

In the 5-stage pipeline, a branch completes in two cycles 2>
If the branch went the wrong way, one incorrect instr is fetched -
One stall cycle per incorrect branch

Pipeline with Branch Predictor

Branch
Predictor

In the 5-stage pipeline, a branch completes in two cycles 2>
If the branch went the wrong way, one incorrect instr is fetched -
One stall cycle per incorrect branch

1-Bit Bimodal Prediction

* For each branch, keep track of what happened last time
and use that outcome as the prediction

* What are prediction accuracies for branches 1 and 2 below:

while (1) {
for (1=0;I<10;1++) { branch-1
}
for (J=0;j<20;)++) { branch-2
}

2-Bit Bimodal Prediction

* For each branch, maintain a 2-bit saturating counter:
If the branch is taken: counter = min(3,counter+1)
If the branch is not taken: counter = max(0,counter-1)

* |If (counter >= 2), predict taken, else predict not taken

* Advantage: a few atypical branches will not influence the
prediction (a better measure of “the common case”)

* Especially useful when multiple branches share the same
counter (some bits of the branch PC are used to index
Into the branch predictor)

* Can be easily extended to N-bits (in most processors, N=2)

8

Bimodal Predictor

14 bits

Multicycle Instructions

Tnieger Ik

:‘E:
*,

FRAnuaga muligpls

IS

FP axbita

02003 Eleaywiar Bobance [LEEA). M ights rosorsed.

* Multiple parallel pipelines - each pipeline can have a different
number of stages

* Instructions can now complete out of order - must make sure

that writes to a register happen in the correct order
10

An Out-of-Order Processor Implementation

Reorder Buffer (ROB)

—'-1--

Results written to
ROB and tags
broadcast to 1Q

Instr Fetch Queue

Issue Queue (IQ)

11

Example Code

Completion times

ADD R1, R2,R3
ADD R4, R1, R2
LW R5, 8(R4)
ADD R7,R6,R5
ADD R8, R7,R5
LW R9, 16(R4)
ADD R10, R6, R9
ADD R11, R10, R9

with in-order

O N O

10
11
13
14

with ooo

NO N ON n

10

O N

10

12

An Out-of-Order Processor Implementation

Reorder Buffer (ROB)

—'-1--

Results written to
ROB and tags
broadcast to 1Q

Instr Fetch Queue

Issue Queue (IQ)

13

Design Detalls - |

* |Instructions enter the pipeline in order

* No need for branch delay slots if prediction happens in time

* Instructions leave the pipeline in order — all instructions
that enter also get placed in the ROB - the process of an
Instruction leaving the ROB (in order) is called commit —
an instruction commits only if it and all instructions before
It have completed successfully (without an exception)

* To preserve precise exceptions, a result is written into the
register file only when the instruction commits — until then,
the result is saved in a temporary register in the ROB

14

Design Details - I

* Instructions get renamed and placed in the issue gqueue —
some operands are available (T1-T6; R1-R32), while
others are being produced by instructions in flight (T1-T6)

* As instructions finish, they write results into the ROB (T1-T6)
and broadcast the operand tag (T1-T6) to the issue queue —
Instructions now know if their operands are ready

* When a ready instruction issues, it reads its operands from
T1-T6 and R1-R32 and executes (out-of-order execution)

* Can you have WAW or WAR hazards? By using more
names (T1-T6), name dependences can be avoided

15

Design Details - Il

* |f instr-3 raises an exception, wait until it reaches the top
of the ROB — at this point, R1-R32 contain results for all
Instructions up to instr-3 — save registers, save PC of instr-3,
and service the exception

* |If branch is a mispredict, flush all instructions after the
branch and start on the correct path — mispredicted instrs
will not have updated registers (the branch cannot commit
until it has completed and the flush happens as soon as the
branch completes)

* Potential problems: ?

16

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

