Lecture 15
Introduction to Pipelining

Guest Lecture by
Mahesh

THEU

UNIVERSITY
OF UTAH

S whoami

I’'m Mahesh, a PhD student in Computer Science (@ the U.

What I do now....

I research optimizing compilers for high-performance machine learning.

What I want to do in the future....

Become a Professor and teach CS to students like you!

Today’s Lecture

* Recap Single-cycle CPU
* Multicycle CPU
* Pipelined Architecture

* Effects of Pipelining

Recap: Single-cycle Processor

View from 30,000 feet

Add

|

A

B

Add

Y

Address Instruction

Instruction
memory

-

Data

Register #
Registers

Register #

Register #

|

Address

Data
memory

Data

Recap: Single-cycle Processor

View from 10,000 feet

Read ALU operation
register 1 R
ead | MemWrite
Bond data 1
o] Zero MemtoReg
Instruction register 2 ALUSIC | AT
Write Registers poag 0 r:SLUli{ Address l'\;eaatg 1
register ams ':f ﬂ
5 X
| Write 1 0
data Data
Write
RegWrite ey Mooy
16 Sign- MemRead

extend

Recap: Single-cycle Processor

View from 5,000 feet

-
Program
Counter

PC

Y

—

IM

Read
address

Instruction

31-01 I

Instruction

memory

Instruction [31-26]

‘lnstruction [25-21]

»f Control

RegDst
Branch

>Add

ALU
result

MemRead

MemtoReg

ALUOp

MemWrite

ALUSrc

RegWrite
RF

_ | Read

Instruction [20-16]

‘Instruction [15-1 11

| register 1 paaq

ALU

Read data 1

register 2

Write
register

Write

Read
data 2

Instruction [15-0]

data Registers

16 32

Sign- | 7

extend/ °

Instruction [5-0]

ALU

Read

Address data

Write Data

1 data memoryl

Oxec2-

Recap: Single-cycle Processor

R-Type Instruction

TN

add $1, $2, $3
$2 $3 $1
31:26 25:21 20:16 15:11 10:6 5:0
0 rs rt rd shamt | funct
op Sou'rce Destination Shift Function

Registers Register Amount Code

|

>Add
=l

Read
address

Instruction
[31-0]

Instruction
memory

I

Instruction [31-26]

>

Instruction [25-21]
o

»] Control

RegDs]

Branch

MemRead

- xec= ©

MemtoReg

MemWrite

ALUSrc

Instruction [20-16]

Instruction [15-11]
* -

“xc=2°

Instruction [15-0]

Read
register 1 paaq
Read data 1
register 2
write ~ Read
register data 2
Write

data Registers

(0

“xcs

16 Sign- 32
extend| °

Instruction [5-0]

ALU
control

AddressRead

Write

" | data

data

Data
memory

Oxec=2

Recap: Single-cycle Processor

R-Type Instruction

add $1, $2, $3
$2 $3 $1
31:26 25:21 20:16 15:11 10:6 5:0
0 rs rt rd shamt | funct
op Sou'rce Destination Shift Function

Registers Register Amount Code

- \' -0
>Add — M
X
4 —» 1
/f RegDs(]
Branch
/ \ MemRead
Instruction [31—26]| | MenﬂoReg
>|Control
\ ALUSrc
RegWrite
Instruction [25-21] Read $2
Hasd T ™ register 1 R $d2
address ea
Instruction [20-16] | Read $3 data 1
Instruction _I register 2 $3
[31-0) Write Read Addressteaatg —1
Instruction | | |instruction [15-11) register data 2 M
memory | |¢ > g
Write 0
data
Registers Write Data
> data memory|

Instruction [15-0] 16 [sign-

extend

Instruction [5-0]

Recap: Single-cycle Processor

I-Type Instruction
beq $1, $2, 1000

Ss1 $2
31:26 25:21 20:16 15:0
4 rs rt offset

op Source Registers

Instruction [31-26)

RegDst

—

MemRead

- xeg ©

' MemtoRe
»f Control g
MemWrite

J ALUSrc

RegWrite

Read
address

Instruction
[31-0]

Instruction
memory

Instruction [25-21]
o

Instruction [20-16]

i

Instruction [15-11]
@ -

_ | Read

register 1

Read
register 2

Write
register

Write

data Registers

Read

data 1

Read
data 2

Instruction [15-0]

16 Sign- 32
extend| °

Instruction [5-0]

ALU
control

AddressRead

Write

" | data

data

Data
memory

Oxec=2

Recap: Single-cycle Processor

I-Type Instruction

beq $1, $2, 1000
S1 $2
31:26 25:21 20:16 15:0
4 rs rt offset

op Source Registers

—

Read
address

Instruction
[31-0]

Instruction
memory

Instruction [31-26] |

(e

i

[2

\

\

Instruction [25-21]

f

,|Contro

MemRead

- xeg ©

Ii MemtoReg

MemWrite

| ALUSrc

RegWrite

Instruction [20-16]

>

Instruction [15-11]

Instruction [15-0]

Read $1 $
register 1 pa3q

data 1
> Read $2

register 2
write ~ Read
register data 2

Write
data Registers

Instruction [5-0]

AddressRead

Write

" | data

data

Data
memory

Oxec2—

10

Recap: Single-cycle Processor

I-Type Instruction

beq $1, $2, 1000
S1 $2
31:26 25:21 20:16 15:0
4 rs rt offset

op Source Registers

A 4

Read
address

Instruction
[31-0]

Instruction
memory

b

Instruction [15-11]
l 2 -

Instruction [31-26)

|

.

f

Instruction [25-21]
“

> |Contro

\

- RegDst
IBranch |
\

MemRead

- xeg ©

Ii MemtoReg

MemWrite

| ALUSrc

RegWrite

Instruction [20-16]

“xc=2°

Instruction [15-0]

Read
register 1 paaq

Read data 1
register 2

write ~ Read
register data 2

Write
data Registers

16 32

Sign- | Y

(0

—“xc=s

extend| °

Instruction [5-0]

ALU
control

AddressRe""'d

Write
data

data

Data
memory

Oxec2—

11

Processing Instructions

* A sequence of processing tasks per instru

IF: Instruction Fetch

:ID: Instruction DecodaI
Register File Read

ction

EX: Execute/
|Address Calculation] Memory Access

' MEM:

> Add

Address

Instruction

Instruction
memory

»

ADD
}

|
|
|
|
|
|
|
|
|
|
| [Shift
1 \left2
|
|
|
|
|
|
|
|

Read Read
register 1 data 1
Read
register 2
Registers -

Write Read
register data 2
Write
data

16

Sign- o

\\ > @ \\

WB:
Write Back

12

Processing Instructions

Every instruction may require multiple processing steps:

IF: Instruction Fetch Vv

ID: Instruction Decode Vv
Register Read (RR)

EXE: Execute Instructions v

MEM: Memory Access v/

WB: Register Write Back v/

Processor

functional

units
@ Control ALU

load/store

instructions

Memory

13

Single-cycle Architecture

Critical path

* Includes all of the processing steps
* Determines clock cycle time

lw 51, 8(52) Controller f' Write Back !

Register
File

Inst. Fetch ! ! Inst. Decode i Execute /i Memory

[i [U i [P

~
N
\

14

Single-cycle CPU Performance

* Example Program:

What is the CPU time for a Cycle Time of 6 ns?
CT=6ns; CPUTime=7?

w $1, 8(32)]
add $4, $2, $3)
sub $5, $1, $4)

and $6, $1, $4]
mul $7, $5, $6 I

Time

Single-cycle CPU Performance

CPUTime = ICXCPIXCT

* Example Program:

What is the CPU time for a Cycle Time of 6 ns?
CT=6ns; CPUTime=5X 6 ns= 30 ns

w $1, 8($2)]

How to improve?

dd $4, $2. $3) . L
add $4, $2, 3 * Locality Optimization
sub $5, $1, $4) - Amdahl’s Law
and $6. $1. $4 — « Common Case Fast

* Reuse Idle Resources
mul $7, $5, $6 —

Time
16

Reusing ldle Resources

Each processing step finishes in a fraction of a cycle.

Idle resources can be reused for processing

(Write Back !

Register
File

Inst. Fetch | Inst. Decode ;: Execute . Memory

__

17

Reusing ldle Resources

Each processing step finishes in a fraction of a cycle.

Idle resources can be reused for processing

(Write Back !

Register
File

Inst. Fetch |, Inst. Decode ;i Execute || Memory

__

18

Reusing ldle Resources

* Each processing step finishes in a fraction of a cycle.

* Idle resources can be reused for processing

Inst. Fetch

Register
File

Inst. Decode ‘\\ Execute

A\

Write Back

19

Multi-stage Circuit

Each processing step finishes in a fraction of a cycle.

Idle resources can be reused for processing

. Inst. Fetch

20

Analogy: Car Assembly Line

A,B,C,D,E

Time

21

Analogy: Car Assembly Line

A B CDE

A B C D E
Jobs Car 3

A B CDE

A B CDE

Time

22

Analogy: Car Assembly Line

A B CDE
ort| CEELED
A B C D E
2| LD
A B CDE
sobs o3| (LD
A B CDE
cars (E1D)
A B CDE
cars (ETD)

Pipelined)

Time

23

Car Assembly Line With Pipelining

20 hrs
I - Throughput = ZOCZ’”
rs
Jobs]
/]
]
Thné

4 hr

(D
Throughput = car

OB 1D -
4 hrs
EOEEN
B 1D
A 1D

Jobs

Time
24

Pipelined Processor

1000 ps 1
Iw $1, 8($2) . @ Throughput = 00075 = 1 BIPS
add $4, $2, $3]
sub $5, $1, $4 _
and $6, $1, $4 I CPI=1
mul $7, $5, $6]
Time:

240_0’ps 1
lw $1, 8($2) ENEEE @ Throughput = = 5 BIPS
add $4, $2, $3 OB D 2 200 ps
sub $5, $1, $4 OB 1O CPI = 1
and $6, $1, $4 OB 10O
mul $7, $5, $6 OO

Time
25

Recall: Single-cycle CPU Performance

N
\

Write Back
* Example Program:) R — L— T | N

What is the CPU time for a Cycle Time of 6 ns? i ______

i L Register
CT=6ns; CPUTime=5x6ns=230ns £ ALY

. Inst. Fetch ! Inst. Decode ;. Execute ;! Memory

lw $1, 8($2)] e g —— A :
add $4, $2, $3 —
sub $5, $1, $4 .

and $6, $1, $4)
mul $7, $5, $6 _

Time

26

Pipelined CPU Performance

* Example Program:
File

What is the CPU time for a Cycle Time of 1.5 ns? Register
CT=1.5ns; CPUTime= 9x1.5ns=13.5ns |

. Inst. Fetch B Inst. Decode 8 Execute

lw $1, 8($2) A1

add $4, $2, $3 O 1O

sub $5, $1, $4 B BEN

and $6, $1, $4 OR 10O
OB D)

mul $7, $5, $6

Time

27

Performance Impacts of Pipelining

* Does it take shorter to finish each individual job?

28

Performance Impacts of Pipelining

* Does it take shorter to finish each individual job?

No, 1t takes the same or even more time depending on CT

29

Performance Impacts of Pipelining

* Does it take longer to finish each individual job?

No, 1t takes the same or even more time depending on CT

* Does it take shorter to finish a series of jobs?

30

Performance Impacts of Pipelining

* Does it take shorter to finish each individual job?

No, 1t takes the same or even more time depending on CT

* Does it take shorter to finish a series of jobs?

Yes, the throughput has increased by using a 5-stage pipeline

31

Performance Impacts of Pipelining

* Does it take shorter to finish each individual job?

No, 1t takes the same or even more time depending on CT

* Does it take shorter to finish a series of jobs?

Yes, the throughput has increased by using a 5-stage pipeline

* What assumptions were made while answering these questions?

32

Performance Impacts of Pipelining

* Does it take shorter to finish each individual job?

No, 1t takes the same or even more time depending on CT

* Does it take shorter to finish a series of jobs?

Yes, the throughput has increased by using a 5-stage pipeline

* What assumptions were made while answering these questions?

= No data dependencies

33

Performance Impacts of Pipelining

 Stall cycles to resolve data dependencies

n = # instructions, p = # pipeline stages

Ideal Pipelining
cycles=n+p—-1

Time

34

Performance Impacts of Pipelining

 Stall cycles to resolve data dependencies

n = # instructions, p = # pipeline stages, s = #stall cycles

Ideal Pipelining Real Pipelining

cycles=n+p—1 - cycles=n+p-1+s

Time

Performance Impacts of Pipelining

* Does it take shorter to finish each individual job?

No, 1t takes the same or even more time depending on CT

* Does it take shorter to finish a series of jobs?

Yes, the throughput has increased by using a 5-stage pipeline

* What assumptions were made while answering these questions?

= No data dependencies

36

Performance Impacts of Pipelining

 Latch overhead in pipelining

. Inst. Fetch

37

Performance Impacts of Pipelining

* Does it take shorter to finish each individual job?

No, 1t takes the same or even more time depending on CT

* Does it take shorter to finish a series of jobs?

Yes, the throughput has increased by using a 5-stage pipeline

* What assumptions were made while answering these questions?
= No data dependencies

= No latch overhead

38

Performance Impacts of Pipelining

Does it take shorter to finish each individual job?

No, 1t takes the same or even more time depending on CT

Does it take shorter to finish a series of jobs?

Yes, the throughput has increased by using a 5-stage pipeline

What assumptions were made while answering these questions?

* No data dependencies
= No latch overhead
Is a 50-stage pipeline better than a 5-stage pipeline?

Performance

»

1 20-30 |
\ I stages |

Of stages

v

Power

39

of stages

v

Performance Impacts of Pipelining

Does it take shorter to finish each individual job?

No, 1t takes the same or even more time depending on CT

Does it take shorter to finish a series of jobs?

Yes, the throughput has increased by using a 5-stage pipeline

* What assumptions were made while answering these questions?
= No data dependencies

= No latch overhead

Is a 50-stage pipeline better than a 5-stage pipeline?

No, performance degrades with more stages due to latch overhead and data dependencies

40

Quantitative Effects of Pipelining

As a result of pipelining:

Time in ns per instruction goes up
Each instruction takes more cycles to execute
But...average CPI remains roughly the same
Clock speed goes up
Total execution time goes down, resulting in lower average time per instruction
Under ideal conditions,
Speedup
= ratio of elapsed times between successive instruction completions
= increase in clock speed

= number of pipeline stages

41

Designing a 5-stage Pipeline

Time (in clock cyclesj

CC 1

cc2

CcC3 o cC4
g}l DM
(A ="
- ,—— V
IM I—R;
=

I

42

Designing a 5-stage Pipeline

w $1, 6($2)

add $3, $5, $0

sw $4, 8(%6)

Time (in clock cyclesy

CC 1

U

43

Next time...

* Read chapter 4.5 — 4.7 from textbook

* Next lecture
* Introduction to pipelining hazards
 Structural Hazards
* Data Hazards
* Resolving Structural and Data Hazards

@ maheshl@cs.utah.edu

44

