
Lecture 15
Introduction to Pipelining

Guest Lecture by

Mahesh

$ whoami

I’mMahesh, a PhD student in Computer Science @ the U.

What I do now….

I research optimizing compilers for high-performance machine learning.

What I want to do in the future….

Become a Professor and teach CS to students like you!

2

Today’s Lecture

• Recap Single-cycle CPU

• Multicycle CPU

• Pipelined Architecture

• Effects of Pipelining

3

Recap: Single-cycle Processor
View from 30,000 feet

4

Recap: Single-cycle Processor
View from 10,000 feet

5

Recap: Single-cycle Processor

Program
Counter

IM RF ALU

DM

CL

View from 5,000 feet

6

Recap: Single-cycle Processor

add $1, $2, $3

R-Type Instruction

0 rs rt rd shamt funct

op Source
Registers

Destination
Register

Shift
Amount

Function
Code

$2 $3 $1
31:26 25:21 20:16 15:11 10:6 5:0

7

Recap: Single-cycle Processor

add $1, $2, $3

R-Type Instruction

0 rs rt rd shamt funct

op Source
Registers

Destination
Register

Shift
Amount

Function
Code

$2 $3 $1

$2

$3

$2

$3

31:26 25:21 20:16 15:11 10:6 5:0

8

Recap: Single-cycle Processor

beq $1, $2, 1000

I-Type Instruction

4 rs rt offset

op Source Registers

$1 $2
31:26 25:21 20:16 15:0

1

9

Recap: Single-cycle Processor

beq $1, $2, 1000

I-Type Instruction

4 rs rt offset

op Source Registers

$1 $2

$1

$2

$1

$2

31:26 25:21 20:16 15:0

1

1

10

Recap: Single-cycle Processor

beq $1, $2, 1000

I-Type Instruction

4 rs rt offset

op Source Registers

$1 $2
31:26 25:21 20:16 15:0

1

1

11

Processing Instructions
• A sequence of processing tasks per instruction

IF: Instruction Fetch ID: Instruction Decode
Register File Read

EX: Execute/
Address Calculation

MEM:
Memory Access

WB:
Write Back

12

Processing Instructions
Every instruction may require multiple processing steps:

• IF: Instruction Fetch

• ID: Instruction Decode

Register Read (RR)

• EXE: Execute Instructions

• MEM: Memory Access

• WB: Register Write Back

13

Control ALU

load/store

Single-cycle Architecture
Critical path
• Includes all of the processing steps
• Determines clock cycle time

lw $1, 8($2)

14

15

lw $1, 8($2)

add $4, $2, $3

sub $5, $1, $4

and $6, $1, $4

mul $7, $5, $6

Time

• Example Program:

What is the CPU time for a Cycle Time of 6 ns?

CT = 6 ns; CPU Time = ?

Single-cycle CPU Performance

Time

• Example Program:

What is the CPU time for a Cycle Time of 6 ns?

CT = 6 ns; CPU Time = 5 x 6 ns= 30 ns

Single-cycle CPU Performance

How to improve?
lw $1, 8($2)

add $4, $2, $3

sub $5, $1, $4

and $6, $1, $4

mul $7, $5, $6

16

𝑪𝑷𝑼 𝑻𝒊𝒎𝒆 = 𝑰𝑪×𝑪𝑷𝑰×𝑪𝑻

• Locality Optimization

• Amdahl’s Law
• Common Case Fast

• Reuse Idle Resources

Reusing Idle Resources
• Each processing step finishes in a fraction of a cycle.

• Idle resources can be reused for processing

17

Reusing Idle Resources
• Each processing step finishes in a fraction of a cycle.

• Idle resources can be reused for processing

18

Reusing Idle Resources
• Each processing step finishes in a fraction of a cycle.

• Idle resources can be reused for processing

19

Multi-stage Circuit
• Each processing step finishes in a fraction of a cycle.

• Idle resources can be reused for processing

20

21

Time

Jobs

Analogy: Car Assembly Line

Car 1

Car 2

Car 3

Car 4

Car 5

A B C D E

22

Time

Analogy: Car Assembly Line

Jobs

Car 1

Car 2

Car 3

Car 4

Car 5

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

23

Time

Pipelined

Analogy: Car Assembly Line

Jobs

Car 1

Car 2

Car 3

Car 4

Car 5

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

24

Jobs

Time

Jobs

Time

Unpipelined

Pipelined

Car Assembly Line With Pipelining

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =

1 𝑐𝑎𝑟
4 ℎ𝑟𝑠

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =

1 𝑐𝑎𝑟
20 ℎ𝑟𝑠

20 ℎ𝑟𝑠

4 ℎ𝑟𝑠

25

Time

Time

Unpipelined

Pipelined

Pipelined Processor

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 1
1000 𝑝𝑠

= 1 𝐵𝐼𝑃𝑆

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 1
200 𝑝𝑠

= 5 𝐵𝐼𝑃𝑆

CPI = 1

CPI = 1

lw $1, 8($2)
add $4, $2, $3
sub $5, $1, $4
and $6, $1, $4
mul $7, $5, $6

lw $1, 8($2)
add $4, $2, $3
sub $5, $1, $4
and $6, $1, $4
mul $7, $5, $6

1000 𝑝𝑠

200 𝑝𝑠

26

Time

• Example Program:

What is the CPU time for a Cycle Time of 6 ns?

CT = 6 ns; CPU Time = 5 x 6 ns = 30 ns

Recall: Single-cycle CPU Performance

lw $1, 8($2)

add $4, $2, $3

sub $5, $1, $4

and $6, $1, $4

mul $7, $5, $6

27

• Example Program:

What is the CPU time for a Cycle Time of 1.5 ns?

CT = 1.5 ns; CPU Time =

Time

lw $1, 8($2)

add $4, $2, $3

sub $5, $1, $4

and $6, $1, $4

mul $7, $5, $6

Pipelined CPU Performance

9 x 1.5 ns = 13.5 ns

• Does it take shorter to finish each individual job?

28

Performance Impacts of Pipelining

• Does it take shorter to finish each individual job?
No, it takes the same or even more time depending on CT

29

Performance Impacts of Pipelining

• Does it take longer to finish each individual job?
No, it takes the same or even more time depending on CT

• Does it take shorter to finish a series of jobs?

30

Performance Impacts of Pipelining

• Does it take shorter to finish each individual job?
No, it takes the same or even more time depending on CT

• Does it take shorter to finish a series of jobs?
Yes, the throughput has increased by using a 5-stage pipeline

31

Performance Impacts of Pipelining

• Does it take shorter to finish each individual job?
No, it takes the same or even more time depending on CT

• Does it take shorter to finish a series of jobs?
Yes, the throughput has increased by using a 5-stage pipeline

• What assumptions were made while answering these questions?

32

Performance Impacts of Pipelining

• Does it take shorter to finish each individual job?
No, it takes the same or even more time depending on CT

• Does it take shorter to finish a series of jobs?
Yes, the throughput has increased by using a 5-stage pipeline

• What assumptions were made while answering these questions?
§ No data dependencies

33

Performance Impacts of Pipelining

• Stall cycles to resolve data dependencies

𝑛 = # 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠, 𝑝 = # 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑠𝑡𝑎𝑔𝑒𝑠

34

Performance Impacts of Pipelining

Ideal Pipelining

• Stall cycles to resolve data dependencies

𝑛 = # 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠, 𝑝 = # 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑠𝑡𝑎𝑔𝑒𝑠, 𝑠 = #𝑠𝑡𝑎𝑙𝑙 𝑐𝑦𝑐𝑙𝑒𝑠

35

Performance Impacts of Pipelining

Ideal Pipelining Real Pipelining

• Does it take shorter to finish each individual job?
No, it takes the same or even more time depending on CT

• Does it take shorter to finish a series of jobs?
Yes, the throughput has increased by using a 5-stage pipeline

• What assumptions were made while answering these questions?
§ No data dependencies

36

Performance Impacts of Pipelining

• Latch overhead in pipelining

37

Performance Impacts of Pipelining

• Does it take shorter to finish each individual job?
No, it takes the same or even more time depending on CT

• Does it take shorter to finish a series of jobs?
Yes, the throughput has increased by using a 5-stage pipeline

• What assumptions were made while answering these questions?
§ No data dependencies
§ No latch overhead

38

Performance Impacts of Pipelining

• Does it take shorter to finish each individual job?
No, it takes the same or even more time depending on CT

• Does it take shorter to finish a series of jobs?
Yes, the throughput has increased by using a 5-stage pipeline

• What assumptions were made while answering these questions?
§ No data dependencies
§ No latch overhead

• Is a 50-stage pipeline better than a 5-stage pipeline?

39

Performance Impacts of Pipelining

Pe
rfo

rm
an

ce

of stages

20-30
stages

Po
w

er

of stages

• Does it take shorter to finish each individual job?
No, it takes the same or even more time depending on CT

• Does it take shorter to finish a series of jobs?
Yes, the throughput has increased by using a 5-stage pipeline

• What assumptions were made while answering these questions?
§ No data dependencies
§ No latch overhead

• Is a 50-stage pipeline better than a 5-stage pipeline?
No, performance degrades with more stages due to latch overhead and data dependencies

40

Performance Impacts of Pipelining

As a result of pipelining:

• Time in ns per instruction goes up

• Each instruction takes more cycles to execute

• But…average CPI remains roughly the same

• Clock speed goes up

• Total execution time goes down, resulting in lower average time per instruction

• Under ideal conditions,

Speedup

= ratio of elapsed times between successive instruction completions

= increase in clock speed

= number of pipeline stages

41

Quantitative Effects of Pipelining

42

Designing a 5-stage Pipeline

43

Designing a 5-stage Pipeline

lw $1, 6($2)

add $3, $5, $0

sw $4, 8($6)

Next time…
• Read chapter 4.5 – 4.7 from textbook
• Next lecture

• Introduction to pipelining hazards
• Structural Hazards
• Data Hazards
• Resolving Structural and Data Hazards

maheshl@cs.utah.edu

44

