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S whoami

I’'m Mahesh, a PhD student in Computer Science (@ the U.

What I do now....

I research optimizing compilers for high-performance machine learning.

What I want to do in the future....

Become a Professor and teach CS to students like you!



Today’s Lecture

* Recap Single-cycle CPU
* Multicycle CPU
* Pipelined Architecture

* Effects of Pipelining



Recap: Single-cycle Processor
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Recap: Single-cycle Processor

View from 10,000 feet
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Recap: Single-cycle Processor
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Recap: Single-cycle Processor

R-Type Instruction
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Recap: Single-cycle Processor
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Recap: Single-cycle Processor

I-Type Instruction
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Recap: Single-cycle Processor

I-Type Instruction
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Recap: Single-cycle Processor
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Processing Instructions

* A sequence of processing tasks per instru
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Processing Instructions

Every instruction may require multiple processing steps:

IF: Instruction Fetch Vv

ID: Instruction Decode Vv
Register Read (RR)

EXE: Execute Instructions v

MEM: Memory Access v/

WB: Register Write Back v/

Processor
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units
@ Control ALU

load/store

instructions

Memory
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Single-cycle Architecture

Critical path

* Includes all of the processing steps
* Determines clock cycle time

lw 51, 8(52) Controller f' Write Back !

_________________________
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~
N
\
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Single-cycle CPU Performance

* Example Program:

What is the CPU time for a Cycle Time of 6 ns?
CT=6ns; CPUTime=7?

w $1, 8(32) ]
add $4, $2, $3 )
sub $5, $1, $4 )

and $6, $1, $4 ]
mul $7, $5, $6 I

Time



Single-cycle CPU Performance

CPUTime = ICXCPIXCT

* Example Program:

What is the CPU time for a Cycle Time of 6 ns?
CT=6ns; CPUTime=5X 6 ns= 30 ns

w $1, 8($2) ]

How to improve?

dd $4, $2. $3 ) . L
add $4, $2, 3 * Locality Optimization
sub $5, $1, $4 ) - Amdahl’s Law
and $6. $1. $4 — « Common Case Fast

* Reuse Idle Resources
mul $7, $5, $6 —

Time
16



Reusing ldle Resources

Each processing step finishes in a fraction of a cycle.

Idle resources can be reused for processing

_________________________________________________________

( Write Back !
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____________________________________________________________________
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Reusing ldle Resources

Each processing step finishes in a fraction of a cycle.

Idle resources can be reused for processing

_________________________________________________________

( Write Back !
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Inst. Fetch |, Inst. Decode ;i Execute || Memory

____________________________________________________________________
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Reusing ldle Resources

* Each processing step finishes in a fraction of a cycle.

* Idle resources can be reused for processing

Inst. Fetch

_________________

____________________________________

Register
File

Inst. Decode ‘\\ Execute

A\

_________________

_____________________

Write Back

_________________
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Multi-stage Circuit

Each processing step finishes in a fraction of a cycle.

Idle resources can be reused for processing

. Inst. Fetch
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Analogy: Car Assembly Line

A,B,C,D,E

Time

21



Analogy: Car Assembly Line
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Analogy: Car Assembly Line
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Car Assembly Line With Pipelining

20 hrs
I - Throughput = ZOCZ’”
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Jobs

Time
24



Pipelined Processor

1000 ps 1
Iw $1, 8($2) . @ Throughput = 00075 = 1 BIPS
add $4, $2, $3 ]
sub $5, $1, $4 _
and $6, $1, $4 I CPI=1
mul $7, $5, $6 ]
Time:

240_0’ps 1
lw $1, 8($2) ENEEE @ Throughput = = 5 BIPS
add $4, $2, $3 OB D 2 200 ps
sub $5, $1, $4 OB 1O CPI = 1
and $6, $1, $4 OB 10O
mul $7, $5, $6 OO

Time
25



Recall: Single-cycle CPU Performance

N
\

Write Back
* Example Program: ) R — L— T | N

What is the CPU time for a Cycle Time of 6 ns? i ______

i L Register
CT=6ns; CPUTime=5x6ns=230ns £ ALY

. Inst. Fetch ! Inst. Decode ;. Execute ;! Memory

lw $1, 8($2) ] e g —— A :
add $4, $2, $3 —
sub $5, $1, $4 .

and $6, $1, $4 )
mul $7, $5, $6 _

Time
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Pipelined CPU Performance

* Example Program:
File

What is the CPU time for a Cycle Time of 1.5 ns? Register
CT=1.5ns; CPUTime= 9x1.5ns=13.5ns |

. Inst. Fetch B Inst. Decode 8  Execute

lw $1, 8($2) A1

add $4, $2, $3 O 1O

sub $5, $1, $4 B BEN

and $6, $1, $4 OR 10O
OB D)

mul $7, $5, $6

Time
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Performance Impacts of Pipelining

* Does it take shorter to finish each individual job?
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Performance Impacts of Pipelining

* Does it take shorter to finish each individual job?

No, 1t takes the same or even more time depending on CT
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Performance Impacts of Pipelining

* Does it take longer to finish each individual job?

No, 1t takes the same or even more time depending on CT

* Does it take shorter to finish a series of jobs?
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Performance Impacts of Pipelining

* Does it take shorter to finish each individual job?

No, 1t takes the same or even more time depending on CT

* Does it take shorter to finish a series of jobs?

Yes, the throughput has increased by using a 5-stage pipeline
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Performance Impacts of Pipelining

* Does it take shorter to finish each individual job?

No, 1t takes the same or even more time depending on CT

* Does it take shorter to finish a series of jobs?

Yes, the throughput has increased by using a 5-stage pipeline

* What assumptions were made while answering these questions?
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Performance Impacts of Pipelining

* Does it take shorter to finish each individual job?

No, 1t takes the same or even more time depending on CT

* Does it take shorter to finish a series of jobs?

Yes, the throughput has increased by using a 5-stage pipeline

* What assumptions were made while answering these questions?

= No data dependencies
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Performance Impacts of Pipelining

 Stall cycles to resolve data dependencies

n = # instructions, p = # pipeline stages

Ideal Pipelining
cycles=n+p—-1

Time
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Performance Impacts of Pipelining

 Stall cycles to resolve data dependencies

n = # instructions, p = # pipeline stages, s = #stall cycles

Ideal Pipelining Real Pipelining

cycles=n+p—1 - cycles=n+p-1+s

Time




Performance Impacts of Pipelining

* Does it take shorter to finish each individual job?

No, 1t takes the same or even more time depending on CT

* Does it take shorter to finish a series of jobs?

Yes, the throughput has increased by using a 5-stage pipeline

* What assumptions were made while answering these questions?

= No data dependencies
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Performance Impacts of Pipelining

 Latch overhead in pipelining

. Inst. Fetch
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Performance Impacts of Pipelining

* Does it take shorter to finish each individual job?

No, 1t takes the same or even more time depending on CT

* Does it take shorter to finish a series of jobs?

Yes, the throughput has increased by using a 5-stage pipeline

* What assumptions were made while answering these questions?
= No data dependencies

= No latch overhead
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Performance Impacts of Pipelining

Does it take shorter to finish each individual job?

No, 1t takes the same or even more time depending on CT

Does it take shorter to finish a series of jobs?

Yes, the throughput has increased by using a 5-stage pipeline

What assumptions were made while answering these questions?

* No data dependencies
= No latch overhead
Is a 50-stage pipeline better than a 5-stage pipeline?

Performance

»

1 20-30 |
\ I stages |

# Of stages

v

Power
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Performance Impacts of Pipelining

Does it take shorter to finish each individual job?

No, 1t takes the same or even more time depending on CT

Does it take shorter to finish a series of jobs?

Yes, the throughput has increased by using a 5-stage pipeline

* What assumptions were made while answering these questions?
= No data dependencies

= No latch overhead

Is a 50-stage pipeline better than a 5-stage pipeline?

No, performance degrades with more stages due to latch overhead and data dependencies

40



Quantitative Effects of Pipelining

As a result of pipelining:

Time in ns per instruction goes up
Each instruction takes more cycles to execute
But...average CPI remains roughly the same
Clock speed goes up
Total execution time goes down, resulting in lower average time per instruction
Under ideal conditions,
Speedup
= ratio of elapsed times between successive instruction completions
= increase in clock speed

= number of pipeline stages

41



Designing a 5-stage Pipeline

Time (in clock cyclesj
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cc2
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Designing a 5-stage Pipeline

w $1, 6($2)

add $3, $5, $0

sw $4, 8(%6)

Time (in clock cyclesy

CC 1

U
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Next time...

* Read chapter 4.5 — 4.7 from textbook

* Next lecture
* Introduction to pipelining hazards
 Structural Hazards
* Data Hazards
* Resolving Structural and Data Hazards

@ maheshl@cs.utah.edu
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