
CS/ECE 3810: Computer 
Organization

Lecture 6: Floating Point

Anton Burtsev
September, 2022



Motivation...



Chapter 3 — Arithmetic for Computers — 3

Floating Point Standard
● Defined by IEEE Std 754-1985

● Institute of Electrical and Electronics Engineers

● Developed in response to divergence of 
representations
● Portability issues for scientific code

● Now almost universally adopted
● Two representations

● Single precision (32-bit)
● Double precision (64-bit) 



4

Floating Point

•  Normalized scientific notation: single non-zero digit to the
   left of the decimal (binary) point – example: 3.5 x 109

  

•  1.010001 x 2-5
two = (1 + 0 x 2-1 + 1 x 2-2 + … + 1 x 2-6) x 2-5

ten

•  A standard notation enables easy exchange of data between
   machines and simplifies hardware algorithms – the 
   IEEE 754 standard defines how floating point numbers
   are represented



5

Sign and Magnitude Representation

Sign       Exponent                                         Fraction
1 bit          8 bits                                              23 bits

S E F

•  More exponent bits  wider range of numbers (not necessarily more
                                             numbers – recall there are infinite real numbers)

•  More fraction bits  higher precision

•  Register value = (-1)S  x F x 2E 

•  Since we are only representing normalized numbers, we are
   guaranteed that the number is of the form 1.xxxx.. 
   Hence, in IEEE 754 standard, the 1 is implicit
   Register value = (-1)S x (1 + F) x 2E



6

Sign and Magnitude Representation

Sign       Exponent                                         Fraction
1 bit          8 bits                                              23 bits

S E F

•  Largest number that can be represented: 2.0 x 2128 = 2.0 x 1038

   (not really – see upcoming details)
•  Smallest number that can be represented: 1.0 x 2-127 = 2.0 x 10-38

   (not really – see upcoming details)
•  Overflow: when representing a number larger than the max;
   Underflow: when representing a number smaller than the min

•  Double precision format: occupies two 32-bit registers:
   Largest:                                  Smallest:
Sign       Exponent                                         Fraction
1 bit          11 bits                                              52 bits

S E F



7

Details

•  The number “0” has a special code so that the implicit 1 does not
   get added: the code is all 0s
   (it may seem that this takes up the representation for 1.0, but
    given how the exponent is represented, that’s not the case)
   (see discussion of denorms in the textbook)

•  The largest exponent value (with zero fraction) represents +/- infinity

•  The largest exponent value (with non-zero fraction) represents
   NaN (not a number) – for the result of 0/0 or (infinity minus infinity)

•  Note that these choices impact the smallest and largest numbers
   that can be represented



8

Exponent Representation

•  To simplify sort, sign was placed as the first bit

•  For a similar reason, the representation of the exponent is also
   modified: in order to use integer compares, it would be preferable to
   have the smallest exponent as 00…0 and the largest exponent as 11…1

•  This is the biased notation, where a bias is subtracted from the
   exponent field to yield the true exponent

•  IEEE 754 single-precision uses a bias of 127  (since the exponent
   must have values between -127 and 128)…double precision uses 
   a bias of 1023

    Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)



9

0 00..0 00…0Value 0

Value 1 0  127  00…0

Value inf
Value NAN
Highest value ~2 x 2127

0  255  00…0
0  255  xx….x
0  254  11….1

Smallest Norm ~2 x 2-126

Largest Denorm ~1 x 2-126

Smallest Denorm  ~2-149

0  0..01  00…0
0  0..00  11…1
0  0..00  00…1

Same rules as above, but the sign bit is 1
Same magnitudes as above, but negative numbers

Exponent field < 127, i.e., after
subtracting bias, they are negative
exponents, representing numbers < 1

2 special cases up top that use the
reserved exponent field of 255

Special case with exponent field 0, used to
represent denorms, that help us gradually approach 0



Chapter 3 — Arithmetic for Computers — 10

Denormal Numbers
● Exponent = 000...0  hidden bit is 0

 Smaller than normal numbers
 allow for gradual underflow, with 

diminishing precision

 Denormal with fraction = 000...0

Two representations 
of 0.0!

BiasS 2Fraction)(01)(x 

0.0  BiasS 20)(01)(x



Chapter 3 — Arithmetic for Computers — 11

Infinities and NaNs
● Exponent = 111...1, Fraction = 000...0

● ±Infinity
● Can be used in subsequent calculations, 

avoiding need for overflow check
● Exponent = 111...1, Fraction ≠ 000...0

● Not-a-Number (NaN)
● Indicates illegal or undefined result

– e.g., 0.0 / 0.0
● Can be used in subsequent calculations



Chapter 3 — Arithmetic for Computers — 12

Floating-Point Example
● Represent –0.75

● –0.75 = (–1)1 × 1.12 × 2–1

● S = 1
● Fraction = 1000…002

● Exponent = –1 + Bias
– Single: –1 + 127 = 126 = 011111102

– Double: –1 + 1023 = 1022 = 011111111102

● Single: 1011111101000…00
● Double: 1011111111101000…00



Chapter 3 — Arithmetic for Computers — 13

Floating-Point Example
● What number is represented by the single-

precision float
11000000101000…00

● S = 1
● Fraction = 01000…002

● Fxponent = 100000012 = 129
● x = (–1)1 × (1 + 012) × 2(129 – 127)

= (–1) × 1.25 × 22

= –5.0



Chapter 3 — Arithmetic for Computers — 14

Floating-Point Addition
● Consider a 4-digit decimal example

● 9.999 × 101 + 1.610 × 10–1

● 1. Align decimal points
● Shift number with smaller exponent
● 9.999 × 101 + 0.016 × 101

● 2. Add significands
● 9.999 × 101 + 0.016 × 101 = 10.015 × 101

● 3. Normalize result & check for over/underflow
● 1.0015 × 102

● 4. Round and renormalize if necessary
● 1.002 × 102



Chapter 3 — Arithmetic for Computers — 15

Floating-Point Addition
● Now consider a 4-digit binary example

● 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375)
● 1. Align binary points

● Shift number with smaller exponent
● 1.0002 × 2–1 + –0.1112 × 2–1

● 2. Add significands
● 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

● 3. Normalize result & check for over/underflow
● 1.0002 × 2–4, with no over/underflow

● 4. Round and renormalize if necessary
● 1.0002 × 2–4 (no change)  = 0.0625



Chapter 3 — Arithmetic for Computers — 16

FP Adder Hardware
● Much more complex than integer adder
● Doing it in one clock cycle would take too 

long
● Much longer than integer operations
● Slower clock would penalize all instructions

● FP adder usually takes several cycles
● Can be pipelined



Chapter 3 — Arithmetic for Computers — 17

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4



Chapter 3 — Arithmetic for Computers — 18

Floating-Point Multiplication
● Consider a 4-digit decimal example

● 1.110 × 1010 × 9.200 × 10–5

● 1. Add exponents
● For biased exponents, subtract bias from sum
● New exponent = 10 + –5 = 5

● 2. Multiply significands
● 1.110 × 9.200 = 10.212    10.212 × 105

● 3. Normalize result & check for over/underflow
● 1.0212 × 106

● 4. Round and renormalize if necessary
● 1.021 × 106

● 5. Determine sign of result from signs of operands
● +1.021 × 106



Chapter 3 — Arithmetic for Computers — 19

Floating-Point Multiplication
● Now consider a 4-digit binary example

● 1.0002 × 2–1 × –1.1102 × 2–2 (0.5 × –0.4375)
● 1. Add exponents

● Unbiased: –1 + –2 = –3
● Biased: (–1 + 127) + (–2 + 127) = –3 + 254 – 127 = –3 + 127

● 2. Multiply significands
● 1.0002 × 1.1102 = 1.1102    1.1102 × 2–3

● 3. Normalize result & check for over/underflow
● 1.1102 × 2–3 (no change) with no over/underflow

● 4. Round and renormalize if necessary
● 1.1102 × 2–3 (no change)

● 5. Determine sign: +ve × –ve  –ve
● –1.1102 × 2–3  = –0.21875



Chapter 3 — Arithmetic for Computers — 20

FP Arithmetic Hardware
● FP multiplier is of similar complexity to FP 

adder
● But uses a multiplier for significands instead 

of an adder
● FP arithmetic hardware usually does

● Addition, subtraction, multiplication, division, 
reciprocal, square-root

● FP  integer conversion
● Operations usually takes several cycles

● Can be pipelined



Chapter 3 — Arithmetic for Computers — 21

FP Instructions in MIPS
● FP hardware is coprocessor 1

● Adjunct processor that extends the ISA
● Separate FP registers

● 32 single-precision: $f0, $f1, … $f31
● Paired for double-precision: $f0/$f1, $f2/$f3, …

– Release 2 of MIPs ISA supports 32 × 64-bit FP reg’s
● FP instructions operate only on FP registers

● Programs generally don’t do integer ops on FP data, 
or vice versa

● More registers with minimal code-size impact
● FP load and store instructions

● lwc1, ldc1, swc1, sdc1
– e.g., ldc1 $f8, 32($sp)



Chapter 3 — Arithmetic for Computers — 22

FP Instructions in MIPS
● Single-precision arithmetic

● add.s, sub.s, mul.s, div.s
– e.g., add.s $f0, $f1, $f6

● Double-precision arithmetic
● add.d, sub.d, mul.d, div.d

– e.g., mul.d $f4, $f4, $f6
● Single- and double-precision comparison

● c.xx.s, c.xx.d (xx is eq, lt, le, …)
● Sets or clears FP condition-code bit

– e.g. c.lt.s $f3, $f4
● Branch on FP condition code true or false

● bc1t, bc1f
– e.g., bc1t TargetLabel



Chapter 3 — Arithmetic for Computers — 23

x86 FP Architecture
● Originally based on 8087 FP coprocessor

● 8 × 80-bit extended-precision registers
● Used as a push-down stack
● Registers indexed from TOS: ST(0), ST(1), …

● FP values are 32-bit or 64 in memory
● Converted on load/store of memory operand
● Integer operands can also be converted

on load/store
● Very difficult to generate and optimize code

● Result: poor FP performance

§3.7 R
e al S

tuff : S
tream

ing S
I M

D
 E

x tension s and A
V

X
 in x 86



Chapter 3 — Arithmetic for Computers — 24

FP Example: °F to °C
● C code:
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}

● fahr in $f12, result in $f0, literals in global memory 
space

● Compiled MIPS code:
f2c: lwc1  $f16, const5($gp)
     lwc2  $f18, const9($gp)
     div.s $f16, $f16, $f18
     lwc1  $f18, const32($gp)
     sub.s $f18, $f12, $f18
     mul.s $f0,  $f16, $f18
     jr    $ra



25

Fixed Point

•  FP operations are much slower than integer ops

•  Fixed point arithmetic uses integers, but assumes that
   every number is multiplied by the same factor 

•  Example: with a factor of 1/1000, the fixed-point
   representations for 1.46, 1.7198, and 5624 are
   respectively           1460, 1720, and 5624000

•  More programming effort and possibly lower precision
   for higher performance



26

Subword Parallelism

•  ALUs are typically designed to perform 64-bit or 128-bit
   arithmetic

•  Some data types are much smaller, e.g., bytes for pixel
   RGB values, half-words for audio samples

•  Partitioning the carry-chains within the ALU can convert
   the 64-bit adder into 4 16-bit adders or 8 8-bit adders

•  A single load can fetch multiple values, and a single
   add instruction can perform multiple parallel additions,
   referred to as subword parallelism



Thank you!



Chapter 3 — Arithmetic for Computers — 28

FP Example: Array Multiplication
● X = X + Y × Z

● All 32 × 32 matrices, 64-bit double-precision elements
● C code:
void mm (double x[][],
         double y[][], double z[][]) {
  int i, j, k;
  for (i = 0; i! = 32; i = i + 1)
    for (j = 0; j! = 32; j = j + 1)
      for (k = 0; k! = 32; k = k + 1)
        x[i][j] = x[i][j]
                  + y[i][k] * z[k][j];
}

● Addresses of x, y, z in $a0, $a1, $a2, and
i, j, k in $s0, $s1, $s2



Chapter 3 — Arithmetic for Computers — 29

FP Example: Array Multiplication
  MIPS code:
    li   $t1, 32       # $t1 = 32 (row size/loop end)
    li   $s0, 0        # i = 0; initialize 1st for loop
L1: li   $s1, 0        # j = 0; restart 2nd for loop
L2: li   $s2, 0        # k = 0; restart 3rd for loop
    sll  $t2, $s0, 5   # $t2 = i * 32 (size of row of x)
    addu $t2, $t2, $s1 # $t2 = i * size(row) + j
    sll  $t2, $t2, 3   # $t2 = byte offset of [i][j]
    addu $t2, $a0, $t2 # $t2 = byte address of x[i][j]
    l.d  $f4, 0($t2)   # $f4 = 8 bytes of x[i][j]
L3: sll  $t0, $s2, 5   # $t0 = k * 32 (size of row of z)
    addu $t0, $t0, $s1 # $t0 = k * size(row) + j
    sll  $t0, $t0, 3   # $t0 = byte offset of [k][j]
    addu $t0, $a2, $t0 # $t0 = byte address of z[k][j]
    l.d  $f16, 0($t0)  # $f16 = 8 bytes of z[k][j]
    …



Chapter 3 — Arithmetic for Computers — 30

FP Example: Array Multiplication
    …
    sll  $t0, $s0, 5       # $t0 = i*32 (size of row of y)
    addu  $t0, $t0, $s2    # $t0 = i*size(row) + k
    sll   $t0, $t0, 3      # $t0 = byte offset of [i][k]
    addu  $t0, $a1, $t0    # $t0 = byte address of y[i][k]
    l.d   $f18, 0($t0)     # $f18 = 8 bytes of y[i][k]
    mul.d $f16, $f18, $f16 # $f16 = y[i][k] * z[k][j]
    add.d $f4, $f4, $f16   # f4=x[i][j] + y[i][k]*z[k][j]
    addiu $s2, $s2, 1      # $k k + 1
    bne   $s2, $t1, L3     # if (k != 32) go to L3
    s.d   $f4, 0($t2)      # x[i][j] = $f4
    addiu $s1, $s1, 1      # $j = j + 1
    bne   $s1, $t1, L2     # if (j != 32) go to L2
    addiu $s0, $s0, 1      # $i = i + 1
    bne   $s0, $t1, L1     # if (i != 32) go to L1


	Slide 1
	Slide 2
	Floating Point Standard
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Denormal Numbers
	Infinities and NaNs
	Floating-Point Example
	Slide 13
	Floating-Point Addition
	Slide 15
	FP Adder Hardware
	Slide 17
	Floating-Point Multiplication
	Slide 19
	FP Arithmetic Hardware
	FP Instructions in MIPS
	Slide 22
	x86 FP Architecture
	FP Example: °F to °C
	Slide 25
	Slide 26
	Slide 27
	FP Example: Array Multiplication
	Slide 29
	Slide 30

