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Instruction Set

•  Understanding the language of the hardware is key to understanding
   the hardware/software interface

•  A program (in say, C) is compiled into an executable that is composed
   of machine instructions – this executable must also run on future
   machines – for example, each Intel processor reads in the same x86
   instructions, but each processor handles instructions differently

•  Java programs are converted into portable bytecode that is converted
   into machine instructions during execution (just-in-time compilation)

•  What are important design principles when defining the instruction
   set architecture (ISA)?
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Instruction Set

•  Important design principles when defining the
   instruction set architecture (ISA):

  keep the hardware simple – the chip must only
   implement basic primitives and run fast

  keep the instructions regular – simplifies the
   decoding/scheduling of instructions

We will later discuss RISC vs CISC
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A Basic MIPS Instruction

C  code:                                  a = b + c ;

Assembly code: (human-friendly machine instructions)
                             add   a, b, c      #  a is the sum of b and c
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A Basic MIPS Instruction

C  code:                                  a = b + c ;

Assembly code: (human-friendly machine instructions)
                             add   a, b, c      #  a is the sum of b and c

Machine code: (hardware-friendly machine instructions)
                     00000010001100100100000000100000

Translate the following C code into assembly code:
                          a = b + c + d + e;
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Example

                 C code    a = b + c + d + e;
translates into the following assembly code:
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Example

                 C code    a = b + c + d + e;
translates into the following assembly code:

                 add  a, b, c                    add  a, b, c
                 add  a, a, d         or       add  f, d, e
                 add  a, a, e                    add  a, a, f

•  Instructions are simple: fixed number of operands (unlike C)
•  A single line of C code is converted into multiple lines of
   assembly code
•  Some sequences are better than others… the second
   sequence needs one more (temporary) variable  f
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Subtract Example

                 C code    f = (g + h) – (i + j);

Assembly code translation with only add and sub instructions:
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Subtract Example

                 C code    f = (g + h) – (i + j);
translates into the following assembly code:

                 add  t0, g, h                add  f, g, h  
                 add  t1,  i, j         or     sub   f, f, i
                 sub  f,   t0, t1              sub   f, f, j
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Operands

•  In C, each “variable” is a location in memory

•  In hardware, each memory access is expensive – if 
   variable a is accessed repeatedly, it helps to bring the
   variable into an on-chip scratchpad and operate on the
   scratchpad (registers)

•  To simplify the instructions, we require that each
    instruction (add, sub) only operate on registers

•  Note: the number of operands (variables) in a C program is
   very large; the number of operands in assembly is fixed…
   there can be only so many scratchpad registers
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Registers

•  The MIPS ISA has 32 registers (x86 has 8 registers) –
    Why not more? Why not less?

•  Each register is 32 bits wide  (modern 64-bit architectures
   have 64-bit wide registers)

•  A 32-bit entity (4 bytes) is referred to as a word

•  To make the code more readable, registers are
   partitioned as $s0-$s7 (C/Java variables), $t0-$t9
   (temporary variables)…
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Binary Stuff

•   8 bits = 1 Byte, also written as 8b = 1B

•  1 word = 32 bits = 4B

•  1KB = 1024 B = 210 B

•  1MB = 1024 x 1024 B = 220 B

•  1GB = 1024 x 1024 x 1024 B = 230 B

•  A 32-bit memory address refers to a number between
   0 and 232 – 1, i.e., it identifies a byte in a 4GB memory
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Memory Operands

•  Values must be fetched from memory before (add and sub)
   instructions can operate on them

 Load word
 lw  $t0, memory-address

 Store word
 sw  $t0, memory-address

How is memory-address determined?

Register Memory

Register Memory
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Memory Address

•  The compiler organizes data in memory… it knows the
    location of every variable (saved in a table)… it can fill
    in the appropriate mem-address for load-store instructions

            int  a, b, c, d[10]

Memory

…

Base address
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Memory Organization

 $gp points to area in memory that saves global variables

Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)
 $gp
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Memory Instruction Format

•  The format of a load instruction:

            destination register
                              source address
                     
         lw    $t0,   8($t3)

  any register
                 a constant that is added to the register in parentheses
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Memory Instruction Format

•  The format of a store instruction:

            source register
                              destination address
                     
         sw    $t0,   8($t3)

  any register
                 a constant that is added to the register in parentheses



18

Example

   int a, b, c, d[10];

   addi   $gp, $zero, 1000   # assume that data is stored at
                                          # base address 1000; placed in $gp;
                                          # $zero is a register that always
                                          # equals zero
   lw   $s1, 0($gp)          # brings value of a into register $s1
   lw   $s2, 4($gp)          # brings value of b into register $s2
   lw   $s3, 8($gp)          # brings value of c into register $s3
   lw   $s4, 12($gp)        # brings value of d[0] into register $s4
   lw   $s5, 16($gp)        # brings value of d[1] into register $s5
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Example

Convert to assembly:
Remember:   int a, b, c, d[10];
C code:     d[3]  = d[2] + a;
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Example

Convert to assembly:
Remember:    int a, b, c, d[10];
C code:     d[3]  = d[2] + a;

Assembly (same assumptions as previous example):  
                   lw      $s0, 0($gp)     #  a is brought into $s0
                   lw      $s1, 20($gp)   #  d[2] is brought into $s1
                   add   $s2, $s0, $s1  #  the sum is in $s2
                   sw     $s2, 24($gp)    #  $s2 is stored into d[3]

Assembly version of the code continues to expand!
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Memory Organization

•  The space allocated on stack by a procedure is termed the activation 
   record (includes saved values and data local to the procedure) – frame
   pointer points to the start of the record and stack pointer points to the 
   end – variable addresses are specified relative to $fp as $sp may 
   change during the execution of the procedure
•  $gp points to area in memory that saves global variables
•  Dynamically allocated storage (with malloc()) is placed on the heap

Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)
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Binary Representation

•  The binary number  

                        01011000 00010101 00101110 11100111

     
       represents the quantity
       0 x 231 + 1 x 230 + 0 x 229 + …  + 1 x 20 
 
•  A 32-bit word can represent  232 numbers between
   0  and  232-1
     … this is known as the unsigned representation as
      we’re assuming that numbers are always positive

Most significant bit Least significant bit
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Negative Numbers

  32 bits can only represent 232 numbers – if we wish to also represent
  negative numbers, we can represent 231 positive numbers (incl zero)
  and 231 negative numbers

     0000 0000 0000 0000 0000 0000 0000 0000two = 0ten

     0000 0000 0000 0000 0000 0000 0000 0001two = 1ten 

                              …
     0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

     1000 0000 0000 0000 0000 0000 0000 0000two = -231

     1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)

     1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

                              …
     1111 1111 1111 1111 1111 1111 1111 1110two = -2

     1111 1111 1111 1111 1111 1111 1111 1111two = -1
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2’s Complement

     0000 0000 0000 0000 0000 0000 0000 0000two = 0ten

     0000 0000 0000 0000 0000 0000 0000 0001two = 1ten 

                              …
     0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

     1000 0000 0000 0000 0000 0000 0000 0000two = -231

     1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)   

     1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

                              …
     1111 1111 1111 1111 1111 1111 1111 1110two = -2

     1111 1111 1111 1111 1111 1111 1111 1111two = -1
Why is this representation favorable?
Consider the sum of  1 and -2  …. we get  -1
Consider the sum of  2 and -1  …. we get +1
This format can directly undergo addition without any conversions!

Each number represents the quantity
   x31 -2

31  +  x30 2
30 + x29 2

29 + … + x1 2
1 + x0 2

0



25

2’s Complement

     0000 0000 0000 0000 0000 0000 0000 0000two = 0ten

     0000 0000 0000 0000 0000 0000 0000 0001two = 1ten 

                              …
     0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

     1000 0000 0000 0000 0000 0000 0000 0000two = -231

     1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)   

     1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

                              …
     1111 1111 1111 1111 1111 1111 1111 1110two = -2

     1111 1111 1111 1111 1111 1111 1111 1111two = -1
Note that the sum of a number x and its inverted representation x’ always
equals  a string of 1s (-1).
      x + x’ = -1
     x’ + 1 = -x        … hence, can compute the negative of a number by
     -x = x’ + 1             inverting all bits and adding 1

Similarly, the sum of  x and –x gives us all zeroes, with a carry of 1
In reality, x + (-x) = 2n     … hence the name 2’s complement
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Example

•  Compute the 32-bit 2’s complement representations
    for the following decimal numbers:
       5,  -5, -6 
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Example

•  Compute the 32-bit 2’s complement representations
    for the following decimal numbers:
       5,  -5, -6 

     5:   0000 0000 0000 0000 0000 0000 0000 0101
    -5:   1111  1111  1111  1111  1111  1111  1111 1011
    -6:   1111  1111  1111  1111  1111  1111  1111 1010

   Given -5, verify that negating and adding 1 yields the
   number 5
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Recap – Numeric Representations

•  Decimal        3510  =  3 x 101  + 5 x 100

•  Binary          001000112  =  1 x 25  +  1 x 21  +  1 x 20

•  Hexadecimal (compact representation)
                     0x 23    or   23hex     =   2 x 161  +  3 x 160

             0-15 (decimal)      0-9, a-f  (hex)
Dec  Binary  Hex
   0    0000     00
   1    0001     01
   2    0010     02
   3    0011     03

Dec  Binary  Hex
   4    0100     04
   5    0101     05
   6    0110     06
   7    0111     07

Dec  Binary  Hex
   8    1000     08
   9    1001     09
 10    1010     0a
 11    1011     0b

Dec  Binary  Hex
 12    1100     0c
 13    1101     0d
 14    1110     0e
 15    1111     0f



Constant or Immediate Operands

● We often use constants in operations

● Example: add 4 to register $s3

lw $t0, AddrConstant4($s1)# $t0 = constant 4

add $s3,$s3,$t0 # $s3 = $s3 + $t0 ($t0 == 4)

● A more elegant way

addi $s3,$s3,4 # $s3 = $s3 + 4



Instruction format (R-type)

● Instructions are 32bit words in memory

● op: Basic operation of the instruction, traditionally called the opcode
● rs: The first register source operand
● rt: The second register source operand
● rd: The register destination operand. It gets the result of the 

operation
● shamt: Shift amount
● funct: Function/function code, selects the specific variant of the 

operation in the op field



Instruction format (R-type)

● Instructions are 32bit words in memory

● This works ok well for instructions like 
– add $s0, $s1, $s3

● But what about 
– lw $t0, 32($s0)

– addi $t0, $t1, 4  # t0 = t1 + 4



Instruction format (I-type)

● Instructions are 32bit words in memory

● op: Basic operation of the instruction, 
traditionally called the opcode

● rs: The first register source operand
● rt: New meaning – destination register



Examples



Register numbers

● $s0 - $s7 map on hardware registers 
16 – 23
– E.g., $s0 is 16, $s1 is 17

● $t0 - $t7 map on hardware registers 
8 – 15
– E.g., $t0 is 8, $t1 is 17



Example

A[300] = h + A[300]
● Gets compiled to



Example

A[300] = h + A[300]
● Gets compiled to

lw  $t0,1200($t1) # Temporary reg $t0 gets A[300]

add $t0,$s2,$t0   # Temporary reg $t0 gets h + A[300]

sw  $t0,1200($t1) # Stores h+A[300] back into A[300]



Example

A[300] = h + A[300]
● Gets compiled to

lw  $t0,1200($t1) # Temporary reg $t0 gets A[300]

add $t0,$s2,$t0   # Temporary reg $t0 gets h + A[300]

sw  $t0,1200($t1) # Stores h+A[300] back into A[300]



Instruction encoding



Example

● Decimal

● Binary





Logical operations



Shift

● Shift left by 4

● Before
– 0000 0000 0000 0000 0000 0000 0000 1001 = 9 

● After 
– 0000 0000 0000 0000 0000 0000 1001 0000 = 144



Encoding shift

● Example
sll $t2,$s0,4 # reg $t2 = reg $s0 << 4 bits

● Shift amount



Control instructions



Branch instructions

● Branch when equal
beq register1, register2, L1

– Go to L1 if register1 equals register2

● Branch when not equal
bne register1, register2, L1

– Go to L1 if register1 does not equal register2

● Unconditional jump
– j L1

– Jump to L1



If then .. else … 

if (i == j) f = g + h; else f = g – h;
● Assume that f,g, h, i, and j are in $s0, $s1, etc.



If then .. else … 

if (i == j) f = g + h; else f = g – h;
● Assume that f,g, h, i, and j are in $s0, $s1, etc.

     bne $s3,$s4,Else # go to Else if i  j≠ j

     add $s0,$s1,$s2  # f = g + h (skipped if i  j)≠ j

     j Exit           # unconditional jump to Exit

Else:

     sub $s0,$s1,$s2  # f = g – h (skipped if i = j)

Exit:



Loops

while (save[i] == k)

    i += 1;
● Assume that i and k are in $s3 and $s5



Loops

while (save[i] == k)

    i += 1;
● Assume that i and k are in $s3 and $s5

Loop: sll $t1,$s3,2

      add $t1,$t1,$s6   # $t1 = address of save[i]

      lw $t0,0($t1)     # Temp reg $t0 = save[i]

      bne $t0,$s5, Exit # go to Exit if save[i]  k≠ j

      addi $s3,$s3,1    # i = i + 1

      j Loop            # go to Loop

Exit:



Comparisons

● Set on less than
slt $t0, $s3, $s4 # $t0 = 1 if $s3 < $s4

● Or with a constrant
slti $t0,$s2,10 # $t0 = 1 if $s2 < 10

● Now you can use slt, slti, beq, and bne along 
with $zero (register that is always 0)



Branch instructions

● Branch when equal
beq register1, register2, L1

– Go to L1 if register1 equals register2

● Branch when not equal
bne register1, register2, L1

– Go to L1 if register1 does not equal register2

● Unconditional jump
– j L1

– Jump to L1



Branch instructions

● Branch when equal
beq register1, register2, L1

– Go to L1 if register1 equals register2

● Branch when not equal
bne register1, register2, L1

– Go to L1 if register1 does not equal register2

● Unconditional jump
– j L1

– Jump to L1
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Shift Operations

● shamt: how many positions to shift 
● Shift left logical

● Shift left and fill with 0 bits
● sll by i bits multiplies by 2i

● Shift right logical
● Shift right and fill with 0 bits
● srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits
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AND Operations
● Useful to mask bits in a word

● Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0
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OR Operations
● Useful to include bits in a word

● Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0



Chapter 2 — Instructions: Language of the Computer — 56

NOT Operations
● Useful to invert bits in a word

● Change 0 to 1, and 1 to 0
● MIPS has NOR 3-operand instruction

● a NOR b == NOT ( a OR b )

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Register 0: always 
read as zero



Consider a comparison instruction:
     slt   $t0, $t1, $zero
and $t1 contains the 32-bit number   1111 01…01

What gets stored in $t0?

Signed and unsigned comparisons

57



Consider a comparison instruction:
     slt   $t0, $t1, $zero
and $t1 contains the 32-bit number   1111 01…01

What gets stored in $t0?
The result depends on whether $t1 is a signed or unsigned
 number – the compiler/programmer must track this and
 accordingly use either slt  or  sltu

   slt    $t0, $t1, $zero     stores  1 in $t0
   sltu  $t0, $t1, $zero     stores  0 in $t0

Signed and unsigned comparisons

58
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Sign Extension

•  Occasionally, 16-bit signed numbers must be converted
   into 32-bit signed numbers – for example, when doing an
   add with an immediate operand

•  The conversion is simple: take the most significant bit and
   use it to fill up the additional bits on the left – known as
   sign extension

              So 210 goes from  0000 0000 0000 0010   to

       0000 0000 0000 0000 0000 0000 0000 0010

            and -210 goes from 1111 1111 1111 1110   to

       1111 1111 1111 1111 1111 1111 1111 1110



Procedures



Calling functions

// some code...
foo();
// more code..

● $ra contains information 
for how to return from a 
subroutine 
● i.e., from foo()

● Functions can be called 
from different places in the 
program

       if (a == 0) {
        foo();
        …

    } else {

        foo();

        …

    }
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Procedure Call Instructions
● Procedure call: jump and link
jal ProcedureLabel

● Address of following instruction put in $ra
● Jumps to target address

● Procedure return: jump register
jr $ra

● Copies $ra to program counter
● Can also be used for computed jumps

– e.g., for case/switch statements



Calling conventions

● Goal: re-entrant programs
● How to pass arguments

– On the stack? 
– In registers?

● How to return values
– On the stack? 
– In registers?  

● What registers have to be preserved
– All? Some subset?

● Conventions differ from compiler, optimizations, etc.



Passing arguments

● First 4 arguments in registers
● $a0 - $a3

● Other arguments on the stack
● Return values in registers

● $v0 - $v1



Preserving registers
● $t0 – $t9: temporaries

● Can be overwritten by callee
● $s0 – $s7: saved

● Must be saved/restored by callee
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Leaf Procedure Example
● C code:
int leaf_example (int g, h, i, j)
{ int f;
  f = (g + h) - (i + j);
  return f;
}

● Arguments g, …, j in $a0, …, $a3
● f in $s0 (hence, need to save $s0 on stack)
● Result in $v0
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Leaf Procedure Example
● MIPS code:
leaf_example:
  addi $sp, $sp, -4
  sw   $s0, 0($sp)
  add  $t0, $a0, $a1
  add  $t1, $a2, $a3
  sub  $s0, $t0, $t1
  add  $v0, $s0, $zero
  lw   $s0, 0($sp)
  addi $sp, $sp, 4
  jr   $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return



Recursive invocations

foo(int a) {
    if (a == 0)
        return;
    a--;
    foo(a);
    return;
}

foo(4);
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Non-Leaf Procedures
● Procedures that call other procedures
● For nested call, caller needs to save on 

the stack:
● Its return address
● Any arguments and temporaries needed after 

the call
● Restore from the stack after the call
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Non-Leaf Procedure Example
● C code:
int fact (int n)
{ 
  if (n < 1) return f;
  else return n * fact(n - 1);
}

● Argument n in $a0
● Result in $v0
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Non-Leaf Procedure Example
● MIPS code:
fact:
    addi $sp, $sp, -8     # adjust stack for 2 items
    sw   $ra, 4($sp)      # save return address
    sw   $a0, 0($sp)      # save argument
    slti $t0, $a0, 1      # test for n < 1
    beq  $t0, $zero, L1
    addi $v0, $zero, 1    # if so, result is 1
    addi $sp, $sp, 8      #   pop 2 items from stack
    jr   $ra              #   and return
L1: addi $a0, $a0, -1     # else decrement n  
    jal  fact             # recursive call
    lw   $a0, 0($sp)      # restore original n
    lw   $ra, 4($sp)      #   and return address
    addi $sp, $sp, 8      # pop 2 items from stack
    mul  $v0, $a0, $v0    # multiply to get result
    jr   $ra              # and return



Local variables



What types of variables do you 
know? 

● Or where these variables are allocated in 
memory?



What types of variables do you 
know? 

● Global variables
● Initialized → data section
● Uninitalized → BSS

● Dynamic variables
● Heap

● Local variables
● Stack



Global variables

1. #include <stdio.h>
2.
3. char hello[] = "Hello";
4. int main(int ac, char **av)
5. {
6.     static char world[] = "world!";
7.     printf("%s %s\n", hello, world);
8.     return 0;
9. }



Global variables

1. #include <stdio.h>
2.
3. char hello[] = "Hello";
4. int main(int ac, char **av)
5. {
6.     static char world[] = "world!";
7.     printf("%s %s\n", hello, world);
8.     return 0;
9. }
● Allocated in the data section

● It is split in initialized (non-zero), and non-initialized (zero)
● As well as read/write, and read only data section



Global variables



Dynamic variables (heap)

1. #include <stdio.h>
2. #include <string.h>
3. #include <stdlib.h>
4.
5. char hello[] = "Hello";
6. int main(int ac, char **av)
7. {   
8.     char world[] = "world!";
9.     char *str = malloc(64); 
10.     memcpy(str, "beautiful", 64);
11.     printf("%s %s %s\n", hello, str, world);
12.     return 0;
13. }



Dynamic variables (heap)

1. #include <stdio.h>
2. #include <string.h>
3. #include <stdlib.h>
4.
5. char hello[] = "Hello";
6. int main(int ac, char **av)
7. {   
8.     char world[] = "world!";
9.     char *str = malloc(64); 
10.     memcpy(str, "beautiful", 64);
11.     printf("%s %s %s\n", hello, str, world);
12.     return 0;
13. }
● Allocated on the heap

● Special area of memory provided by the OS from where malloc() can allocate memory



Dynamic variables (heap)



Local variables
● Local variables

1. #include <stdio.h>
2.
3. char hello[] = "Hello";
4. int main(int ac, char **av)
5. {
6.     //static char world[] = "world!";
7.     char world[] = "world!";
8.     printf("%s %s\n", hello, world);
9.     return 0;
10. }



Local variables...
● Each function has private instances of local 

variables

     foo(int x) {
         int a, b, c;
         ...
         return; 
     }

● Function can be called recursively

    foo(int x) {
        int a, b, c;
        a = x + 1;
        if ( a < 100 ) 
            foo(a); 
        return; 
    }



How to allocate local variables?

void my_function()
{
    int a, b, c;
    …
}



How to allocate local variables?

void my_function()
{
    int a, b, c;
    …
}

● On the stack!
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Local Data on the Stack

● Local data allocated by callee
● e.g., C automatic variables

● Procedure frame (activation record)
● Used by some compilers to manage stack storage
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Memory Layout
● Text: program code
● Static data: global 

variables
● e.g., static variables in C, 

constant arrays and 
strings

● $gp initialized to address 
allowing ±offsets into this 
segment

● Dynamic data: heap
● E.g., malloc in C, new in 

Java
● Stack: automatic storage
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Recap: Procedure Calling
 Steps required

1. Place parameters in registers

2. Transfer control to procedure

3. Acquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call
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Calling convention (again)



Binary numbers, << 1, mul 2



Strings
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Character Data
● Byte-encoded character sets

● ASCII: 128 characters
– 95 graphic, 33 control

● Latin-1: 256 characters
– ASCII, +96 more graphic characters

● Unicode: 32-bit character set
● Used in Java, C++ wide characters, …
● Most of the world’s alphabets, plus symbols
● UTF-8, UTF-16: variable-length encodings
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Byte/Halfword Operations
● Could use bitwise operations
● MIPS byte/halfword load/store

● String processing is a common case
lb rt, offset(rs)     lh rt, offset(rs)

● Sign extend to 32 bits in rt
lbu rt, offset(rs)    lhu rt, offset(rs)

● Zero extend to 32 bits in rt
sb rt, offset(rs)     sh rt, offset(rs)

● Store just rightmost byte/halfword
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String Copy Example
● C code (naïve):

● Null-terminated string

void strcpy (char x[], char y[])
{ int i;
  i = 0;
  while ((x[i]=y[i])!='\0')
    i += 1;
}

● Addresses of x, y in $a0, $a1
● i in $s0
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String Copy Example
● MIPS code:
strcpy:
    addi $sp, $sp, -4      # adjust stack for 1 item
    sw   $s0, 0($sp)       # save $s0
    add  $s0, $zero, $zero # i = 0
L1: add  $t1, $s0, $a1     # addr of y[i] in $t1
    lbu  $t2, 0($t1)       # $t2 = y[i]
    add  $t3, $s0, $a0     # addr of x[i] in $t3
    sb   $t2, 0($t3)       # x[i] = y[i]
    beq  $t2, $zero, L2    # exit loop if y[i] == 0  
    addi $s0, $s0, 1       # i = i + 1
    j    L1                # next iteration of loop
L2: lw   $s0, 0($sp)       # restore saved $s0
    addi $sp, $sp, 4       # pop 1 item from stack
    jr   $ra               # and return
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0000 0000 0111 1101 0000 0000 0000 0000

32-bit Constants
● Most constants are small

● 16-bit immediate is sufficient
● For the occasional 32-bit constant

lui rt, constant
● Copies 16-bit constant to left 16 bits of rt
● Clears right 16 bits of rt to 0

lhi $s0, 61

0000 0000 0111 1101 0000 1001 0000 0000ori $s0, $s0, 2304
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J-Type instructions
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Branch Addressing
● Branch instructions specify

● Opcode, two registers, target address
● Most branch targets are near branch

● Forward or backward

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

 PC-relative addressing
 Target address = PC + offset × 4
 PC already incremented by 4 by this time
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Jump Addressing
● Jump (j and jal) targets could be 

anywhere in text segment
● Encode full address in instruction

op address

6 bits 26 bits

 (Pseudo)Direct jump addressing
 Target address = PC31…28 : (address × 4)
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Branching Far Away
● If branch target is too far to encode with 

16-bit offset, assembler rewrites the code
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Branching Far Away
● If branch target is too far to encode with 

16-bit offset, assembler rewrites the code
● Example

beq $s0,$s1, L1
↓

bne $s0,$s1, L2
j L1

L2: …
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Addressing Mode Summary
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Target Addressing Example
● Loop code from earlier example

● Assume Loop at location 80000

Loop: sll  $t1, $s3, 2 80000 0 0 19 9 4 0

      add  $t1, $t1, $s6 80004 0 9 22 9 0 32

      lw   $t0, 0($t1) 80008 35 9 8 0

      bne  $t0, $s5, Exit 80012 5 8 21 2

      addi $s3, $s3, 1 80016 8 19 19 1

      j    Loop 80020 2 20000

Exit: … 80024



Recap: registers



Linking and loading



What is inside a program?

● What parts do we need to run code?



Parts needed to run a program

● Code itself
● By convention it's called text

● Stack
● To call functions

● Space for variables



What types of variables do you 
know? 

● Global variables
● Initialized → data section
● Uninitalized → BSS

● Local variables
● Stack

● Dynamic variables
● Heap



Memory layout of a process



Where do these areas come 
from?



Memory layout of a process

Compiler and linker

OS kernel



Load program in memory
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Translation and Startup

Many compilers produce 
object modules directly

Static linking
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Translation and Startup

Many compilers produce 
object modules directly

Static linking
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Assembler Pseudoinstructions
● Most assembler instructions represent 

machine instructions one-to-one
● Pseudoinstructions: high-level assembly 

constructs
move $t0, $t1 → add $t0, $zero, $t1

blt $t0, $t1, L  → slt $at, $t0, $t1
bne $at, $zero, L

● $at (register 1): assembler temporary
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Translation and Startup

Many compilers produce 
object modules directly

Static linking
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Object files (.o)



Object files

● Conceptually: five kinds of information
● Header: code size, name of the source file, creation date
● Object code: binary instruction and data generated by the 

compiler
● Relocation information: list of places in the object code that 

need to be patched
● Symbols: global symbols defined by this module

– Symbols to be imported from other modules
● Debugging information: source file and file number 

information, local symbols, data structure description



Example: UNIX A.OUT

● Small header
● Text section

● Executable code
● Data section

● Initial values for 
static data
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Translation and Startup

Many compilers produce 
object modules directly

Static linking
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Why linking?



Why linking?

● Modularity
● Program can be written as a collection of modules
● We can build libraries of common functions

● Efficiency
● Code compilation

– Change one source file, recompile it, and re-link the executable
● Space efficiency

– Share common code across executable files
– On disk and in memory



Example: printf()

● 1000 programs in a typical UNIX system
● 1000 copies of printf

● How big is printf() actually?



Motivation
● Disk space

● 2504 programs in /usr/bin on my Linux laptop 
– ls /usr/bin | wc -l

● printf() is a large function
● Handles conversion of multiple types to strings

– 5-10K

● This means 10-25MB of disk can be wasted just on printf()
● Runtime memory costs are  

● 5-10K times the number of running programs
● 250 programs running on my Linux laptop 

– ps -aux | wc -l
– 1MB-2.5MB – huge number for most systems 15-20 years ago



Two kinds of linking

● Static
● The program is linked at compilation time
● main() + static libraries => executable

● Dynamic
● The program is linked right when it’s loaded into 

memory
● main() + dynamic libraries => 
executable



Example: size of a statically vs 
dynamically linked program

● On Ubuntu 16.04 (gcc 5.4.0, libc 2.23) 
● Statically linked trivial example

– gcc -m32 -static hello-int.c -o test
– 725KB

● Dyncamically linked trivial example
– gcc -m32 hello-int.c -o test
– 7KB



Linking



● Input: object files (code modules)
● Each object file contains

● A set of segments
– Code
– Data

● A symbol table
– Imported & exported symbols

● Output: executable file, library, etc.





Merging 
segment

s



Merging code



What needs to be done to merge 
(or move) code in memory?



Detour: real programs



  4 # All program code is placed after the
  5 # .text assembler directive
  6 .text
  7 
  8 # Declare main as a global function
  9 .globl  main
 10 
 11 # The label 'main' represents the starting point
 12 main:
 13 
 ...  
 19 
 20 # All memory structures are placed after the
 21 # .data assembler directive
 22 .data
 23 
 ...



System calls



  1 # "Hello World" in MIPS assembly
  2 # From: http://labs.cs.upt.ro/labs/so2/html/resources/nachos-doc/mipsf.html
  3 
  4 # All program code is placed after the
  5 # .text assembler directive
  6 .text
  7 
  8 # Declare main as a global function
  9 .globl  main
 10 
 11 # The label 'main' represents the starting point
 12 main:
 13         # Run the print_string syscall which has code 4
 14         li      $v0,4           # Code for syscall: print_string
 15         la      $a0, msg        # Pointer to string (load the address of msg)
 16         syscall
 17         li      $v0,10          # Code for syscall: exit
 18         syscall
 19 
 20 # All memory structures are placed after the
 21 # .data assembler directive
 22         .data
 23 
 ...



  1 # "Hello World" in MIPS assembly
  2 # From: http://labs.cs.upt.ro/labs/so2/html/resources/nachos-doc/mipsf.html
  3 
  4 # All program code is placed after the
  5 # .text assembler directive
  6 .text
  7 
  8 # Declare main as a global function
  9 .globl  main
 10 
 11 # The label 'main' represents the starting point
 12 main:
 13         # Run the print_string syscall which has code 4
 14         li      $v0,4           # Code for syscall: print_string
 15         la      $a0, msg        # Pointer to string (load the address of msg)
 16         syscall
 17         li      $v0,10          # Code for syscall: exit
 18         syscall
 19 
 20 # All memory structures are placed after the
 21 # .data assembler directive
 22         .data
 23 
 24         # The .asciiz assembler directive creates
 25         # an ASCII string in memory terminated by
 26         # the null character. Note that strings are
 27         # surrounded by double-quotes
 28 msg:    .asciiz "Hello World!\n"



 int main(int argc, char* argv[], char **envp) { 

      while (*envp != NULL) { 
        printf("%s\n", *envp++); 
      } 
      return 0; 
    }

    $ gcc t.c 
    $ ./a.out 
    SHELL=/bin/bash 
    TERM=xterm-256color 
    HISTSIZE=1000 
    EDITOR=vim 
    LANG=en_US.UTF-8 
    HISTCONTROL=ignoredups 
    ARCH=x86_64 
    DISPLAY=:0 
    COLORTERM=truecolor 
    ... 

Main’s signature





Relocation



User Text Segment [00400000]..[00440000]
[00400000] 8fa40000  lw $4, 0($29)            ; 183: lw $a0 0($sp) # argc 
[00400004] 27a50004  addiu $5, $29, 4         ; 184: addiu $a1 $sp 4 # argv 
[00400008] 24a60004  addiu $6, $5, 4          ; 185: addiu $a2 $a1 4 # envp 
[0040000c] 00041080  sll $2, $4, 2            ; 186: sll $v0 $a0 2 
[00400010] 00c23021  addu $6, $6, $2          ; 187: addu $a2 $a2 $v0 
[00400014] 0c100009  jal 0x00400024 [main]    ; 188: jal main 
[00400018] 00000000  nop                      ; 189: nop 
[0040001c] 3402000a  ori $2, $0, 10           ; 191: li $v0 10 
[00400020] 0000000c  syscall                  ; 192: syscall # syscall 10 
(exit) 
[00400024] 34020004  ori $2, $0, 4            ; 14: li $v0,4 # Code for 
syscall: print_string 
[00400028] 3c011001  lui $1, 4097 [msg]       ; 15: la $a0, msg # Pointer to 
string (load the address of msg) 
[0040002c] 34240000  ori $4, $1, 0 [msg]      
[00400030] 0000000c  syscall                  ; 16: syscall 
[00400034] 3402000a  ori $2, $0, 10           ; 17: li $v0,10 # Code for 
syscall: exit 
[00400038] 0000000c  syscall                  ; 18: syscall 
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Loading a Program
● Load from image file on disk into memory

1. Read header to determine segment sizes
2. Create virtual address space
3. Copy text and initialized data into memory

– Or set page table entries so they can be faulted in

4. Set up arguments on stack
5. Initialize registers (including $sp, $fp, $gp)
6. Jump to startup routine

– Copies arguments to $a0, … and calls main
– When main returns, do exit syscall
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Dynamic Linking
● Only link/load library procedure when it is 

called
● Requires procedure code to be relocatable
● Avoids image bloat caused by static linking of 

all (transitively) referenced libraries
● Automatically picks up new library versions
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Lazy Linkage

Indirection table

Stub: Loads routine ID,
Jump to linker/loader

Linker/loader code

Dynamically
mapped code
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