
CS/ECE 3810: Computer
Organization

Lecture 4: MIPS instruction set

Anton Burtsev
September, 2022

2

Instruction Set

• Understanding the language of the hardware is key to understanding
 the hardware/software interface

• A program (in say, C) is compiled into an executable that is composed
 of machine instructions – this executable must also run on future
 machines – for example, each Intel processor reads in the same x86
 instructions, but each processor handles instructions differently

• Java programs are converted into portable bytecode that is converted
 into machine instructions during execution (just-in-time compilation)

• What are important design principles when defining the instruction
 set architecture (ISA)?

3

Instruction Set

• Important design principles when defining the
 instruction set architecture (ISA):

 keep the hardware simple – the chip must only
 implement basic primitives and run fast

 keep the instructions regular – simplifies the
 decoding/scheduling of instructions

We will later discuss RISC vs CISC

4

A Basic MIPS Instruction

C code: a = b + c ;

Assembly code: (human-friendly machine instructions)
 add a, b, c # a is the sum of b and c

5

A Basic MIPS Instruction

C code: a = b + c ;

Assembly code: (human-friendly machine instructions)
 add a, b, c # a is the sum of b and c

Machine code: (hardware-friendly machine instructions)
 00000010001100100100000000100000

Translate the following C code into assembly code:
 a = b + c + d + e;

6

Example

 C code a = b + c + d + e;
translates into the following assembly code:

7

Example

 C code a = b + c + d + e;
translates into the following assembly code:

 add a, b, c add a, b, c
 add a, a, d or add f, d, e
 add a, a, e add a, a, f

• Instructions are simple: fixed number of operands (unlike C)
• A single line of C code is converted into multiple lines of
 assembly code
• Some sequences are better than others… the second
 sequence needs one more (temporary) variable f

8

Subtract Example

 C code f = (g + h) – (i + j);

Assembly code translation with only add and sub instructions:

9

Subtract Example

 C code f = (g + h) – (i + j);
translates into the following assembly code:

 add t0, g, h add f, g, h
 add t1, i, j or sub f, f, i
 sub f, t0, t1 sub f, f, j

10

Operands

• In C, each “variable” is a location in memory

• In hardware, each memory access is expensive – if
 variable a is accessed repeatedly, it helps to bring the
 variable into an on-chip scratchpad and operate on the
 scratchpad (registers)

• To simplify the instructions, we require that each
 instruction (add, sub) only operate on registers

• Note: the number of operands (variables) in a C program is
 very large; the number of operands in assembly is fixed…
 there can be only so many scratchpad registers

11

Registers

• The MIPS ISA has 32 registers (x86 has 8 registers) –
 Why not more? Why not less?

• Each register is 32 bits wide (modern 64-bit architectures
 have 64-bit wide registers)

• A 32-bit entity (4 bytes) is referred to as a word

• To make the code more readable, registers are
 partitioned as $s0-$s7 (C/Java variables), $t0-$t9
 (temporary variables)…

12

Binary Stuff

• 8 bits = 1 Byte, also written as 8b = 1B

• 1 word = 32 bits = 4B

• 1KB = 1024 B = 210 B

• 1MB = 1024 x 1024 B = 220 B

• 1GB = 1024 x 1024 x 1024 B = 230 B

• A 32-bit memory address refers to a number between
 0 and 232 – 1, i.e., it identifies a byte in a 4GB memory

13

Memory Operands

• Values must be fetched from memory before (add and sub)
 instructions can operate on them

 Load word
 lw $t0, memory-address

 Store word
 sw $t0, memory-address

How is memory-address determined?

Register Memory

Register Memory

14

Memory Address

• The compiler organizes data in memory… it knows the
 location of every variable (saved in a table)… it can fill
 in the appropriate mem-address for load-store instructions

 int a, b, c, d[10]

Memory

…

Base address

15

Memory Organization

 $gp points to area in memory that saves global variables

Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)
 $gp

16

Memory Instruction Format

• The format of a load instruction:

 destination register
 source address

 lw $t0, 8($t3)

 any register
 a constant that is added to the register in parentheses

17

Memory Instruction Format

• The format of a store instruction:

 source register
 destination address

 sw $t0, 8($t3)

 any register
 a constant that is added to the register in parentheses

18

Example

 int a, b, c, d[10];

 addi $gp, $zero, 1000 # assume that data is stored at
 # base address 1000; placed in $gp;
 # $zero is a register that always
 # equals zero
 lw $s1, 0($gp) # brings value of a into register $s1
 lw $s2, 4($gp) # brings value of b into register $s2
 lw $s3, 8($gp) # brings value of c into register $s3
 lw $s4, 12($gp) # brings value of d[0] into register $s4
 lw $s5, 16($gp) # brings value of d[1] into register $s5

19

Example

Convert to assembly:
Remember: int a, b, c, d[10];
C code: d[3] = d[2] + a;

20

Example

Convert to assembly:
Remember: int a, b, c, d[10];
C code: d[3] = d[2] + a;

Assembly (same assumptions as previous example):
 lw $s0, 0($gp) # a is brought into $s0
 lw $s1, 20($gp) # d[2] is brought into $s1
 add $s2, $s0, $s1 # the sum is in $s2
 sw $s2, 24($gp) # $s2 is stored into d[3]

Assembly version of the code continues to expand!

21

Memory Organization

• The space allocated on stack by a procedure is termed the activation
 record (includes saved values and data local to the procedure) – frame
 pointer points to the start of the record and stack pointer points to the
 end – variable addresses are specified relative to $fp as $sp may
 change during the execution of the procedure
• $gp points to area in memory that saves global variables
• Dynamically allocated storage (with malloc()) is placed on the heap

Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)

22

Binary Representation

• The binary number

 01011000 00010101 00101110 11100111

 represents the quantity
 0 x 231 + 1 x 230 + 0 x 229 + … + 1 x 20

• A 32-bit word can represent 232 numbers between
 0 and 232-1
 … this is known as the unsigned representation as
 we’re assuming that numbers are always positive

Most significant bit Least significant bit

23

Negative Numbers

 32 bits can only represent 232 numbers – if we wish to also represent
 negative numbers, we can represent 231 positive numbers (incl zero)
 and 231 negative numbers

 0000 0000 0000 0000 0000 0000 0000 0000two = 0ten

 0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

 …
 0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

 1000 0000 0000 0000 0000 0000 0000 0000two = -231

 1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)

 1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

 …
 1111 1111 1111 1111 1111 1111 1111 1110two = -2

 1111 1111 1111 1111 1111 1111 1111 1111two = -1

24

2’s Complement

 0000 0000 0000 0000 0000 0000 0000 0000two = 0ten

 0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

 …
 0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

 1000 0000 0000 0000 0000 0000 0000 0000two = -231

 1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)

 1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

 …
 1111 1111 1111 1111 1111 1111 1111 1110two = -2

 1111 1111 1111 1111 1111 1111 1111 1111two = -1
Why is this representation favorable?
Consider the sum of 1 and -2 …. we get -1
Consider the sum of 2 and -1 …. we get +1
This format can directly undergo addition without any conversions!

Each number represents the quantity
 x31 -2

31 + x30 2
30 + x29 2

29 + … + x1 2
1 + x0 2

0

25

2’s Complement

 0000 0000 0000 0000 0000 0000 0000 0000two = 0ten

 0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

 …
 0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

 1000 0000 0000 0000 0000 0000 0000 0000two = -231

 1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)

 1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

 …
 1111 1111 1111 1111 1111 1111 1111 1110two = -2

 1111 1111 1111 1111 1111 1111 1111 1111two = -1
Note that the sum of a number x and its inverted representation x’ always
equals a string of 1s (-1).
 x + x’ = -1
 x’ + 1 = -x … hence, can compute the negative of a number by
 -x = x’ + 1 inverting all bits and adding 1

Similarly, the sum of x and –x gives us all zeroes, with a carry of 1
In reality, x + (-x) = 2n … hence the name 2’s complement

26

Example

• Compute the 32-bit 2’s complement representations
 for the following decimal numbers:
 5, -5, -6

27

Example

• Compute the 32-bit 2’s complement representations
 for the following decimal numbers:
 5, -5, -6

 5: 0000 0000 0000 0000 0000 0000 0000 0101
 -5: 1111 1111 1111 1111 1111 1111 1111 1011
 -6: 1111 1111 1111 1111 1111 1111 1111 1010

 Given -5, verify that negating and adding 1 yields the
 number 5

28

Recap – Numeric Representations

• Decimal 3510 = 3 x 101 + 5 x 100

• Binary 001000112 = 1 x 25 + 1 x 21 + 1 x 20

• Hexadecimal (compact representation)
 0x 23 or 23hex = 2 x 161 + 3 x 160

 0-15 (decimal)  0-9, a-f (hex)
Dec Binary Hex
 0 0000 00
 1 0001 01
 2 0010 02
 3 0011 03

Dec Binary Hex
 4 0100 04
 5 0101 05
 6 0110 06
 7 0111 07

Dec Binary Hex
 8 1000 08
 9 1001 09
 10 1010 0a
 11 1011 0b

Dec Binary Hex
 12 1100 0c
 13 1101 0d
 14 1110 0e
 15 1111 0f

Constant or Immediate Operands

● We often use constants in operations

● Example: add 4 to register $s3

lw $t0, AddrConstant4($s1)# $t0 = constant 4

add $s3,$s3,$t0 # $s3 = $s3 + $t0 ($t0 == 4)

● A more elegant way

addi $s3,$s3,4 # $s3 = $s3 + 4

Instruction format (R-type)

● Instructions are 32bit words in memory

● op: Basic operation of the instruction, traditionally called the opcode
● rs: The first register source operand
● rt: The second register source operand
● rd: The register destination operand. It gets the result of the

operation
● shamt: Shift amount
● funct: Function/function code, selects the specific variant of the

operation in the op field

Instruction format (R-type)

● Instructions are 32bit words in memory

● This works ok well for instructions like
– add $s0, $s1, $s3

● But what about
– lw $t0, 32($s0)

– addi $t0, $t1, 4 # t0 = t1 + 4

Instruction format (I-type)

● Instructions are 32bit words in memory

● op: Basic operation of the instruction,
traditionally called the opcode

● rs: The first register source operand
● rt: New meaning – destination register

Examples

Register numbers

● $s0 - $s7 map on hardware registers
16 – 23
– E.g., $s0 is 16, $s1 is 17

● $t0 - $t7 map on hardware registers
8 – 15
– E.g., $t0 is 8, $t1 is 17

Example

A[300] = h + A[300]
● Gets compiled to

Example

A[300] = h + A[300]
● Gets compiled to

lw $t0,1200($t1) # Temporary reg $t0 gets A[300]

add $t0,$s2,$t0 # Temporary reg $t0 gets h + A[300]

sw $t0,1200($t1) # Stores h+A[300] back into A[300]

Example

A[300] = h + A[300]
● Gets compiled to

lw $t0,1200($t1) # Temporary reg $t0 gets A[300]

add $t0,$s2,$t0 # Temporary reg $t0 gets h + A[300]

sw $t0,1200($t1) # Stores h+A[300] back into A[300]

Instruction encoding

Example

● Decimal

● Binary

Logical operations

Shift

● Shift left by 4

● Before
– 0000 0000 0000 0000 0000 0000 0000 1001 = 9

● After
– 0000 0000 0000 0000 0000 0000 1001 0000 = 144

Encoding shift

● Example
sll $t2,$s0,4 # reg $t2 = reg $s0 << 4 bits

● Shift amount

Control instructions

Branch instructions

● Branch when equal
beq register1, register2, L1

– Go to L1 if register1 equals register2

● Branch when not equal
bne register1, register2, L1

– Go to L1 if register1 does not equal register2

● Unconditional jump
– j L1

– Jump to L1

If then .. else …

if (i == j) f = g + h; else f = g – h;
● Assume that f,g, h, i, and j are in $s0, $s1, etc.

If then .. else …

if (i == j) f = g + h; else f = g – h;
● Assume that f,g, h, i, and j are in $s0, $s1, etc.

 bne $s3,$s4,Else # go to Else if i j≠ j

 add $s0,$s1,$s2 # f = g + h (skipped if i j)≠ j

 j Exit # unconditional jump to Exit

Else:

 sub $s0,$s1,$s2 # f = g – h (skipped if i = j)

Exit:

Loops

while (save[i] == k)

 i += 1;
● Assume that i and k are in $s3 and $s5

Loops

while (save[i] == k)

 i += 1;
● Assume that i and k are in $s3 and $s5

Loop: sll $t1,$s3,2

 add $t1,$t1,$s6 # $t1 = address of save[i]

 lw $t0,0($t1) # Temp reg $t0 = save[i]

 bne $t0,$s5, Exit # go to Exit if save[i] k≠ j

 addi $s3,$s3,1 # i = i + 1

 j Loop # go to Loop

Exit:

Comparisons

● Set on less than
slt $t0, $s3, $s4 # $t0 = 1 if $s3 < $s4

● Or with a constrant
slti $t0,$s2,10 # $t0 = 1 if $s2 < 10

● Now you can use slt, slti, beq, and bne along
with $zero (register that is always 0)

Branch instructions

● Branch when equal
beq register1, register2, L1

– Go to L1 if register1 equals register2

● Branch when not equal
bne register1, register2, L1

– Go to L1 if register1 does not equal register2

● Unconditional jump
– j L1

– Jump to L1

Branch instructions

● Branch when equal
beq register1, register2, L1

– Go to L1 if register1 equals register2

● Branch when not equal
bne register1, register2, L1

– Go to L1 if register1 does not equal register2

● Unconditional jump
– j L1

– Jump to L1

Chapter 2 — Instructions: Language of the Computer — 53

Shift Operations

● shamt: how many positions to shift
● Shift left logical

● Shift left and fill with 0 bits
● sll by i bits multiplies by 2i

● Shift right logical
● Shift right and fill with 0 bits
● srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 54

AND Operations
● Useful to mask bits in a word

● Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

Chapter 2 — Instructions: Language of the Computer — 55

OR Operations
● Useful to include bits in a word

● Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

Chapter 2 — Instructions: Language of the Computer — 56

NOT Operations
● Useful to invert bits in a word

● Change 0 to 1, and 1 to 0
● MIPS has NOR 3-operand instruction

● a NOR b == NOT (a OR b)

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Register 0: always
read as zero

Consider a comparison instruction:
 slt $t0, $t1, $zero
and $t1 contains the 32-bit number 1111 01…01

What gets stored in $t0?

Signed and unsigned comparisons

57

Consider a comparison instruction:
 slt $t0, $t1, $zero
and $t1 contains the 32-bit number 1111 01…01

What gets stored in $t0?
The result depends on whether $t1 is a signed or unsigned
 number – the compiler/programmer must track this and
 accordingly use either slt or sltu

 slt $t0, $t1, $zero stores 1 in $t0
 sltu $t0, $t1, $zero stores 0 in $t0

Signed and unsigned comparisons

58

59

Sign Extension

• Occasionally, 16-bit signed numbers must be converted
 into 32-bit signed numbers – for example, when doing an
 add with an immediate operand

• The conversion is simple: take the most significant bit and
 use it to fill up the additional bits on the left – known as
 sign extension

 So 210 goes from 0000 0000 0000 0010 to

 0000 0000 0000 0000 0000 0000 0000 0010

 and -210 goes from 1111 1111 1111 1110 to

 1111 1111 1111 1111 1111 1111 1111 1110

Procedures

Calling functions

// some code...
foo();
// more code..

● $ra contains information
for how to return from a
subroutine
● i.e., from foo()

● Functions can be called
from different places in the
program

 if (a == 0) {
 foo();
 …

 } else {

 foo();

 …

 }

Chapter 2 — Instructions: Language of the Computer — 62

Procedure Call Instructions
● Procedure call: jump and link
jal ProcedureLabel

● Address of following instruction put in $ra
● Jumps to target address

● Procedure return: jump register
jr $ra

● Copies $ra to program counter
● Can also be used for computed jumps

– e.g., for case/switch statements

Calling conventions

● Goal: re-entrant programs
● How to pass arguments

– On the stack?
– In registers?

● How to return values
– On the stack?
– In registers?

● What registers have to be preserved
– All? Some subset?

● Conventions differ from compiler, optimizations, etc.

Passing arguments

● First 4 arguments in registers
● $a0 - $a3

● Other arguments on the stack
● Return values in registers

● $v0 - $v1

Preserving registers
● $t0 – $t9: temporaries

● Can be overwritten by callee
● $s0 – $s7: saved

● Must be saved/restored by callee

Chapter 2 — Instructions: Language of the Computer — 66

Leaf Procedure Example
● C code:
int leaf_example (int g, h, i, j)
{ int f;
 f = (g + h) - (i + j);
 return f;
}

● Arguments g, …, j in $a0, …, $a3
● f in $s0 (hence, need to save $s0 on stack)
● Result in $v0

Chapter 2 — Instructions: Language of the Computer — 67

Leaf Procedure Example
● MIPS code:
leaf_example:
 addi $sp, $sp, -4
 sw $s0, 0($sp)
 add $t0, $a0, $a1
 add $t1, $a2, $a3
 sub $s0, $t0, $t1
 add $v0, $s0, $zero
 lw $s0, 0($sp)
 addi $sp, $sp, 4
 jr $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return

Recursive invocations

foo(int a) {
 if (a == 0)
 return;
 a--;
 foo(a);
 return;
}

foo(4);

Chapter 2 — Instructions: Language of the Computer — 69

Non-Leaf Procedures
● Procedures that call other procedures
● For nested call, caller needs to save on

the stack:
● Its return address
● Any arguments and temporaries needed after

the call
● Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 70

Non-Leaf Procedure Example
● C code:
int fact (int n)
{
 if (n < 1) return f;
 else return n * fact(n - 1);
}

● Argument n in $a0
● Result in $v0

Chapter 2 — Instructions: Language of the Computer — 71

Non-Leaf Procedure Example
● MIPS code:
fact:
 addi $sp, $sp, -8 # adjust stack for 2 items
 sw $ra, 4($sp) # save return address
 sw $a0, 0($sp) # save argument
 slti $t0, $a0, 1 # test for n < 1
 beq $t0, $zero, L1
 addi $v0, $zero, 1 # if so, result is 1
 addi $sp, $sp, 8 # pop 2 items from stack
 jr $ra # and return
L1: addi $a0, $a0, -1 # else decrement n
 jal fact # recursive call
 lw $a0, 0($sp) # restore original n
 lw $ra, 4($sp) # and return address
 addi $sp, $sp, 8 # pop 2 items from stack
 mul $v0, $a0, $v0 # multiply to get result
 jr $ra # and return

Local variables

What types of variables do you
know?

● Or where these variables are allocated in
memory?

What types of variables do you
know?

● Global variables
● Initialized → data section
● Uninitalized → BSS

● Dynamic variables
● Heap

● Local variables
● Stack

Global variables

1. #include <stdio.h>
2.
3. char hello[] = "Hello";
4. int main(int ac, char **av)
5. {
6. static char world[] = "world!";
7. printf("%s %s\n", hello, world);
8. return 0;
9. }

Global variables

1. #include <stdio.h>
2.
3. char hello[] = "Hello";
4. int main(int ac, char **av)
5. {
6. static char world[] = "world!";
7. printf("%s %s\n", hello, world);
8. return 0;
9. }
● Allocated in the data section

● It is split in initialized (non-zero), and non-initialized (zero)
● As well as read/write, and read only data section

Global variables

Dynamic variables (heap)

1. #include <stdio.h>
2. #include <string.h>
3. #include <stdlib.h>
4.
5. char hello[] = "Hello";
6. int main(int ac, char **av)
7. {
8. char world[] = "world!";
9. char *str = malloc(64);
10. memcpy(str, "beautiful", 64);
11. printf("%s %s %s\n", hello, str, world);
12. return 0;
13. }

Dynamic variables (heap)

1. #include <stdio.h>
2. #include <string.h>
3. #include <stdlib.h>
4.
5. char hello[] = "Hello";
6. int main(int ac, char **av)
7. {
8. char world[] = "world!";
9. char *str = malloc(64);
10. memcpy(str, "beautiful", 64);
11. printf("%s %s %s\n", hello, str, world);
12. return 0;
13. }
● Allocated on the heap

● Special area of memory provided by the OS from where malloc() can allocate memory

Dynamic variables (heap)

Local variables
● Local variables

1. #include <stdio.h>
2.
3. char hello[] = "Hello";
4. int main(int ac, char **av)
5. {
6. //static char world[] = "world!";
7. char world[] = "world!";
8. printf("%s %s\n", hello, world);
9. return 0;
10. }

Local variables...
● Each function has private instances of local

variables

 foo(int x) {
 int a, b, c;
 ...
 return;
 }

● Function can be called recursively

 foo(int x) {
 int a, b, c;
 a = x + 1;
 if (a < 100)
 foo(a);
 return;
 }

How to allocate local variables?

void my_function()
{
 int a, b, c;
 …
}

How to allocate local variables?

void my_function()
{
 int a, b, c;
 …
}

● On the stack!

Chapter 2 — Instructions: Language of the Computer — 85

Local Data on the Stack

● Local data allocated by callee
● e.g., C automatic variables

● Procedure frame (activation record)
● Used by some compilers to manage stack storage

Chapter 2 — Instructions: Language of the Computer — 86

Memory Layout
● Text: program code
● Static data: global

variables
● e.g., static variables in C,

constant arrays and
strings

● $gp initialized to address
allowing ±offsets into this
segment

● Dynamic data: heap
● E.g., malloc in C, new in

Java
● Stack: automatic storage

Chapter 2 — Instructions: Language of the Computer — 87

Recap: Procedure Calling
 Steps required

1. Place parameters in registers

2. Transfer control to procedure

3. Acquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call

§2.8 S
u pportin g P

roce dures i n C
om

p uter H
ardw

are

Calling convention (again)

Binary numbers, << 1, mul 2

Strings

Chapter 2 — Instructions: Language of the Computer — 91

Character Data
● Byte-encoded character sets

● ASCII: 128 characters
– 95 graphic, 33 control

● Latin-1: 256 characters
– ASCII, +96 more graphic characters

● Unicode: 32-bit character set
● Used in Java, C++ wide characters, …
● Most of the world’s alphabets, plus symbols
● UTF-8, UTF-16: variable-length encodings

§2.9 C
o m

m
uni cating w

ith P
eo ple

Chapter 2 — Instructions: Language of the Computer — 93

Byte/Halfword Operations
● Could use bitwise operations
● MIPS byte/halfword load/store

● String processing is a common case
lb rt, offset(rs) lh rt, offset(rs)

● Sign extend to 32 bits in rt
lbu rt, offset(rs) lhu rt, offset(rs)

● Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)

● Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 94

String Copy Example
● C code (naïve):

● Null-terminated string

void strcpy (char x[], char y[])
{ int i;
 i = 0;
 while ((x[i]=y[i])!='\0')
 i += 1;
}

● Addresses of x, y in $a0, $a1
● i in $s0

Chapter 2 — Instructions: Language of the Computer — 95

String Copy Example
● MIPS code:
strcpy:
 addi $sp, $sp, -4 # adjust stack for 1 item
 sw $s0, 0($sp) # save $s0
 add $s0, $zero, $zero # i = 0
L1: add $t1, $s0, $a1 # addr of y[i] in $t1
 lbu $t2, 0($t1) # $t2 = y[i]
 add $t3, $s0, $a0 # addr of x[i] in $t3
 sb $t2, 0($t3) # x[i] = y[i]
 beq $t2, $zero, L2 # exit loop if y[i] == 0
 addi $s0, $s0, 1 # i = i + 1
 j L1 # next iteration of loop
L2: lw $s0, 0($sp) # restore saved $s0
 addi $sp, $sp, 4 # pop 1 item from stack
 jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 96

0000 0000 0111 1101 0000 0000 0000 0000

32-bit Constants
● Most constants are small

● 16-bit immediate is sufficient
● For the occasional 32-bit constant

lui rt, constant
● Copies 16-bit constant to left 16 bits of rt
● Clears right 16 bits of rt to 0

lhi $s0, 61

0000 0000 0111 1101 0000 1001 0000 0000ori $s0, $s0, 2304

§2.10 M
IP

S
 A

d dressin g for 32 -B
it Im

m
ediat es and A

ddres ses

J-Type instructions

Chapter 2 — Instructions: Language of the Computer — 98

Branch Addressing
● Branch instructions specify

● Opcode, two registers, target address
● Most branch targets are near branch

● Forward or backward

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

 PC-relative addressing
 Target address = PC + offset × 4
 PC already incremented by 4 by this time

Chapter 2 — Instructions: Language of the Computer — 99

Jump Addressing
● Jump (j and jal) targets could be

anywhere in text segment
● Encode full address in instruction

op address

6 bits 26 bits

 (Pseudo)Direct jump addressing
 Target address = PC31…28 : (address × 4)

Chapter 2 — Instructions: Language of the Computer — 100

Branching Far Away
● If branch target is too far to encode with

16-bit offset, assembler rewrites the code

Chapter 2 — Instructions: Language of the Computer — 101

Branching Far Away
● If branch target is too far to encode with

16-bit offset, assembler rewrites the code
● Example

beq $s0,$s1, L1
↓

bne $s0,$s1, L2
j L1

L2: …

Chapter 2 — Instructions: Language of the Computer — 102

Addressing Mode Summary

Chapter 2 — Instructions: Language of the Computer — 106

Target Addressing Example
● Loop code from earlier example

● Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

 add $t1, $t1, $s6 80004 0 9 22 9 0 32

 lw $t0, 0($t1) 80008 35 9 8 0

 bne $t0, $s5, Exit 80012 5 8 21 2

 addi $s3, $s3, 1 80016 8 19 19 1

 j Loop 80020 2 20000

Exit: … 80024

Recap: registers

Linking and loading

What is inside a program?

● What parts do we need to run code?

Parts needed to run a program

● Code itself
● By convention it's called text

● Stack
● To call functions

● Space for variables

What types of variables do you
know?

● Global variables
● Initialized → data section
● Uninitalized → BSS

● Local variables
● Stack

● Dynamic variables
● Heap

Memory layout of a process

Where do these areas come
from?

Memory layout of a process

Compiler and linker

OS kernel

Load program in memory

Chapter 2 — Instructions: Language of the Computer — 116

Translation and Startup

Many compilers produce
object modules directly

Static linking

§2.12 T
ranslat ing and S

tartin g a P
ro gram

Chapter 2 — Instructions: Language of the Computer — 117

Translation and Startup

Many compilers produce
object modules directly

Static linking

§2.12 T
ranslat ing and S

tartin g a P
ro gram

Chapter 2 — Instructions: Language of the Computer — 118

Assembler Pseudoinstructions
● Most assembler instructions represent

machine instructions one-to-one
● Pseudoinstructions: high-level assembly

constructs
move $t0, $t1 → add $t0, $zero, $t1

blt $t0, $t1, L → slt $at, $t0, $t1
bne $at, $zero, L

● $at (register 1): assembler temporary

Chapter 2 — Instructions: Language of the Computer — 119

Translation and Startup

Many compilers produce
object modules directly

Static linking

§2.12 T
ranslat ing and S

tartin g a P
ro gram

Object files (.o)

Object files

● Conceptually: five kinds of information
● Header: code size, name of the source file, creation date
● Object code: binary instruction and data generated by the

compiler
● Relocation information: list of places in the object code that

need to be patched
● Symbols: global symbols defined by this module

– Symbols to be imported from other modules
● Debugging information: source file and file number

information, local symbols, data structure description

Example: UNIX A.OUT

● Small header
● Text section

● Executable code
● Data section

● Initial values for
static data

Chapter 2 — Instructions: Language of the Computer — 123

Translation and Startup

Many compilers produce
object modules directly

Static linking

§2.12 T
ranslat ing and S

tartin g a P
ro gram

Why linking?

Why linking?

● Modularity
● Program can be written as a collection of modules
● We can build libraries of common functions

● Efficiency
● Code compilation

– Change one source file, recompile it, and re-link the executable
● Space efficiency

– Share common code across executable files
– On disk and in memory

Example: printf()

● 1000 programs in a typical UNIX system
● 1000 copies of printf

● How big is printf() actually?

Motivation
● Disk space

● 2504 programs in /usr/bin on my Linux laptop
– ls /usr/bin | wc -l

● printf() is a large function
● Handles conversion of multiple types to strings

– 5-10K

● This means 10-25MB of disk can be wasted just on printf()
● Runtime memory costs are

● 5-10K times the number of running programs
● 250 programs running on my Linux laptop

– ps -aux | wc -l
– 1MB-2.5MB – huge number for most systems 15-20 years ago

Two kinds of linking

● Static
● The program is linked at compilation time
● main() + static libraries => executable

● Dynamic
● The program is linked right when it’s loaded into

memory
● main() + dynamic libraries =>
executable

Example: size of a statically vs
dynamically linked program

● On Ubuntu 16.04 (gcc 5.4.0, libc 2.23)
● Statically linked trivial example

– gcc -m32 -static hello-int.c -o test
– 725KB

● Dyncamically linked trivial example
– gcc -m32 hello-int.c -o test
– 7KB

Linking

● Input: object files (code modules)
● Each object file contains

● A set of segments
– Code
– Data

● A symbol table
– Imported & exported symbols

● Output: executable file, library, etc.

Merging
segment

s

Merging code

What needs to be done to merge
(or move) code in memory?

Detour: real programs

 4 # All program code is placed after the
 5 # .text assembler directive
 6 .text
 7
 8 # Declare main as a global function
 9 .globl main
 10
 11 # The label 'main' represents the starting point
 12 main:
 13
 ...
 19
 20 # All memory structures are placed after the
 21 # .data assembler directive
 22 .data
 23
 ...

System calls

 1 # "Hello World" in MIPS assembly
 2 # From: http://labs.cs.upt.ro/labs/so2/html/resources/nachos-doc/mipsf.html
 3
 4 # All program code is placed after the
 5 # .text assembler directive
 6 .text
 7
 8 # Declare main as a global function
 9 .globl main
 10
 11 # The label 'main' represents the starting point
 12 main:
 13 # Run the print_string syscall which has code 4
 14 li $v0,4 # Code for syscall: print_string
 15 la $a0, msg # Pointer to string (load the address of msg)
 16 syscall
 17 li $v0,10 # Code for syscall: exit
 18 syscall
 19
 20 # All memory structures are placed after the
 21 # .data assembler directive
 22 .data
 23
 ...

 1 # "Hello World" in MIPS assembly
 2 # From: http://labs.cs.upt.ro/labs/so2/html/resources/nachos-doc/mipsf.html
 3
 4 # All program code is placed after the
 5 # .text assembler directive
 6 .text
 7
 8 # Declare main as a global function
 9 .globl main
 10
 11 # The label 'main' represents the starting point
 12 main:
 13 # Run the print_string syscall which has code 4
 14 li $v0,4 # Code for syscall: print_string
 15 la $a0, msg # Pointer to string (load the address of msg)
 16 syscall
 17 li $v0,10 # Code for syscall: exit
 18 syscall
 19
 20 # All memory structures are placed after the
 21 # .data assembler directive
 22 .data
 23
 24 # The .asciiz assembler directive creates
 25 # an ASCII string in memory terminated by
 26 # the null character. Note that strings are
 27 # surrounded by double-quotes
 28 msg: .asciiz "Hello World!\n"

 int main(int argc, char* argv[], char **envp) {

 while (*envp != NULL) {
 printf("%s\n", *envp++);
 }
 return 0;
 }

 $ gcc t.c
 $./a.out
 SHELL=/bin/bash
 TERM=xterm-256color
 HISTSIZE=1000
 EDITOR=vim
 LANG=en_US.UTF-8
 HISTCONTROL=ignoredups
 ARCH=x86_64
 DISPLAY=:0
 COLORTERM=truecolor
 ...

Main’s signature

Relocation

User Text Segment [00400000]..[00440000]
[00400000] 8fa40000 lw $4, 0($29) ; 183: lw $a0 0($sp) # argc
[00400004] 27a50004 addiu $5, $29, 4 ; 184: addiu $a1 $sp 4 # argv
[00400008] 24a60004 addiu $6, $5, 4 ; 185: addiu $a2 $a1 4 # envp
[0040000c] 00041080 sll $2, $4, 2 ; 186: sll $v0 $a0 2
[00400010] 00c23021 addu $6, $6, $2 ; 187: addu $a2 $a2 $v0
[00400014] 0c100009 jal 0x00400024 [main] ; 188: jal main
[00400018] 00000000 nop ; 189: nop
[0040001c] 3402000a ori $2, $0, 10 ; 191: li $v0 10
[00400020] 0000000c syscall ; 192: syscall # syscall 10
(exit)
[00400024] 34020004 ori $2, $0, 4 ; 14: li $v0,4 # Code for
syscall: print_string
[00400028] 3c011001 lui $1, 4097 [msg] ; 15: la $a0, msg # Pointer to
string (load the address of msg)
[0040002c] 34240000 ori $4, $1, 0 [msg]
[00400030] 0000000c syscall ; 16: syscall
[00400034] 3402000a ori $2, $0, 10 ; 17: li $v0,10 # Code for
syscall: exit
[00400038] 0000000c syscall ; 18: syscall

Chapter 2 — Instructions: Language of the Computer — 146

Loading a Program
● Load from image file on disk into memory

1. Read header to determine segment sizes
2. Create virtual address space
3. Copy text and initialized data into memory

– Or set page table entries so they can be faulted in

4. Set up arguments on stack
5. Initialize registers (including $sp, $fp, $gp)
6. Jump to startup routine

– Copies arguments to $a0, … and calls main
– When main returns, do exit syscall

Chapter 2 — Instructions: Language of the Computer — 147

Dynamic Linking
● Only link/load library procedure when it is

called
● Requires procedure code to be relocatable
● Avoids image bloat caused by static linking of

all (transitively) referenced libraries
● Automatically picks up new library versions

Chapter 2 — Instructions: Language of the Computer — 148

Lazy Linkage

Indirection table

Stub: Loads routine ID,
Jump to linker/loader

Linker/loader code

Dynamically
mapped code

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Shift Operations
	AND Operations
	OR Operations
	NOT Operations
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Procedure Call Instructions
	Slide 63
	Slide 64
	Slide 65
	Leaf Procedure Example
	Slide 67
	Slide 68
	Non-Leaf Procedures
	Non-Leaf Procedure Example
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Local Data on the Stack
	Memory Layout
	Procedure Calling
	Slide 88
	Slide 89
	Slide 90
	Character Data
	Slide 92
	Byte/Halfword Operations
	String Copy Example
	Slide 95
	32-bit Constants
	Slide 97
	Branch Addressing
	Jump Addressing
	Branching Far Away
	Slide 101
	Addressing Mode Summary
	Slide 103
	Slide 104
	Slide 105
	Target Addressing Example
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Translation and Startup
	Slide 117
	Assembler Pseudoinstructions
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Loading a Program
	Dynamic Linking
	Lazy Linkage

