CS/ECE 3810: Computer
Organization

Lecture 3: Understanding
Performance

Anton Burtsev
August, 2022

Defining performance

Passenger Cruising speed
Airplane capacity (m.p.h.)
375 610

Cruising range

Passenger throughput
(passengers x m.p.h.)

(miles)
Boeing 777 4630 228,720
Boeing 747 470 4150 610 286,700
BAC/Sud Concorde 132 4000 1350 178,200
Douglas DC-8-50 146 8720 544 79,424

FIGURE 1.14 The capacity, range, and speed for a number of commercial airplanes. The last
column shows the rate at which the airplane transports passengers, which is the capacity times the cruising
speed (ignoring range and takeoff and landing times).

Performance metrics

* Possible measures:
" response time - time elapsed between start and end
of a program
" throughput - amount of work done in a fixed time

* The two measures are usually linked
* A faster processor will improve both
" More processors will likely only improve throughput
" Some policies will improve throughput and worsen
response time (or vice versa)

* What influences performance?

Example

* Do the following changes to a computer system
increase throughput, decrease response time, or
both?

— Replacing the processor in a computer with a faster version

— Adding additional processors to a system that uses multiple
processors for separate tasks—for example, searching the
web

Execution Time

Consider a system X executing a fixed workload W

1

Execution timey

Performancey =

Execution time = response time = wall clock time
- Note that this includes time to execute the workload
as well as time spent by the operating system
co-ordinating various events

The UNIX “time” command breaks up the wall clock time
as user and system time

Speedup and Improvement

* Example:
* System X executes a program in 10 seconds, system Y
executes the same program in 15 seconds

* System X is 1.5 times faster than system Y

* The speedup of system X over system Y is 1.5 (the ratio)
= perf X/ perf Y = exectimeY / exectime X

* The performance improvement of X over Y is
1.5-1=0.5=50% = (perf X - perf Y) / perf Y = speedup - 1

Factors influencing performance

A Primer on Clocks and Cycles

Performance Equation

CPU execution time CPU clock cycles _
for a program — for a program X Clock cycle time

or alternatively

CPU execution time CPU clock cycles for a program
fora program = Clock rate

If a processor has a frequency of 2 GHz, the clock ticks
2 billion times in a second as we'll soon see, with each
clock tick, one or more/less instructions may complete

Performance Equation

CPU execution time CPU clock cycles _
for a program — for a program X Clock cycle time

or alternatively

CPU execution time CPU clock cycles for a program
fora program = Clock rate

If a processor has a frequency of 2 GHz, the clock ticks
2 billion times in a second - as we'll soon see, with each
clock tick, one or more/less instructions may complete

If a program runs for 10 seconds on a 2 GHz processor,
how many clock cycles did it run for?

Performance Equation (continued)

Average clock cycles

CPU clock cycles = Instructions for a program X per instruction

* We call average clock cycles per instruction = CPI

e |If we substitute CPU clock cycles in

CPU execution time CPU clock cycles _
for a program for a program X Clock cycle time

e We get:
CPU time = Instruction count X CPI X Clock cycle time

e If a2 GHz processor graduates an instruction every third cycle, how many
instructions are there in a program that runs for 10 seconds?

Classic performance equation

CPU time = Instruction count X CPI X Clock cycle time

o Three factors that influence performance
— Instruction count
- CPI
— Clock cycle time

e If a2 GHz processor graduates an instruction every third cycle, how
many instructions are there in a program that runs for 10 seconds?

Hardware

or software
component

Algorithm

Programming
language

Compiler

Instruction set
architecture

Factors Influencing Performance

CPU time = Instruction count X CPI X Clock cycle time

13

Hardware
or software
component

Algorithm Instruction count, The algorithm determines the number of source program
possibly CPI instructions executed and hence the number of processor
instructions executed. The algorithm may also affect the CPI,
by favoring slower or faster instructions. For example, if the
algorithm uses more divides, it will tend to have a higher CPI.

Programming Instruction count, | The programming language certainly affects the instruction
language CPI count, since statements in the language are translated to
processor instructions, which determine instruction count. The
language may also affect the CPI because of its features; for
example, a language with heavy support for data abstraction
(e.g., Java) will require indirect calls, which will use higher CPI
instructions.

Compiler Instruction count, The efficiency of the compiler affects both the instruction

CPI count and average cycles per instruction, since the compiler
determines the translation of the source language instructions
into computer instructions. The compiler’s role can be very
complex and affect the CPI in complex ways.

Instruction set | Instruction count, The instruction set architecture affects all three aspects of
architecture clock rate, CPI CPU performance, since it affects the instructions needed for a
function, the cost in cycles of each instruction, and the overall
clock rate of the processor.

Benchmark Suites

* Each vendor announces a SPEC rating for their system
" a measure of execution time for a fixed collection of
programs
" is a function of a specific CPU, memory system, 10
system, operating system, compiler
* enables easy comparison of different systems

The key is coming up with a collection of relevant programs

15

Comparing performance

SPEC CPU

* SPEC: System Performance Evaluation Corporation, an industry
consortium that creates a collection of relevant programs

* SPEC 2006 includes 12 integer and 17 floating-point applications

* The SPEC rating specifies how much faster a system is, compared
to a baseline machine - a system with SPEC rating 600 is 1.5
times faster than a system with SPEC rating 400

* Note that this rating incorporates the behavior of all 29
programs - this may not necessarily predict performance for
your favorite program!

* Latest version: SPEC 2017

17

Execution | Reference

Instruction Clock cycle time Time Time

Description Count x 10° (seconds x 10-9) | (seconds) | (seconds)
Interpreted string processing | perl 2252 0.60 0.376 508 9770 19.2
Block-sorting bzip2 2390 0.70 0.376 629 9650 15.4
compression
GNU C compiler gee 794 1.20 0.376 358 8050 22.5
Combinatorial optimization mcf 221 2.66 0.376 221 9120 41.2
Go game (Al) go 1274 1.10 0.376 527 10490 19.9
Search gene sequence hmmer 2616 0.60 0.376 590 9330 15.8
Chess game (Al) sjeng 1948 0.80 0.376 586 12100 20.7
Quantum computer libquantum 659 0.44 0.376 109 20720 190.0
simulation
Video compression h264avc 3793 0.50 0.376 713 22130 31.0
Discrete event omnetpp 367 2.10 0.376 290 6250 21.5
simulation library
Games/path finding astar 1250 1.00 0.376 470 7020 14.9
XML parsing xalancbmk 1045 0.70 0.376 275 6900 25.1
Geometric mean - - - - - - 25.7

FIGURE 1.18 SPECINTC2006 benchmarks running on a 2.66GHz Intel Core i7 920. As the equation on page 35 explains,
execution time is the product of the three factors in this table: instruction count in billions, clocks per instruction (CPI), and clock cycle time in
nanoseconds. SPECratio is simply the reference time, which is supplied by SPEC, divided by the measured execution time. The single number
quoted as SPECINTC2006 is the geometric mean of the SPECratios.

Deriving a Single Performance Number

How is the performance of 29 different apps compressed
into a single performance number?

* SPEC uses geometric mean (GM) - the execution time
of each program is multiplied and the Nt root is derived

n
Q/H Execution time ratio;
i=1

* Another popular metric is arithmetic mean (AM) - the

average of each program’s execution time

* Weighted arithmetic mean - the execution times of some
programs are weighted to balance priorities

19

Amdahl’s Law

* Architecture design is very bottleneck-driven - make the
common case fast, do not waste resources on a component
that has little impact on overall performance/power

* Amdahl’s Law: performance improvements through an
enhancement is limited by the fraction of time the
enhancement comes into play

* Example: a web server spends 40% of time in the CPU
and 60% of time doing I/O - a new processor that is ten
times faster results in a 36% reduction in execution time
(speedup of 1.56) - Amdahl’s Law states that maximum
execution time reduction is 40% (max speedup of 1.66)

20

Recap

* Knowledge of hardware improves software quality:
compilers, OS, threaded programs, memory management

* Important trends: growing transistors, move to multi-core
and accelerators, slowing rate of performance improvement,

power/thermal constraints, long memory/disk latencies

* Reasoning about performance: clock speeds, CPI,
benchmark suites, performance and power equations

* Next: assembly instructions

21

The power wall

T 3600 0g67 3300 3400 | 1%V

2000 at -

[£ 100
~N 1000 + ~
% Clock Rate 200 1 80 g
] 66 > | 77 S
© 100 + leo £
Y Il GBJ
X
5 12.5 |0 2
&) 10 +

+ 20
3.3
1 | 1 T I T = | | " | 5 0
2y 28 22 53 g5 TE-oEBgasc2ss gy
2 2 > 28 2 o oS (DH—'\' QO ~—~ OT
It c g9 B0 0t SN R ..d
a = O $S=N GFrYO0OgYO=—02—
oy @2 ot ¥ o s>

FIGURE 1.16 Clock rate and Power for Intel x86 microprocessors over eight generations
and 25 years. The Pentium 4 made a dramatic jump in clock rate and power but less so in performance. The
Prescott thermal problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a simpler
pipeline with lower clock rates and multiple processors per chip. The Core i5 pipelines follow in its footsteps.

Power and energy

e Total energy = dynamic energy + leakage

e Dynamic energy:

Energy o Capacitive load X Voltage’

e Power required per transistor is just the product of energy of a transition and
the frequency of transitions:

Power o 1/2 X Capacitive load X Voltage® X Frequency switched

« Frequency switched is a function of clock rate

o Capacitive load per transistor is a function
— number of transistors connected to an output (called the fanout)

- technology, which determines the capacitance of both wires and transistors

* In 20 years voltage was reduced from 5V to 1V

— 15% per generation

e Clock rates increased 1000 times

e Power increased 30x

(snem) Jamod

+ 20

3600

3400 T 140

3300

2667

2000

103

95

Clock Rate 7qp

75.3

]

66
[]

Power

29.1

«
™

(2102)
abpug AA|

Gl 810D

| (0102)
alepe|D
Gl 810D

(£002)
JEITRIVE)Y
Z 910D
(¥002)
1J02sald

¥ wnnuad

(1002)
anawe||Ip

p wnpuad

(,661) 0id
wnijusad

(c661)
wniuad

(6861)
98708

(G861)
98€08

(zg61)
98208

10,000 +

1000 +

(ZHIN) @1ey X20[D

Performance (vs. VAX-11/780)

Intel Core i7 4 cores 4.2 GHz (Boost to 4.5 GHz)
Intel Core i7 4 cores 4.0 GHz (Boost to 4.2 GHz)
Intel Core i7 4 cores 4.0 GHz (Boost to 4.2 GHz)
Intel Xeon 4 cores 3.7 GHz (Boost to 4.1 GHz)
100,000 Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)
Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)

Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz) G100 LT R
Intel Core Duo Extreme 2 cores, 3.0 GHz 21,871 — el "40,067 49935
Intel Core 2 Extreme 2 cores, 2.9 GHz) 54 1%0 34,967
1 e e e e i e e e e e e e e e T AMD Athlon 64, 2.8 GHz -- == %---=222-__ €2 e e
0,000 AMD Athlon, 2.6 GHz 231 vos1 4,387 19,484
Intel Xeon EE 3.2 GHz 5 e81 7 108.
Intel D8S0EMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology) g’ =
IBM Powerd, 1.3 GHz
Intel VC820 motherboard, 1.0 GHz Pentium Il processor
Professional Workstation XP1000, 667 MHz 21264A ! 26?‘
000 e immisiaipars e B NS S CCR USSR ML gy
23%lyear 12%l/year 3.5%lyear|

10 T et St b R) > A by S - SSSoill S ol

IBM RS6000/540, 30 MHz
MIPS M2000, 25 MHz

L T T ¥,
VAX 8700, 22 MHz

AX-11/780, 5 MHz

25%l/year

i T T T T T T T T T T T T T T T T T T 1

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

FIGURE 1.17 Growth in processor
performance since the mid-1980s.

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

