A 5-Stage Pipeline

Time (in clock cycles)y p—

L

A 5-Stage Pipeline

ck 7] v
R\ +RL—>RY

Example

add @ R2.'R3
N

)
w R4, 8(R1)

Example

w RA1, 8R2

1 shu\»

lw R4, 8(R1)
i T

Example

lw R1, 8(R2)

o shdhs
sw R1, 8(R3)
= - —

Source: H&P textbook 2!

Summary

* For the 5-stage pipeline, bypassing can eliminate delays

between the following example pairs of mstructlons A

add/sub RI,RLR3 — Fo-P—> 37sPA oL,
add/sub/lw/sw R4,R1,R5
v
w R1,BR2) — (-0 > 4 s -
s

sw R1L,ARI) . f.0C > 4™ shy

* The following pairs of instructions will have intermediate
stalls: P o f "™
Iw R1,8(R2) =% F«¥'¥ = 1 (|

add/sub/lwv R3,R1,R4 or sw R3,8(R1) B

o f.O'(,— gM‘S'l'
fmul F1,F2,F3
fadd F5,F1, F4
22

7/11:59 cc)

Hazards

» Structural Hazards

* Data Hazards l’e:_?- R2(100
« Control Hazards - {)
1 fc+10°

ﬂC:.\

I (PO
rﬂ: ‘ WKW 'Xllf’ (pcrt)

) (= a..ncl-\
Control Hazards [> Br o

« Simple techniques to handle control hazard stalls:
~ for every branch, introduce a stall cycle (note: every
X 6! instruction is a branch on average!)
~ assume the branch is not taken and start fetching the
\/(,D next instruction — if the branch is taken, need hardware
~ to cancel the effect of the wrong-path instructions
~ predict the next PC and fetch that instr — if the prediction
\\{Q@ Is wrong, cancel the effect of the wrong-path instructions
~ fetch the next instruction (branch delay slot) and
7 execute it anyway - if the instruction turns out to be
on the correct path, useful work was done - if the B
sw instruction turns out to be on the wrong path, -
hopefully program state is not lost z

24

/11:38 cc

(a) From before

Branch Delay Slots

(b) From target

(c) From fall-through

DADD R1, R2, R3

if R2 = 0 then

Delay slot

DSUB R4, RS, R6 =

DADD R1, R2, R3

it R1 =0 then

Delaysiot |

DADD R1, R2, R3

if R1 = 0 then

| Delay slot
OR R7, R8, R9

DSUB R4, RS, R6 <+—

if R2 = 0 then

] DADD R1, R2, R3

DSUB R4, RS, R6

-

DADD R1, R2, R3

if R1 = 0 then

DADD R1, R2, R3

if R1 = 0 then

[mmmm

DSUB R4, RS, R6 =—

Branch Delay Slots

(a) From before (b) From target (c) From fall-through

DADD R1, R2, R3 DADD R1, R2, R3

DSUB R4, RS, R6 =

if R2 = 0 then if R1 = 0 then

Delaysiot | DADD R1, R2, R3 [Delaysot |

OR R7, R8, R9

it R1 =0 then

DSUB R4, RS, R6 <+—

| Delaysot |

DSUB R4, RS, R6 DADD R1, R2, R3

-

if R2 = 0 then

if R1 =0 then

] DADD R1, R2, R3

DADD R1, R2, R3 [ORR7, R8, RY]

if R1 = 0 then

T

Multicycle Instructions

IF

\C

N NG

ADD

oot

(p—for |
Intager unit
EX

FPAnteger multiply

(g

.

FP adder

i

Az
i

M7

a
FPfinteger divider
D

T

[¥,1
[u)

1©2007 Exevier,inc. Al rights resarved.

4 R ?ods
W)

R

stads RW
LD el 95
AD) e ‘365

——————_

Multicycle Instructions

DWW R\ =

ADD = R\

25 e @)"— oM

4 R poe's
Wil

R

stods RW
LD Cncl "ocs

ADY) &ad_ fac_s

Pod. RIS
Effects of Multicycle Instructions Gws & R)

RA after Wy
\/Potentially multiple writes to the register file in a cycle

R\ «—22
_~Frequent RAW hazards L4 C’:]

s S 2
_~WAW hazards (WAR hazards not possible) ¢ affer wr
= R\

* Imprecise exceptions because of 0-0-0 instr completion so

Note: Can also increase the “width” of the processor: handle
multiple instructions at the same time: for example, fetch
two instructions, read registers for both, execute both, etc.

27

Effects of Multicycle Instructions

« Potentially multiple writes to the register file in a cycle

30
PRy
* WAW hazards (WAR hazards not possibl g © l e

3 & R Gye 4o
* Imprecise exceptions because of 0-0-0 instr completion

* Frequent RAW hazards

Note: Can also increase the “width” of the processor: handle
multiple instructions at the same time: for example, fetch
two instructions, read registers for both, execute both, etc.

27

Effects of Multicycle Instructions

RR- e 2
-~ Potentially multiple writes to the register file in a cycle 7
T1 wpl &R

. Frequent RAW hazards
h B ST
_~ WAW hazards (WAR hazards not possible) R eyel
RAR we afke Rd

* Imprecise exceptions because of 0-0-0 instr completion
———'_—___—

Note: Can also increase the “width” of the processor: handle
multiple instructions at the same time: for example, fetch
two instructions, read registers for both, execute both, etc.

Multicycle Instructions \

14

C MUL R\& oy o

EX

| NP RAE o)

Multicycle Instructions

Multicycle Instructions

Integer unit
ex il

FPfinteger muttiply
M2 M3 M4 i M5 i lME i Wi

Al

Multicycle Instructions

Ex i
I Ro®

gowe : -Eﬂ/ RY

i — =1
= bon " .I.h-ur‘l‘(
©2007 Baavis, nc. Al rasmmved. cD‘"f ﬁ"g Co"\mt

‘Af\
Slowdowns from Stalls f ﬁlﬁﬁ

14 F_X

» Perfect pipelining with no hazards = an instruction #5+7’°
completes every al cycles ~ num instructions)

- speedup = increase in clock speed = num pipeline stages
Temr TR N

» With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled

instruction completes 11
el i = o 51”‘“"/.».;,\\(.5;::1
- Total cycles = number of instructions + stall cycles ~ ©

+ Slowdown because of stalls = 1/ (1 + stall cycles per instr)
1-

Pinelini Limit T4 RVER2LARY I3 RI&
Ipelining Limits 11 Rae RSLRE 174 P

. A
A —_— Gap between indep instrs: T+ Igvh
(K] Gap between dep instrs: T+ Tovn
e,

>
po?

o Gap between indep instrs: Tk Iz
* e__—__’ T3 + Tovh
Gap between dep instrsT 4 10
i - T + 3Tovh
R

f.oC 1k
C, ;}'\r Gap between indep instrs:
_T/6 + Toh

1o 30-S0 s\ Gap between dep instrs:
/\) T + 6Town
here the final result of the

ore starting the second instruction 3

