A 5-Stage Pipeline

Time (in clock cycles)y p—

L

A 5-Stage Pipeline

ck 7] v
R\ +RL—>RY

Example

add @ R2.'R3
N

)
w R4, 8(R1)

Example

w RA1, 8R2

1 shu\»

lw R4, 8(R1)
i T

Example

lw R1, 8(R2)

o shdhs
sw R1, 8(R3)
= - —

Source: H&P textbook 2!

Summary

* For the 5-stage pipeline, bypassing can eliminate delays

between the following example pairs of mstructlons A

add/sub RI,RLR3 — Fo-P—> 37sPA oL,
add/sub/lw/sw R4,R1,R5
v
w R1,BR2) — (-0 > 4 s -
s

sw R1L,ARI) . f.0C > 4™ shy

* The following pairs of instructions will have intermediate
stalls: P o f "™
Iw R1,8(R2) =% F«¥'¥ = 1 (|

add/sub/lwv R3,R1,R4 or sw R3,8(R1) B

o f.O'(,— gM‘S'l'
fmul F1,F2,F3
fadd F5,F1, F4
22

7/11:59 cc)

Hazards

» Structural Hazards

* Data Hazards l’e:_?- R2(100
« Control Hazards - {)
1 fc+10°

ﬂC:.\

I (PO
rﬂ: ‘ WKW 'Xllf’ (pcrt)

) (= a..ncl-\
Control Hazards [> Br o

« Simple techniques to handle control hazard stalls:
~ for every branch, introduce a stall cycle (note: every
X 6! instruction is a branch on average!)
~ assume the branch is not taken and start fetching the
\/(,D next instruction — if the branch is taken, need hardware
~ to cancel the effect of the wrong-path instructions
~ predict the next PC and fetch that instr — if the prediction
\\{Q@ Is wrong, cancel the effect of the wrong-path instructions
~ fetch the next instruction (branch delay slot) and
7 execute it anyway - if the instruction turns out to be
on the correct path, useful work was done - if the B
sw instruction turns out to be on the wrong path, -
hopefully program state is not lost z

24

/11:38 cc

(a) From before

Branch Delay Slots

(b) From target

(c) From fall-through

DADD R1, R2, R3

if R2 = 0 then

Delay slot

DSUB R4, RS, R6 =

DADD R1, R2, R3

it R1 =0 then

Delaysiot |

DADD R1, R2, R3

if R1 = 0 then

| Delay slot
OR R7, R8, R9

DSUB R4, RS, R6 <+—

if R2 = 0 then

] DADD R1, R2, R3

DSUB R4, RS, R6

-

DADD R1, R2, R3

if R1 = 0 then

DADD R1, R2, R3

if R1 = 0 then

[mmmm

DSUB R4, RS, R6 =—

