
Operating Systems Name (Print):

Fall 2018
Final
12/11/2018
Time Limit: 4pm - 6pm

• Don’t forget to write your name on this exam.

• This is an open book, open notes exam. But no online or in-class chatting.

• Ask us if something is confusing in the questions.

• Organize your work, in a reasonably neat and coherent way, in the space provided. Work
scattered all over the page without a clear ordering will receive very little credit.

• Mysterious or unsupported answers will not receive full credit. A correct answer,
unsupported by explanation will receive no credit; an incorrect answer supported by substan-
tially correct explanations might still receive partial credit.

• If you need more space, use the back of the pages; clearly indicate when you have done this.

• Don’t forget to write your name on this exam.

• This is an open book, open notes exam. But no online or in-class chatting.

Problem Points Score

1 25

2 10

3 5

4 10

5 20

6 10

7 5

Total: 85



Operating Systems Final - Page 2 of 10

1. Context switch

(a) (5 points) Provide a high-level description of what happens during the context switch?

Answer:

There are two possible cases when xv6 switch from one process to another: 1) when the
timer interrupt arrives, 2) when the process is going to sleep inside a system call and
yields it’s CPU time slides. In both cases the mechanics of the context switch are similar:
the process enters the kernel with either an interrupt or a system call (in xv6 the system
calls are invoked with the int instruction, so the path is very much the same). If the
timer interrupt arrives and the process is already in the kernel, the hardware saves only
3 values on the kernel stack, since there is no change of privilege level and hence SS and
CS don’t have to be saved. If however the process is running in the user-space (CPL = 3)
the hardware pushes 5 values on the kernel stack. Note, that execution cannot continue
on the user stack, and hence the hardware locates the kernel stack by looking up the TSS.
The hardware fetches the CS and EIP of the interrupt handler from the IDT, pushes 5
values on the stack, loads new CS segment from the GDT (the execution continues with
CPL = 0) and jumps to the entry point of the handler.

The handler saves state of the user process with the alltraps assembly function, pushes
the pointer to the trapframe on the stack and invokes the C traps() function. Inside
trap() the kernel context switches into the scheduler with the swtch() function. The
scheduler picks the next process to run from the array of all processes, and switches into
that process by invoking swtch() again.

More details of how the state is saved on the stack are needed here ...

(b) (5 points) During the context switch, where is the user register EAX saved (i.e., the value
of the EAX register that was used by the preempted user program)?

Answer:

On the kernel stack, inside the trap frame, proc->tf->eax.



Operating Systems Final - Page 3 of 10

(c) (5 points) The register EBX gets saved twice, once by the popal instruction in the alltraps()
function and second in the swtch() function. Can you explain why do we need to save it
twice?

Answer:

First, EBX value of the user-process is saved on the trapframe inside the proc->tf->ebx
field of the trapframe data structure. Then since EBX is callee saved register, the kernel
cannot assume that it’s value will be presumed while some other process is switched to
run on the CPU. Hence xv6 pushes it on the stack as part of the context data structure
(proc->contex->ebx).

(d) (10 points) In xv6 during the context switch the process first switches to the scheduler and
then switches to the next process. Ben thinks it is wasteful to switch into the scheduler,
and decides to change xv6 to switch directly to the next process. What changes he needs
to implement? Be specific: describe the data structures that need to be changed, explain
why your changes are correct, provide a sketch for the code that implements it.



Operating Systems Final - Page 4 of 10

2. File system

Xv6 lays out the file system on disk as follows:

1 2

super log 

header
log inode bmap data

3 32 58 59

Block 1 contains the super block. Blocks 2 through 31 contain the log header and the log.
Blocks 32 through 57 contain inodes. Block 58 contains the bitmap of free blocks. Blocks 59
through the end of the disk contain data blocks.

Ben boots xv6 with a fresh fs.img and starts a program that opens a file which is represented
by the inode 0 and writes one byte into it. The inode’s dentry[0] contains 76.

(a) (5 points) Which blocks will be written as the result of the write system call?

Answer:

block 3 // Log data (bitmap)

block 4 // Log data (actual byte)

block 5 // Log data

block 2 // Log header

block 58 // Bitmap

block 595 // Actual byte (any number between 59 and ... are fine as answer)

block 32 // Inode

block 2 // Log header



Operating Systems Final - Page 5 of 10

(b) (5 points) Which block will be written more than once?

Block #2 that contains the log header.

3. Interrupts and Exceptions

(a) (5 points) Describe what happens when a timer interrupt arrives while a process executes
in the kernel, i.e., after entering the kernel with a system call. Will it be preempted?

Answer:

If the timer interrupt arrives and the process is already in the kernel, the hardware saves
only 3 values on the kernel stack, since there is no change of privilege level and hence SS
and CS don’t have to be saved. The rest of the interrupt path is the same: the hardware
locates the interrupt handler through the IDT, and jumps to it. The interrupt handler
goes through two assembly functions: vector32 and alltraps that save current state of
the registers on the kernel stack forming a valid trapframe, it then passes control to the
trap() function that will continue with the timer interrupt and will enter the context
switch by invoking the swtch() function.



Operating Systems Final - Page 6 of 10

4. Scheduler

(a) (5 points) Alice is booting into an xv6 system. How many processes are running when
she sees the shell command prompt after the boot (be specific: what these processes are)?

Answer:

Two: init and shell

(b) (5 points) Alice is running a single-CPU xv6 system (a machine that has only one physical
CPU). She creates five processes in the system. Is it possible that the same process runs for
two consecutive scheduling periods, i.e., the process is running when the timer interrupt
arrives, the timer interrupt handler forces a context switch into the scheduler, but the
scheduler chooses the same process to run again? Explain your answer.

Answer:

Yes, it’s possible, maybe all 4 other processes are waiting in the kernel, and hence are not
in the RUNNABLE state. The scheduler will not be able to run them, and will come back
to the original process.



Operating Systems Final - Page 7 of 10

5. Synchronization

(a) (5 points) Alice removes xchg() from the acquire() function. Explain what happens
when she boots xv6 on a multi-processor machine, i.e., machine with more than one
physical CPUs.

Answer:

If you remove the loop that atomically sets the locked filed of the lock to 1 you will break
the spinlock acquisition mechanisms—the spinlock will always be signalled as successfully
acquired, two processes will be able to enter the same critical section simultaneously and
will leave kernel data structures, e.g., process table, buffer cache, file table, etc., in an
inconsistent state. The kernel will crash sooner or later.

(b) (5 points) Now Alice decides to put the following code instead of the original xchg() loop
in the acquire() function

for(;;) {

if(!lk->locked)

{

lk->locked = 1;

break;

}

}

She boots xv6 again on a multi-processor machine, explain what happens?

Answer:

Now the two lines (and several assembly instructions that are involved in implementing
those lines): the one line that checks the locked filed and the line that sets it are not
atomic. Sooner or later it will result in a race when two processes will try to acquire the
same lock on two different CPUs.



Operating Systems Final - Page 8 of 10

(c) (10 points) Alice discovered that her CPU provides hardware support for symmetric en-
cryption. In other words she can submit a pointer to a block of memory and a pointer
to symmetric key to a hardware device that will encrypt the content of the block. Later
she can get the block of memory encrypted. Unfortunately, the hardware encryption still
takes tens of thousands of cycles, so she decides that instead of waiting for the encryption
to finish, she can release the CPU for another process, and then receive an interrupt from
the crypto device when encryption is done.

Help Alice to write a submission routine and the interrupt handler. Specifically, concen-
trate on correct use of synchronization primitives. Assume that Alice already implemented
a low-level function hw encrypt() that passes two pointers (buffer and key) to the crypto
device and is now working on two functions: 1) submission function encrypt block() that
takes a pointer to the cdev structure that Alice uses to describe the state of the crypto
device in her code, and two pointers (buffer and key) that she has to pass to the low-level
hw encrypt() function for encryption.

Your code should correctly handle synchronization between multiple processes that are
trying to access the crypto device, and the interrupt handler that signals completion of
encryption.

/* Low-level function to pass buffer and the key to hardware */

void hw_encrypt(void *buf, void *key);

struct cdev *c;

void encrypt_block(struct cdev *c, void *buf, void *key) {

acquire(&c->lock);

// Wait for device to become available

while(c->flags != C_AVAIL){

sleep(c, &c->lock);

}

// This process owns the device

// Submit request for encryption

cdev = c;

hw_encrypt(buf, key);

// Wait for request to finish.

while(c->flags != C_DONE){

sleep(c, &c->lock);

}

// Set device to available

c->flags = C_AVAIL;

// Wakeup all waiters

wakeup(c);

release(&c->lock);



Operating Systems Final - Page 9 of 10

return;

}

/* Interrupt handler for the encryption device */

void encrypt_int(void) {

c = cdev;

acquire(&c->lock);

// Wake process waiting for this buf.

c->flags = B_DONE;

wakeup(c);

release(&c->lock);

}

6. Process memory layout

Ben wrote a user program that grows its address space with 1 byte by calling the sbrk() system
call. He runs the program and investigates the page table for the program before and after the
call to sbrk().

(a) (5 points) How much space has the kernel allocated?

Answer:

One page if it’s first byte of the new page, or no pages if the page was previously allocated.



Operating Systems Final - Page 10 of 10

(b) (5 points) What does the pte for the new memory contain?

Answer:

The PTE for the new memory contains the physical frame number of the page that was
allocated for the new page, and the flags: user accessible, writable, and present.

7. cs238P. I would like to hear your opinions about cs238P, so please answer the following ques-
tions. (Any answer, except no answer, will receive full credit.)

(a) (1 point) Grade cs238P on a scale of 0 (worst) to 10 (best)?

(b) (2 points) Any suggestions for how to improve cs238P?

(c) (1 point) What is the best aspect of cs238P?

(d) (1 point) What is the worst aspect of cs238P?


