Updated (June 2019) Supplementary Material for
Rebuilding Racket on Chez Scheme (Experience Report)

MATTHEW FLATT, University of Utah, USA

CANER DERICI, Indiana University, USA

R. KENT DYBVIG, Cisco Systems, Inc., USA

ANDREW W. KEEP, Cisco Systems, Inc., USA

GUSTAVO E. MASSACCESI, Universidad de Buenos Aires, Argentina
SARAH SPALL, Indiana University, USA

SAM TOBIN-HOCHSTADT, Indiana University, USA

JON ZEPPIERI, independent researcher, USA

All benchmark measurements were performed on an Intel Core 17-2600 3.4GHz processor running
64-bit Linux. Except as specifically noted, we used Chez Scheme 9.5.3 commit 6c4e0a5{fd7 at
github:cicso/ChezScheme, modified as commit 10fc4a2406 at github:racket/ChezScheme, and
Racket 7.3.0.9 as commit 8c1dbae88b at github:racket/racket.

1 TRADITIONAL SCHEME BENCHMARKS

These results are about the same as in the original supplementary material.

The traditional Scheme benchmarks in figure 1 are based on a suite of small programs that
have been widely used to compare Scheme implementations. The benchmark sources are in the
"common" directory of the racket-benchmarks package in the Racket GitHub repository.

The results are in two groups, where the group starting with scheme-c uses mutable pairs, so
they are run in Racket as #lang r5rs programs; for Racket CS we expect overhead due to the use
of a record datatype for mutable pairs, instead of Chez Scheme’s built-in pairs.

The groups are sorted by the ratio of times for Chez Scheme and the current Racket implementa-
tion. Note that the break-even point is near the end of the first group. The collatz and collatz-q
benchmarks turn out to mostly measure the performance of the built-in division operator for
rational numbers, while fft and nucleic benefit from flonum unboxing.

2 SHOOTOUT BENCHMARKS

These results show improvement in a few benchmarks compared to the original supplementary material.

The benchmarks in figure 2 are based on a series of programs that have appeared over the years
as part of the Computer Language Benchmarks Game to compare implementations of different
languages.! The benchmark sources are in the "shootout" directory of the racket-benchmarks
package in the Racket GitHub repository. We have only Racket implementations of these programs.

The groups are sorted by the ratio of times for Racket CS and the current Racket implementation.
Results closer to the end of the table tend to rely more on Racket’s hash tables, I/O, regular-expression
matcher, thread scheduler, and flonum unboxing.

!https://benchmarksgame-team.pages.debian.net/benchmarksgame/

Authors’ addresses: Matthew Flatt, University of Utah, USA, mflatt@cs.utah.edu; Caner Derici, Indiana University, USA,
cderici@indiana.edu; R. Kent Dybvig, Cisco Systems, Inc. USA, dyb@cisco.com; Andrew W. Keep, Cisco Systems, Inc.
USA, akeep@cisco.com; Gustavo E. Massaccesi, Universidad de Buenos Aires, Argentina, gustavo@oma.org.ar; Sarah
Spall, Indiana University, USA, sjspall@iu.edu; Sam Tobin-Hochstadt, Indiana University, USA, samth@cs.indiana.edu; Jon
Zeppieri, independent researcher, USA, zeppieri@gmail.com.

78:2 Flatt, Derici, Dybvig, Keep, Massaccesi, Spall, Tobin-Hochstadt, and Zeppieri

takr lattice2
CS R 2 soc
CS'[2x- Cs’
R/CS 22 R/CS [
REZE— R
earley nboyer
- = | s
R/CS == R/CS r=m
R T — R CE—
sboyer dynamic2
cs Cs
CS’
R/CS
R

nestedloop tak
Cs e Cs rrm—
(e | CS' ErE—
R/CS EEra R/CS EnEmm
G —— R
nucleic2 collatz-q collatz
CS rE— e . |
Cs’ Cs’ CS' EI—

scheme-c

scheme sortl

conform

O] rosomeee |
Ccs’

Fig. 1. Traditional Scheme benchmarks. Shorter is better. CS = unmodifed Chez Scheme, CS’ =
modified Chez Scheme, R/CS = Racket CS, R = current Racket implementation.

wordfreq pidigitsl spectralnorm-g meteor random recursive
R/CS =z R/CS R/CS Err= R/CS ET=m R/CS EIE==m
R R R R R
regexpdna fannkuch nestedloop ary
R/CS Er==a R/CS Em==m— R/CS e R/ICS
R R R R
partialsums hash fibo except
RICS R/CS PR
R R —
heapsort nsievebits reversecomp binarytrees nbody-vec-g nsieve
R/ICSETTTNNNNN R/CSETETSNNN RCSEIETNNNNN R/CSETTENNN F/CSEETEEN
R R R R R
nbody fasta fannkuch-redux
R/CS RCSEEITENNNN FR/CSEITNEEE R/CS
R EE R R R
mandelbrot-g reversefile lists chameneos nbody-vec
R/CSER R/CS R/ICSH R/CS XS
RE R R R
hash2 echo strcat k-nucleotide pidigits
RCSESNE R/CSEINNEN R/CS! R/CSES R/CS =
R R R R R
mandelbrot spectralnorm
R/CS R/CSES
R RE

Fig. 2. Shootout benchmarks. Shorter is better. R/CS = Racket CS, R = current Racket implementa-
tion.

3 STARTUP TIMES

These results show very small improvements compared to the original supplementary material. The
improvement is due to keeping internal boot files for Racket CS in uncompressed form instead of
compressed form.

Startup for just the runtime system without any libraries:

racket -n startup time
R/CS 2
R BE-se

Updated (June 2019) Supplementary Material for
Rebuilding Racket on Chez Scheme (Experience Report) 78:3

The Racket CS startup image has much more Scheme and Racket code that is dynamically loaded
and linked, instead of loaded as a read-only code segment like the compiled C code that dominates
the current Racket implementation. We can build the current Racket implementation in a mode
where its Racket-implemented macro expander is compiled to C code instead of bytecode, too,
shown below as “R/cify.” We can also compare to Racket v6, which had an expander that was
written directly in C:

racket -n startup time

R/CS [l

R BE<ec
R/cify fo msec
Rv6 [4 msec

Loading the racket/base library:

racket -1 racket/base startup+load time

R/CS ==
R

Racket CS’s machine code is bigger than current Racket’s bytecode representation. Furthermore, the
current Racket implementation is lazy about parsing some bytecode. We can disable lazy bytecode
loading with the -d flag, shown as “R/all™:

racket -1 racket/base startup+load time

R/CS [Ex=a
REE=
R/all (2R

Loading the larger racket library, which is what the racket executable loads by default for
interactive mode:

racket -1 racket startup+load time

R/CS
R T
R/all

The measurements in this section were gathered by using time in a shell a few times
and taking the median. The command was as shown, but using racket -d for the
“R/all” lines.

4 MEMORY USE

The results in this section are unchanged and still use the same Racket CS version as the original
supplementary material. We did not completely rerun the benchmarks, but smaller experiments suggest
that running with the latest version would produce essentially he same results.

The following plots show memory use, including both code and data, after loading racket/base
or racket, but subtracting memory use at the end of a run that loads no libraries (which reduces
noise from different ways of counting code in the initial heap). The “R/jit!” line uses -d to load
all bytecode eagerly, and it further forces that bytecode to be compiled to native code by the JIT
compiler.

racket -1 racket/base memory use after load

[Y

R/CS R R/all Rijit!

78:4 Flatt, Derici, Dybvig, Keep, Massaccesi, Spall, Tobin-Hochstadt, and Zeppieri

racket -1 racket memory use after load

59MB | 29MB | 49MB § 79 MB

R/CS R/all Rijit!

These results show that bytecode is more compact than machine code, as expected. Lazy parsing of
bytecode also makes a substantial difference in memory use for the current Racket implementation.
Racket’s current machine code takes a similar amount of space as Chez Scheme machine code, but
the JIT overhead and other factors make it even larger. (Bytecode is not retained after conversion
to machine code by the JIT.)

On a different scale and measuring peak memory use instead of final memory use for DrRacket
start up and exit:

drracket peak memory use for startup+exit

! 743 MB

R/CS R R/all Rijit!

This result reflects that DrRacket’s memory use is mostly the code that implements DrRacket, at
least if you just start DrRacket and immediately exit.

The measurements in this section were gathered by running racket starting with
the arguments -1 racket/base, -1 racket, or -1 drracket. The command further
included -W "debug@GC" -e ’(collect-garbage)’ -e ’(collect-garbage)’ and
recording the logged memory use before that second collection. For the “R” lines, the
reported memory use includes the first number that is printed by logging in square
brackets, which is the memory occupied by code outside of the garbage collector’s
directly managed space. For “R/all,” the -d flag is used in addition, and for “R/jit!,” the
PLT_EAGER_JIT environment variable was set in addition to supplying -d. DrRacket’s
peak memory use was measured by waiting for the background expansion indicator to
turn green for an empty program, and the result for racket add the last recent memory
use reported for place 1.

We used Chez Scheme 9.5.3 modified as commit 6d05b70e86 at gi thub: racket/ChezScheme
and Racket 7.3.0.3 as commit ff95f1860a at github:racket/racket.

5 EXPAND AND COMPILE TIMES

Like section 4, the results in this section are unchanged and still use the same Racket CS version as the
original supplementary material.

These plots compare compile times from source for the racket/base module (and all of its
dependencies) and the racket module (and dependencies):

Updated (June 2019) Supplementary Material for
Rebuilding Racket on Chez Scheme (Experience Report) 78:5

racket -cl racket/base load-from-source time
R/CS BBER--

R REED msec

Rjit! Ersec

racket -cl racket
R/CS E
R
Rijit!

Compilation requires first macro-expanding source. Racket CS and current Racket use the same
expander implementation. The following plots show how parts of the compile time can be attributed
to specific subtasks:

racket -cl racket/base load-from-source time
R/CS ..
RE msec = expand
R/jit! B msec o = schemify
W = compile
racket -cl racket M = register allocate
R/CS I 7
R e]
R/jit! u

We can alternatively start with modules that are already expanded by the macro expander and
just compile them:
racket -Ml racket/base load-from-expanded time
RICS BB e

R fzs msec
RUjit! b s

racket -Ml racket
R/CS
RIB7 msec
R/jit! BB msec

We can make a relatively direct comparison of compile times between C and Racket, because the
Racket macro expander was formerly written in C, and now it is written in Racket with essentially
the same algorithms and architecture. The implementations are not so different in lines of code: 45
KLoC in C versus 28.5 KLoC in Racket. The following plot shows compile times for the expander’s
implementation:

expander compile time
CS T
R EER msec
C

To further check that we’re comparing similar compilation tasks, we can check the size of the
generated machine code. We can compile the Racket code to C code through a cify compiler. Below
is a summary of machine-code sizes for the various compiled forms of the expander:

expander machine code size

4600 KB | 2000 KB

CS RYjit! mijitrno Ricify

78:6 Flatt, Derici, Dybvig, Keep, Massaccesi, Spall, Tobin-Hochstadt, and Zeppieri

The current Racket implementation generates much more code from the same implementation, in
part because it inlines functions aggressively and relies on the fact that only called code is normally
translated to machine code; the “R/jit!/no” bar shows the code size when inlining is disabled.

The measurements in compile-time plots come from running the shown command (but
with racketcs instead of racket for the “R/CS” lines) with the PLT_EXPANDER_TIMES
and PLT_LINKLET_TIMES environment variables set. The overall time is as reported by
time for user plus system time, and the divisions are extracted from the logging that is
enabled by the environment variables.

For measuring compile times on the expander itself, the Chez Scheme measurement is
based on the build step that generates "expander. so", the current-Racket measurement
is based on the build step that generates "cstartup.inc", and the C measurement
is based on subtracting the time to rebuild Racket version 6.12 versus version 7.2.0.3
when the ".0" files in "build/racket/gc2" are deleted.

For measuring machine-code size, the expander’s code size for Chez Scheme was
computed by comparing the output of object-counts after loading all expander
prerequsites to the result after the expander; to reduce the code that is just form the 1i-
brary wrapper, the expander was compiled as a program instead of as a library. The code
size for Racket was determined by setting PLT_EAGER_JIT and PLT_LINKLET_TIMES
and running racket -d -n, which causes the expander implemtation to be JITted and
total bytes of code generated by the JIT to be reported. The “R/no-inline” variant was the
same, but compiling the expander to bytecode with compile-context-preservation-
enabled set to #f, which disables inlining. The “R/cify” code size was computed by
taking the difference on sizes of the Racket shared library for a normal build and
one with --enable-cify, after stripping the binaries with strip -S, then further
subtracting the size of the expander’s bytecode as it is embedded in the normal build’s
shared library. The “C” code size was similarly computed by subtracting the size of the
Racket shared library for version 7.2.0.3 from the size for the 6.12 release, stipped and
with the expander bytecode size subtracted.

Some sizes were derived from Racket 7.2.0.3 (as noted), where 7.3.0.3 would be about
the same size as 7.2.0.3. Otherwise, we used Chez Scheme 9.5.3 modified as commit
6d05b70e86 at github:racket/ChezScheme and Racket 7.3.0.3 as commit ff95f1860a
at github:racket/racket.

6 BUILD PROFILE

The results in this section are substantially improved compared to the original supplementary material.
We discovered a too-weak cache that was formerly responsible for half of the extra build time in Racket
Cs.

Building the Racket distribution from source involves compiling Racket code, running documen-
tation to gather cross-reference information, rendering that documentation to HTML form, and the
re-rendering some documentation to reach a fixed point. Plots in this section show memory use
plotted against time for building the Racket distribution from source, all on the same scale.

For Racket CS:

Updated (June 2019) Supplementary Material for

Rebuilding Racket on Chez Scheme (Experience Report) 78:7
doc doc

complle run render

1.2GB

- [‘ !VHH i

o

£

()

£

. 1hs5m

time

For the current Racket implementation:

pedk 1,105,941

I “‘ | ‘ i i " i I‘

Documentation rendering with Racket CS is slightly slower, but most of the difference in build time
is during the compilation of modules.

To partly separate the cost of macro expansion and module loading from the cost of compilation
after expansion, the following plots show build activity when using current Racket and making
“compile” just mean “expand” (which makes the build take about twice as long as a regular Racket
build, since maodules will be repeatedly compiled as they are loaded to expand other modules).
Given the result of the expand-only build as an input, which also already has documentation
rendered, we can then compile each fully expanded module to machine code.

For Racket CS:

For the current Racket implementation:

78:8 Flatt, Derici, Dybvig, Keep, Massaccesi, Spall, Tobin-Hochstadt, and Zeppieri

eI 240,835 D

u

The difference between these two plots suggests that longer compilation is responsible for at least
1/3 of the difference in build times between current Racket and Racket CS. Compilation time should
account for even more of the difference considering that macros within a module most be compiled
as he module is expanded, and none of that compilation appears in the last two plots (because all

modules have already been expanded), but compilation time probably does not account for all of
the difference.

These plots in this section were generated using the "plt-build-plot" package,
which drives a build from source and plots the results. The build with “compile” as
“expand” was created by using the -M flag, and then the finishing builds were measured
by another run on the result.

	1 Traditional Scheme Benchmarks
	2 Shootout Benchmarks
	3 Startup Times
	4 Memory Use
	5 Expand and Compile Times
	6 Build Profile

