
78

Supplementary Material for
Rebuilding Racket on Chez Scheme (Experience Report)

MATTHEW FLATT, University of Utah, USA
CANER DERICI, Indiana University, USA
R. KENT DYBVIG, Cisco Systems, Inc., USA
ANDREWW. KEEP, Cisco Systems, Inc., USA
GUSTAVO E. MASSACCESI, Universidad de Buenos Aires, Argentina
SARAH SPALL, Indiana University, USA
SAM TOBIN-HOCHSTADT, Indiana University, USA
JON ZEPPIERI, independent researcher, USA

All benchmark measurements were performed on an Intel Core i7-2600 3.4GHz processor running
64-bit Linux. Except as specifically noted, we used Chez Scheme 9.5.3 commit 7df2fb2e77 at
github:cicso/ChezScheme, modified as commit 6d05b70e86 at github:racket/ChezScheme, and
Racket 7.3.0.3 as commit ff95f1860a at github:racket/racket.

1 TRADITIONAL SCHEME BENCHMARKS
The traditional Scheme benchmarks in figure 1 are based on a suite of small programs that have
been widely used to compare Scheme implementations. The benchmark sources are in the "common"
directory of the racket-benchmarks package in the Racket GitHub repository.
The results are in two groups, where the group starting with scheme-c uses mutable pairs, so

they are run in Racket as #lang r5rs programs; for Racket CS we expect overhead due to the use
of a record datatype for mutable pairs, instead of Chez Scheme’s built-in pairs.
The groups are sorted by the ratio of times for Chez Scheme and the current Racket imple-

mentation. Note that the break-even point is near the end of the first group. The racket collatz
benchmark turns out to mostly measure the performance of the built-in division operator for
rational numbers, while fft and nucleic benefit from flonum unboxing.

2 SHOOTOUT BENCHMARKS
The benchmarks in figure 2 are based on a series of programs that have appeared over the years
as part of the Computer Language Benchmarks Game to compare implementations of different
languages.1 The benchmark sources are in the "shootout" directory of the racket-benchmarks
package in the Racket GitHub repository. We have only Racket implementations of these programs.

The groups are sorted by the ratio of times for Racket CS and the current Racket implementation.
Results closer to the end of the table tend to relymore on Racket’s hash tables, I/O, regular-expression
matcher, thread scheduler, and flonum unboxing.

1https://benchmarksgame-team.pages.debian.net/benchmarksgame/

Authors’ addresses: Matthew Flatt, University of Utah, USA, mflatt@cs.utah.edu; Caner Derici, Indiana University, USA,
cderici@indiana.edu; R. Kent Dybvig, Cisco Systems, Inc. USA, dyb@cisco.com; Andrew W. Keep, Cisco Systems, Inc.
USA, akeep@cisco.com; Gustavo E. Massaccesi, Universidad de Buenos Aires, Argentina, gustavo@oma.org.ar; Sarah
Spall, Indiana University, USA, sjspall@iu.edu; Sam Tobin-Hochstadt, Indiana University, USA, samth@cs.indiana.edu; Jon
Zeppieri, independent researcher, USA, zeppieri@gmail.com.

78:2 Flatt, Derici, Dybvig, Keep, Massaccesi, Spall, Tobin-Hochstadt, and Zeppieri

ctak
CS 28 msec

CS′ 30 msec

R/CS 275 msec275 msec

R 3421 msec3421 msec

takr2
CS 729 msec729 msec

CS′ 754 msec754 msec

R/CS 750 msec750 msec

R 3065 msec3065 msec

takr
CS 900 msec900 msec

CS′ 872 msec872 msec

R/CS 753 msec753 msec

R 3144 msec3144 msec

lattice2
CS 1299 msec1299 msec

CS′ 1268 msec1268 msec

R/CS 2018 msec2018 msec

R 3565 msec3565 msec

deriv
CS 695 msec695 msec

CS′ 703 msec703 msec

R/CS 786 msec786 msec

R 1703 msec1703 msec

scheme2
CS 539 msec539 msec

CS′ 522 msec522 msec

R/CS 879 msec879 msec

R 1270 msec1270 msec

paraffins
CS 1429 msec1429 msec

CS′ 1488 msec1488 msec

R/CS 1585 msec1585 msec

R 3367 msec3367 msec

earley
CS 945 msec945 msec

CS′ 972 msec972 msec

R/CS 1305 msec1305 msec

R 2185 msec2185 msec

dderiv
CS 894 msec894 msec

CS′ 880 msec880 msec

R/CS 1005 msec1005 msec

R 2049 msec2049 msec

cpstak
CS 1358 msec1358 msec

CS′ 1354 msec1354 msec

R/CS 1630 msec1630 msec

R 3066 msec3066 msec

graphs
CS 1195 msec1195 msec

CS′ 1220 msec1220 msec

R/CS 1661 msec1661 msec

R 2685 msec2685 msec

nboyer
CS 724 msec724 msec

CS′ 726 msec726 msec

R/CS 786 msec786 msec

R 1605 msec1605 msec

div
CS 1659 msec1659 msec

CS′ 1665 msec1665 msec

R/CS 1684 msec1684 msec

R 3648 msec3648 msec

triangle
CS 2036 msec2036 msec

CS′ 2040 msec2040 msec

R/CS 1948 msec1948 msec

R 3501 msec3501 msec

nqueens
CS 1739 msec1739 msec

CS′ 1630 msec1630 msec

R/CS 1684 msec1684 msec

R 2911 msec2911 msec

sboyer
CS 1313 msec1313 msec

CS′ 1163 msec1163 msec

R/CS 1208 msec1208 msec

R 2165 msec2165 msec

nfa
CS 2599 msec2599 msec

CS′ 1947 msec1947 msec

R/CS 2019 msec2019 msec

R 4138 msec4138 msec

dynamic2
CS 360 msec360 msec

CS′ 374 msec374 msec

R/CS 389 msec389 msec

R 546 msec546 msec

nestedloop
CS 3878 msec3878 msec

CS′ 3887 msec3887 msec

R/CS 4304 msec4304 msec

R 5440 msec5440 msec

mazefun
CS 3754 msec3754 msec

CS′ 3777 msec3777 msec

R/CS 3571 msec3571 msec

R 5188 msec5188 msec

tak
CS 3148 msec3148 msec

CS′ 3169 msec3169 msec

R/CS 2733 msec2733 msec

R 4053 msec4053 msec

puzzle
CS 3269 msec3269 msec

CS′ 3208 msec3208 msec

R/CS 2941 msec2941 msec

R 3981 msec3981 msec

takl
CS 3468 msec3468 msec

CS′ 3421 msec3421 msec

R/CS 2424 msec2424 msec

R 4220 msec4220 msec

maze2
CS 3238 msec3238 msec

CS′ 3264 msec3264 msec

R/CS 3015 msec3015 msec

R 3297 msec3297 msec

fft
CS 2320 msec2320 msec

CS′ 2313 msec2313 msec

R/CS 2339 msec2339 msec

R 2159 msec2159 msec

collatz-q
CS 2424 msec2424 msec

CS′ 2375 msec2375 msec

R/CS 2368 msec2368 msec

R 2159 msec2159 msec

nucleic2
CS 8205 msec8205 msec

CS′ 8118 msec8118 msec

R/CS 8027 msec8027 msec

R 7230 msec7230 msec

collatz
CS 6052 msec6052 msec

CS′ 6112 msec6112 msec

R/CS 5979 msec5979 msec

R 2119 msec2119 msec

scheme-c
CS 98 msec98 msec

CS′ 95 msec95 msec

R/CS 275 msec275 msec

R 370 msec370 msec

lattice
CS 455 msec455 msec

CS′ 404 msec404 msec

R/CS 1188 msec1188 msec

R 1198 msec1198 msec

destruct
CS 694 msec694 msec

CS′ 696 msec696 msec

R/CS 1227 msec1227 msec

R 1752 msec1752 msec

scheme-i
CS 313 msec313 msec

CS′ 290 msec290 msec

R/CS 842 msec842 msec

R 745 msec745 msec

scheme
CS 563 msec563 msec

CS′ 556 msec556 msec

R/CS 1907 msec1907 msec

R 1243 msec1243 msec

sort1
CS 414 msec414 msec

CS′ 403 msec403 msec

R/CS 742 msec742 msec

R 677 msec677 msec

dynamic
CS 343 msec343 msec

CS′ 342 msec342 msec

R/CS 778 msec778 msec

R 522 msec522 msec

peval
CS 997 msec997 msec

CS′ 963 msec963 msec

R/CS 1838 msec1838 msec

R 1360 msec1360 msec

conform
CS 1092 msec1092 msec

CS′ 1067 msec1067 msec

R/CS 2597 msec2597 msec

R 1149 msec1149 msec

maze
CS 1228 msec1228 msec

CS′ 1229 msec1229 msec

R/CS 1225 msec1225 msec

R 1285 msec1285 msec

Fig. 1. Traditional Scheme benchmarks. Shorter is better. CS = unmodifed Chez Scheme, CS′ =
modified Chez Scheme, R/CS = Racket CS, R = current Racket implementation.

wordfreq
R/CS 1328 msec1328 msec

R 2949 msec2949 msec

pidigits1
R/CS 205 msec205 msec

R 382 msec382 msec

spectralnorm-g
R/CS 6022 msec6022 msec

R 9428 msec9428 msec

recursive
R/CS 5466 msec5466 msec

R 7583 msec7583 msec

sieve
R/CS 2998 msec2998 msec

R 4141 msec4141 msec

fannkuch
R/CS 1268 msec1268 msec

R 1731 msec1731 msec

meteor
R/CS 257 msec257 msec

R 350 msec350 msec

random
R/CS 1659 msec1659 msec

R 2255 msec2255 msec

ackermann
R/CS 2563 msec2563 msec

R 3473 msec3473 msec

ary
R/CS 3479 msec3479 msec

R 4677 msec4677 msec

partialsums
R/CS 1650 msec1650 msec

R 2190 msec2190 msec

hash
R/CS 2493 msec2493 msec

R 3006 msec3006 msec

nestedloop
R/CS 4369 msec4369 msec

R 5266 msec5266 msec

regexpdna
R/CS 3670 msec3670 msec

R 4296 msec4296 msec

matrix
R/CS 2730 msec2730 msec

R 3095 msec3095 msec

fibo
R/CS 3350 msec3350 msec

R 3711 msec3711 msec

heapsort
R/CS 3690 msec3690 msec

R 3959 msec3959 msec

reversecomp
R/CS 2812 msec2812 msec

R 2913 msec2913 msec

nbody-vec-g
R/CS 4831 msec4831 msec

R 5004 msec5004 msec

binarytrees
R/CS 986 msec986 msec

R 1012 msec1012 msec

nsieve
R/CS 2688 msec2688 msec

R 2573 msec2573 msec

wc
R/CS 2426 msec2426 msec

R 2243 msec2243 msec

nbody-generic
R/CS 5417 msec5417 msec

R 4698 msec4698 msec

moments
R/CS 3119 msec3119 msec

R 2701 msec2701 msec

nbody
R/CS 2470 msec2470 msec

R 2073 msec2073 msec

nsievebits
R/CS 4814 msec4814 msec

R 3785 msec3785 msec

regexmatch
R/CS 4723 msec4723 msec

R 3563 msec3563 msec

fannkuch-redux
R/CS 1553 msec1553 msec

R 1121 msec1121 msec

mandelbrot-g
R/CS 12292 msec12292 msec

R 8517 msec8517 msec

nbody-vec
R/CS 1999 msec1999 msec

R 1383 msec1383 msec

lists
R/CS 4402 msec4402 msec

R 2951 msec2951 msec

except
R/CS 5740 msec5740 msec

R 3799 msec3799 msec

sumcol
R/CS 3440 msec3440 msec

R 2175 msec2175 msec

fasta
R/CS 4259 msec4259 msec

R 2641 msec2641 msec

k-nucleotide
R/CS 4490 msec4490 msec

R 2760 msec2760 msec

hash2
R/CS 3058 msec3058 msec

R 1878 msec1878 msec

reversefile
R/CS 4173 msec4173 msec

R 2529 msec2529 msec

strcat
R/CS 3530 msec3530 msec

R 1984 msec1984 msec

pidigits
R/CS 1857 msec1857 msec

R 1008 msec1008 msec

mandelbrot
R/CS 3537 msec3537 msec

R 1812 msec1812 msec

chameneos
R/CS 5765 msec5765 msec

R 2857 msec2857 msec

spectralnorm
R/CS 2437 msec2437 msec

R 1207 msec1207 msec

echo
R/CS 12349 msec12349 msec

R 5582 msec5582 msec

cheapconcur
R/CS 4509 msec4509 msec

R 2004 msec2004 msec

Fig. 2. Shootout benchmarks. Shorter is better. R/CS = Racket CS, R = current Racket implementa-
tion.

3 STARTUP TIMES
Startup for just the runtime system without any libraries:

startup timeracket -n
R/CS 91 msec91 msec

R 49 msec49 msec

The Racket CS startup image has much more Scheme and Racket code that is dynamically loaded
and linked, instead of loaded as a read-only code segment like the compiled C code that dominates

Supplementary Material for
Rebuilding Racket on Chez Scheme (Experience Report) 78:3

the current Racket implementation. We can build the current Racket implementation in a mode
where its Racket-implemented macro expander is compiled to C code instead of bytecode, too,
shown below as “R/cify.” We can also compare to Racket v6, which had an expander that was
written directly in C:

startup timeracket -n
R/CS 91 msec91 msec

R 49 msec49 msec

R/cify 19 msec19 msec

Rv6 14 msec14 msec

Loading the racket/base library:
startup+load timeracket -l racket/base

R/CS 141 msec141 msec

R 93 msec93 msec

Racket CS’s machine code is bigger than current Racket’s bytecode representation. Furthermore, the
current Racket implementation is lazy about parsing some bytecode. We can disable lazy bytecode
loading with the -d flag, shown as “R/all”:

startup+load timeracket -l racket/base
R/CS 141 msec141 msec

R 93 msec93 msec

R/all 117 msec117 msec

Loading the larger racket library, which is what the racket executable loads by default for
interactive mode:

startup+load timeracket -l racket
R/CS 461 msec461 msec

R 268 msec268 msec

R/all 414 msec414 msec

The measurements in this section were gathered by using time in a shell a few times
and taking the median. The command was as shown, but using racket -d for the
“R/all” lines.

4 MEMORY USE
The following plots show memory use, including both code and data, after loading racket/base
or racket, but subtracting memory use at the end of a run that loads no libraries (which reduces
noise from different ways of counting code in the initial heap). The “R/jit!” line uses -d to load
all bytecode eagerly, and it further forces that bytecode to be compiled to native code by the JIT
compiler.

memory use after loadracket -l racket/base

10 MB10 MB

R/CS

5 MB5 MB

R
8 MB8 MB

R/all
14 MB14 MB

R/jit!

memory use after loadracket -l racket

59 MB59 MB

R/CS

29 MB29 MB

R
49 MB49 MB

R/all
79 MB79 MB

R/jit!

78:4 Flatt, Derici, Dybvig, Keep, Massaccesi, Spall, Tobin-Hochstadt, and Zeppieri

These results show that bytecode is more compact thanmachine code, as expected. Lazy parsing of
bytecode also makes a substantial difference in memory use for the current Racket implementation.
Racket’s current machine code takes a similar amount of space as Chez Scheme machine code, but
the JIT overhead and other factors make it even larger. (Bytecode is not retained after conversion
to machine code by the JIT.)

On a different scale and measuring peak memory use instead of final memory use for DrRacket
start up and exit:

peak memory use for startup+exitdrracket

709 MB709 MB

R/CS

414 MB414 MB

R
520 MB520 MB

R/all
743 MB743 MB

R/jit!

This result reflects that DrRacket’s memory use is mostly the code that implements DrRacket, at
least if you just start DrRacket and immediately exit.

The measurements in this section were gathered by running racket starting with
the arguments -l racket/base, -l racket, or -l drracket. The command further
included -W "debug@GC" -e ’(collect-garbage)’ -e ’(collect-garbage)’ and
recording the logged memory use before that second collection. For the “R” lines, the
reported memory use includes the first number that is printed by logging in square
brackets, which is the memory occupied by code outside of the garbage collector’s
directly managed space. For “R/all,” the -d flag is used in addition, and for “R/jit!,” the
PLT_EAGER_JIT environment variable was set in addition to supplying -d. DrRacket’s
peak memory use was measured by waiting for the background expansion indicator to
turn green for an empty program, and the result for racket add the last recent memory
use reported for place 1.

5 EXPAND AND COMPILE TIMES
These plots compare compile times from source for the racket/base module (and all of its depen-
dencies) and the racket module (and dependencies):

load-from-source timeracket -cl racket/base
R/CS 5191 msec5191 msec

R 2856 msec2856 msec

R/jit! 3340 msec3340 msec

racket -cl racket
R/CS 55615 msec55615 msec

R 32429 msec32429 msec

R/jit! 36188 msec36188 msec

Compilation requires first macro-expanding source. Racket CS and current Racket use the same
expander implementation. The following plots show how parts of the compile time can be attributed
to specific subtasks:

Supplementary Material for
Rebuilding Racket on Chez Scheme (Experience Report) 78:5

load-from-source timeracket -cl racket/base
R/CS 5191 msec5191 msec

R 2856 msec2856 msec

R/jit! 3340 msec3340 msec

racket -cl racket
R/CS 55615 msec55615 msec

R 32429 msec32429 msec

R/jit! 36188 msec36188 msec

 = expand
 = schemify
 = compile
 = register allocate
 = JIT

We can alternatively start with modules that are already expanded by the macro expander and
just compile them:

load-from-expanded timeracket -Ml racket/base
R/CS 2635 msec2635 msec

R 328 msec328 msec

R/jit! 497 msec497 msec

racket -Ml racket
R/CS 19702 msec19702 msec

R 1917 msec1917 msec

R/jit! 2493 msec2493 msec

We can make a relatively direct comparison of compile times between C and Racket, because the
Racket macro expander was formerly written in C, and now it is written in Racket with essentially
the same algorithms and architecture. The implementations are not so different in lines of code: 45
KLoC in C versus 28.5 KLoC in Racket. The following plot shows compile times for the expander’s
implementation:

compile timeexpander
CS 12400 msec12400 msec

R 1300 msec1300 msec

C 8700 msec8700 msec

To further check that we’re comparing similar compilation tasks, we can check the size of the
generated machine code. We can compile the Racket code to C code through a cify compiler. Below
is a summary of machine-code sizes for the various compiled forms of the expander:

machine code sizeexpander

2300 KB2300 KB

CS
4600 KB4600 KB

R/jit!
2900 KB2900 KB

R/jit!/no

1700 KB1700 KB

R/cify

900 KB900 KB

C

The current Racket implementation generates much more code from the same implementation, in
part because it inlines functions aggressively and relies on the fact that only called code is normally
translated to machine code; the “R/jit!/no” bar shows the code size when inlining is disabled.

The measurements in compile-time plots come from running the shown command (but
with racketcs instead of racket for the “R/CS” lines) with the PLT_EXPANDER_TIMES
and PLT_LINKLET_TIMES environment variables set. The overall time is as reported by
time for user plus system time, and the divisions are extracted from the logging that is
enabled by the environment variables.
For measuring compile times on the expander itself, the Chez Scheme measurement is
based on the build step that generates "expander.so", the current-Racketmeasurement

78:6 Flatt, Derici, Dybvig, Keep, Massaccesi, Spall, Tobin-Hochstadt, and Zeppieri

is based on the build step that generates "cstartup.inc", and the C measurement
is based on subtracting the time to rebuild Racket version 6.12 versus version 7.2.0.3
when the ".o" files in "build/racket/gc2" are deleted.
For measuring machine-code size, the expander’s code size for Chez Scheme was
computed by comparing the output of object-counts after loading all expander
prerequsites to the result after the expander; to reduce the code that is just form the li-
brarywrapper, the expanderwas compiled as a program instead of as a library. The code
size for Racket was determined by setting PLT_EAGER_JIT and PLT_LINKLET_TIMES
and running racket -d -n, which causes the expander implemtation to be JITted and
total bytes of code generated by the JIT to be reported. The “R/no-inline” variant was the
same, but compiling the expander to bytecode with compile-context-preservation-
enabled set to #f, which disables inlining. The “R/cify” code size was computed by
taking the difference on sizes of the Racket shared library for a normal build and
one with --enable-cify, after stripping the binaries with strip -S, then further
subtracting the size of the expander’s bytecode as it is embedded in the normal build’s
shared library. The “C” code size was similarly computed by subtracting the size of the
Racket shared library for version 7.2.0.3 from the size for the 6.12 release, stipped and
with the expander bytecode size subtracted.

6 BUILD PROFILE
Building the Racket distribution from source involves compiling Racket code, running documenta-
tion to gather cross-reference information, rendering that documentation to HTML form, and the
re-rendering some documentation to reach a fixed point. Plots in this section show memory use
plotted against time for building the Racket distribution from source, all on the same scale.

For Racket CS:

1.2 GB

m
e

m
o

ry
 u

s
e

re-render
doc
render

doc
runcompile

Peak: 1,174,987K Duration:1:54:14.00

time
1h55m

For the current Racket implementation:

Supplementary Material for
Rebuilding Racket on Chez Scheme (Experience Report) 78:7

Peak: 974,105K Duration:1:02:00.05

To partly separate the cost of macro expansion and module loading from the cost of compilation
after expansion, the following plots show build activity when using current Racket and making
“compile” just mean “expand”:

Peak: 1,530,682K Duration:2:16:07.38

Given the result of the expand-only build as an input, we can then compile each fully expanded
module to machine code. For Racket CS:

Peak: 471,449K Duration:0:14:33.71

For the current Racket implementation:

78:8 Flatt, Derici, Dybvig, Keep, Massaccesi, Spall, Tobin-Hochstadt, and Zeppieri

Peak: 234,152K Duration:0:04:10.93

The shortness of these last two plots illustrate that the overall time to build Racket from source
is not so much from compile-time differences as other end-to-end performance effects related to
loading and instantiating compile-time modules for macro expansion. We expect to be able to
improve those effects without having to fundamentally change the approach to compilation in
Racket CS.

These plots in this section were generated using the "plt-build-plot" package,
which drives a build from source and plots the results. The build with “compile” as
“expand” was created by using the -M flag, and then the finishing builds were measured
by another run on the result.
We used Chez Scheme 9.5.3modified as commit a48f3525d7 at github:racket/ChezScheme
and Racket 7.3.0.4 as commit 0bffb7035d at github:racket/racket. This more recent
version corrects a memory leak that was large enough to be visible in the plots.

	1 Traditional Scheme Benchmarks
	2 Shootout Benchmarks
	3 Startup Times
	4 Memory Use
	5 Expand and Compile Times
	6 Build Profile

