Supplementary Material for
Rebuilding Racket on Chez Scheme (Experience Report)

MATTHEW FLATT, University of Utah, USA

CANER DERICI, Indiana University, USA

R. KENT DYBVIG, Cisco Systems, Inc., USA

ANDREW W. KEEP, Cisco Systems, Inc., USA

GUSTAVO E. MASSACCESI, Universidad de Buenos Aires, Argentina
SARAH SPALL, Indiana University, USA

SAM TOBIN-HOCHSTADT, Indiana University, USA

JON ZEPPIERI, independent researcher, USA

All benchmark measurements were performed on an Intel Core i7-2600 3.4GHz processor running
64-bit Linux. Except as specifically noted, we used Chez Scheme 9.5.3 commit 7df2fb2e77 at
github:cicso/ChezScheme, modified as commit 6d05b70e86 at github:racket/ChezScheme, and
Racket 7.3.0.3 as commit ff95f1860a at github:racket/racket.

1 TRADITIONAL SCHEME BENCHMARKS

The traditional Scheme benchmarks in figure 1 are based on a suite of small programs that have
been widely used to compare Scheme implementations. The benchmark sources are in the "common”
directory of the racket-benchmarks package in the Racket GitHub repository.

The results are in two groups, where the group starting with scheme-c uses mutable pairs, so
they are run in Racket as #lang r5rs programs; for Racket CS we expect overhead due to the use
of a record datatype for mutable pairs, instead of Chez Scheme’s built-in pairs.

The groups are sorted by the ratio of times for Chez Scheme and the current Racket imple-
mentation. Note that the break-even point is near the end of the first group. The racket collatz
benchmark turns out to mostly measure the performance of the built-in division operator for
rational numbers, while fft and nucleic benefit from flonum unboxing,.

2 SHOOTOUT BENCHMARKS

The benchmarks in figure 2 are based on a series of programs that have appeared over the years
as part of the Computer Language Benchmarks Game to compare implementations of different
languages.! The benchmark sources are in the "shootout" directory of the racket-benchmarks
package in the Racket GitHub repository. We have only Racket implementations of these programs.

The groups are sorted by the ratio of times for Racket CS and the current Racket implementation.
Results closer to the end of the table tend to rely more on Racket’s hash tables, I/O, regular-expression
matcher, thread scheduler, and flonum unboxing.

!https://benchmarksgame-team.pages.debian.net/benchmarksgame/

Authors’ addresses: Matthew Flatt, University of Utah, USA, mflatt@cs.utah.edu; Caner Derici, Indiana University, USA,
cderici@indiana.edu; R. Kent Dybvig, Cisco Systems, Inc. USA, dyb@cisco.com; Andrew W. Keep, Cisco Systems, Inc.
USA, akeep@cisco.com; Gustavo E. Massaccesi, Universidad de Buenos Aires, Argentina, gustavo@oma.org.ar; Sarah
Spall, Indiana University, USA, sjspall@iu.edu; Sam Tobin-Hochstadt, Indiana University, USA, samth@cs.indiana.edu; Jon
Zeppieri, independent researcher, USA, zeppieri@gmail.com.

78:2 Flatt, Derici, Dybvig, Keep, Massaccesi, Spall, Tobin-Hochstadt, and Zeppieri

lattice2

-
R/CS BB
RETE—

dderiv
JoY e |
CS' ey
R/CS ==
R —

tak

CSErE=S
CS' EET=—
R/CS EET=a

RETE—

nestedloop
CS
CS’
R/Cg_

fft collatz-q nucleic2
CSE

CS Errm—
CS' Cr—

CS Er—

CSCReemm CS' =S

RICSETENNNNN R/CS[CE=N.
R &

lattice destruct

csmm

scheme sortl

Fig. 1. Traditional Scheme benchmarks. Shorter is better. CS = unmodifed Chez Scheme, CS’ =
modified Chez Scheme, R/CS = Racket CS, R = current Racket implementation.

wordfreq pidigitsl ive sieve fannkuch
R/CS e R/ICS R/CS Err=a R/ICS R/CS EEre—

R R EEE— RETTESSNN ROT=SSSSN R
meteor random ackermann ary partialsums hash
R/CS ER— R/CS RICS

R R R
nestedloop regexpdna p
R/CS T R/CS R/CS ERTu—

RE R R
nbody-vec-g binarytrees nsieve we nbody-generic moments
RICSUNETSNNEE R/CS RICSEETENNNN R/CSEITENNNN R/CSEITENNE R/CSET.

Mo] R T N
nbody nsievebits r tch -redux mandelbrot-g

R/ICS R/CS IET—
R R T

lists except sumcol
R/CS TSN R/CS R/CS PR

R e RE R . R
reversefile strcat pidigits mandelbrot chameneos spectralnorm
RCSETTSNEEN FRCSEIENEEN RCSEINEEEN RCSERMEEEEN R/CSENTEEE R/CS

Rz R RICTE.]]
echo cheapconcur

R/CS
R

Fig. 2. Shootout benchmarks. Shorter is better. R/CS = Racket CS, R = current Racket implementa-
tion.

3 STARTUP TIMES
Startup for just the runtime system without any libraries:

racket -n startup time
R/CS BB
R
The Racket CS startup image has much more Scheme and Racket code that is dynamically loaded
and linked, instead of loaded as a read-only code segment like the compiled C code that dominates

Supplementary Material for
Rebuilding Racket on Chez Scheme (Experience Report) 78:3

the current Racket implementation. We can build the current Racket implementation in a mode
where its Racket-implemented macro expander is compiled to C code instead of bytecode, too,
shown below as “R/cify.” We can also compare to Racket v6, which had an expander that was
written directly in C:

racket -n startup time

R/CS
R
R/Cify fomsec
Rv6 4 msec

Loading the racket/base library:

racket -1 racket/base startup+load time

R/CS [IE=.
R
Racket CS’s machine code is bigger than current Racket’s bytecode representation. Furthermore, the
current Racket implementation is lazy about parsing some bytecode. We can disable lazy bytecode
loading with the -d flag, shown as “R/all”:
racket -1 racket/base startup+load time
R/CS mE=.

REE®
R/all FEE=

Loading the larger racket library, which is what the racket executable loads by default for

interactive mode:
racket -1 racket startup+load time

R/CS EE S
R T
R/all R

The measurements in this section were gathered by using time in a shell a few times
and taking the median. The command was as shown, but using racket -d for the
“R/all” lines.

4 MEMORY USE

The following plots show memory use, including both code and data, after loading racket/base
or racket, but subtracting memory use at the end of a run that loads no libraries (which reduces
noise from different ways of counting code in the initial heap). The “R/jit!” line uses -d to load
all bytecode eagerly, and it further forces that bytecode to be compiled to native code by the JIT
compiler.

racket -1 racket/base memory use after load

m

R/CS R R/all Rijit!

racket -1 racket memory use after load

79 MB

R/CS R R/all R/jit!

78:4 Flatt, Derici, Dybvig, Keep, Massaccesi, Spall, Tobin-Hochstadt, and Zeppieri

These results show that bytecode is more compact than machine code, as expected. Lazy parsing of
bytecode also makes a substantial difference in memory use for the current Racket implementation.
Racket’s current machine code takes a similar amount of space as Chez Scheme machine code, but
the JIT overhead and other factors make it even larger. (Bytecode is not retained after conversion
to machine code by the JIT.)

On a different scale and measuring peak memory use instead of final memory use for DrRacket
start up and exit:

drracket peak memory use for startup+exit

! 743 MB

R/CS R Ri/all R/jit!

This result reflects that DrRacket’s memory use is mostly the code that implements DrRacket, at
least if you just start DrRacket and immediately exit.

The measurements in this section were gathered by running racket starting with
the arguments -1 racket/base, -1 racket, or -1 drracket. The command further
included -W "debug@GC" -e ’(collect-garbage)’ -e ’(collect-garbage)’ and
recording the logged memory use before that second collection. For the “R” lines, the
reported memory use includes the first number that is printed by logging in square
brackets, which is the memory occupied by code outside of the garbage collector’s
directly managed space. For “R/all,” the -d flag is used in addition, and for “R/jit!,” the
PLT_EAGER_JIT environment variable was set in addition to supplying -d. DrRacket’s
peak memory use was measured by waiting for the background expansion indicator to
turn green for an empty program, and the result for racket add the last recent memory
use reported for place 1.

5 EXPAND AND COMPILE TIMES

These plots compare compile times from source for the racket/base module (and all of its depen-
dencies) and the racket module (and dependencies):

racket -cl racket/base load-from-source time
R/CS BEER-.
RER msec
R/jit! EZBmse
racket -cl racket
R/CS
R T
R/jit!

Compilation requires first macro-expanding source. Racket CS and current Racket use the same
expander implementation. The following plots show how parts of the compile time can be attributed
to specific subtasks:

Supplementary Material for

Rebuilding Racket on Chez Scheme (Experience Report) 78:5
racket -cl racket/base load-from-source time
R/CS [
RES msee = expand
R/jit! B2 msec o = schemify
W = compile
racket -cl racket M = register allocate
R/CS [I =T
R |
Rijit |

We can alternatively start with modules that are already expanded by the macro expander and
just compile them:
racket -Ml racket/base load-from-expanded time
RICS B reec

Rzs nsec
RYjit! o7 meo

racket -Ml racket
R/ICS

R mec

RJjit! B oo
We can make a relatively direct comparison of compile times between C and Racket, because the
Racket macro expander was formerly written in C, and now it is written in Racket with essentially
the same algorithms and architecture. The implementations are not so different in lines of code: 45
KLoC in C versus 28.5 KLoC in Racket. The following plot shows compile times for the expander’s

implementation:

expander compile time
Cs
R B s
c

To further check that we’re comparing similar compilation tasks, we can check the size of the
generated machine code. We can compile the Racket code to C code through a cify compiler. Below
is a summary of machine-code sizes for the various compiled forms of the expander:

expander machine code size

2300 KB | 4600 KB § 2900 KB 1700 KB | 900 KB

CS RYjit! mijitrno Ricify

The current Racket implementation generates much more code from the same implementation, in
part because it inlines functions aggressively and relies on the fact that only called code is normally
translated to machine code; the “R/jit!/no” bar shows the code size when inlining is disabled.

The measurements in compile-time plots come from running the shown command (but
with racketcs instead of racket for the “R/CS” lines) with the PLT_EXPANDER_TIMES
and PLT_LINKLET_TIMES environment variables set. The overall time is as reported by
time for user plus system time, and the divisions are extracted from the logging that is
enabled by the environment variables.

For measuring compile times on the expander itself, the Chez Scheme measurement is
based on the build step that generates "expander . so", the current-Racket measurement

78:6 Flatt, Derici, Dybvig, Keep, Massaccesi, Spall, Tobin-Hochstadt, and Zeppieri

is based on the build step that generates "cstartup.inc", and the C measurement
is based on subtracting the time to rebuild Racket version 6.12 versus version 7.2.0.3
when the ".0" files in "build/racket/gc2" are deleted.

For measuring machine-code size, the expander’s code size for Chez Scheme was
computed by comparing the output of object-counts after loading all expander
prerequsites to the result after the expander; to reduce the code that is just form the 1i-
brary wrapper, the expander was compiled as a program instead of as a library. The code
size for Racket was determined by setting PLT_EAGER_JIT and PLT_LINKLET_TIMES
and running racket -d -n, which causes the expander implemtation to be JITted and
total bytes of code generated by the JIT to be reported. The “R/no-inline” variant was the
same, but compiling the expander to bytecode with compile-context-preservation-
enabled set to #f, which disables inlining. The “R/cify” code size was computed by
taking the difference on sizes of the Racket shared library for a normal build and
one with —--enable-cify, after stripping the binaries with strip -S, then further
subtracting the size of the expander’s bytecode as it is embedded in the normal build’s
shared library. The “C” code size was similarly computed by subtracting the size of the
Racket shared library for version 7.2.0.3 from the size for the 6.12 release, stipped and
with the expander bytecode size subtracted.

6 BUILD PROFILE

Building the Racket distribution from source involves compiling Racket code, running documenta-
tion to gather cross-reference information, rendering that documentation to HTML form, and the
re-rendering some documentation to reach a fixed point. Plots in this section show memory use
plotted against time for building the Racket distribution from source, all on the same scale.

For Racket CS:

e 1,174,987k Duhdn1 /54160

1.2GB

memory use

1h55m

time

For the current Racket implementation:

Supplementary Material for
Rebuilding Racket on Chez Scheme (Experience Report) 78:7

H 1 "h |

To partly separate the cost of macro expansion and module loading from the cost of compilation
after expansion, the following plots show build activity when using current Racket and making
“compile” just mean “expand”:

M ;l‘/;,‘ ‘J“.

Given the result of the expand-only build as an input, we can then compile each fully expanded
module to machine code. For Racket CS:

For the current Racket implementation:

78:8 Flatt, Derici, Dybvig, Keep, Massaccesi, Spall, Tobin-Hochstadt, and Zeppieri

Bl 234,152k Duration:0:04:10.93

u

The shortness of these last two plots illustrate that the overall time to build Racket from source
is not so much from compile-time differences as other end-to-end performance effects related to
loading and instantiating compile-time modules for macro expansion. We expect to be able to
improve those effects without having to fundamentally change the approach to compilation in
Racket CS.

These plots in this section were generated using the "plt-build-plot" package,
which drives a build from source and plots the results. The build with “compile” as
“expand” was created by using the -M flag, and then the finishing builds were measured

by another run on the result.

We used Chez Scheme 9.5.3 modified as commit a483525d7 at github: racket/ChezScheme
and Racket 7.3.0.4 as commit 0bffb7035d at github: racket/racket. This more recent
version corrects a memory leak that was large enough to be visible in the plots.

	1 Traditional Scheme Benchmarks
	2 Shootout Benchmarks
	3 Startup Times
	4 Memory Use
	5 Expand and Compile Times
	6 Build Profile

