
PLACES: PARALLELISM FOR RACKET

by

Kevin B. Tew

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

August 2013

Copyright © Kevin B. Tew 2013

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Kevin B. Tew
has been approved by the following supervisory committee members:

Matthew Flatt, Chair March 17, 2013

Date Approved

John Regehr, Member March 5, 2013

Date Approved

Mary Hall, Member March 26, 2013

Date Approved

Matthew Might, Member March 6, 2013

Date Approved

Peter Dinda, Member

Date Approved

and by Alan Davis, Chair of the School of Computing
and by Donna M. White, Interim Dean of The Graduate School

ABSTRACT

Places and distributed places bring new support for message-passing parallelism to Racket. This

dissertation describes the programming model and how Racket’s sequential runtime-system was

modified to support places and distributed places. The freedom to design the places programming

model helped make the implementation tractable; specifically, the conventional pain of adding just

the right amount of locking to a big, legacy runtime system was avoided. The dissertation presents

an evaluation of the places design that includes both real-world applications and standard parallel

benchmarks. Distributed places are introduced as a language extension of the places design and

architecture. The distributed places extension augments places with the features of remote process

launch, remote place invocation, and distributed message passing. Distributed places provide a

foundation for constructing higher-level distributed frameworks. Example implementations of RPC,

MPI, map reduce, and nested data parallelism demonstrate the extensibility of the distributed places

API.

For Cheryl, Tanner, and Kanani

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vii

ACKNOWLEDGMENTS . viii

CHAPTERS

1. INTRODUCTION . 1
1.1 Statement of Problem . 1
1.2 Thesis Statement . 1
1.3 Context of Work . 1

1.3.1 Method . 2
1.4 Contributions . 4

2. RELATED WORK . 5
2.1 Languages with Parallelism . 5

2.1.1 Racket’s futures . 5
2.1.2 Concurrent Caml Light . 5
2.1.3 Erlang . 6
2.1.4 Haskell . 6
2.1.5 Manticore . 6
2.1.6 Matlab . 7
2.1.7 Python’s multiprocessing library . 7
2.1.8 Python and Ruby . 7
2.1.9 Perl . 8
2.1.10 NESL . 8
2.1.11 OpenMP . 8
2.1.12 KaffeOS . 9

2.2 Hybrid Parallelism Languages . 9
2.2.1 Partitioned Global Address Space (PGAS) . 9
2.2.2 X10 . 9
2.2.3 High-Performance Fortran . 10

2.3 Languages with Distributed Parallelism . 10
2.3.1 Erlang . 10
2.3.2 MapReduce . 10
2.3.3 Termite . 11
2.3.4 Akka . 11
2.3.5 Kali . 11
2.3.6 Distributed Functional Programming in Scheme (DFPS) 11

2.3.7 Cloud Haskell . 12
2.3.8 High-level Distributed-Memory Parallel Haskell (HdpH) 12
2.3.9 Dryad . 12
2.3.10 Jade . 12
2.3.11 Dreme . 13

2.4 Transactional Memory . 13

3. PLACES . 14
3.1 Introduction . 14
3.2 Design Overview . 15
3.3 Places API . 17
3.4 Design Evaluation . 20

3.4.1 Parallel Build . 20
3.4.2 Higher-level Constructs . 23

3.4.2.1 CGfor . 23
3.4.2.2 CGpipeline . 25

3.4.3 Shared Memory . 26
3.5 Implementing Places . 27

3.5.1 Threads and Global Variables . 29
3.5.2 Thread-Local Variables . 29
3.5.3 Garbage Collection . 31
3.5.4 Place Channels . 31
3.5.5 OS Page-Table Locks . 32
3.5.6 Overlooked Cases and Mistakes . 34
3.5.7 Overall: Harder than it Sounds, Easier than Locks . 35

3.6 Places Complete API . 35
3.7 Performance Evaluation . 41
3.8 Conclusion . 49

4. DISTRIBUTED PLACES . 50
4.1 Introduction . 50
4.2 Design . 51
4.3 Higher-Level APIs . 54

4.3.1 RPC via Named Places . 54
4.3.2 Racket Message Passing Interface . 56
4.3.3 Map Reduce . 60
4.3.4 Nested Data Parallelism . 62

4.4 Implementation . 64
4.5 Distributed Places Performance . 66
4.6 Distributed Places Complete API . 71
4.7 Conclusion . 88

5. FUTURE WORK . 89

6. CONCLUSION . 91

REFERENCES . 93

vi

LIST OF FIGURES

3.1 Parallel Build . 22

3.2 fork-join . 24

3.3 CGpipeline . 26

3.4 Shared Memory Mandelbrot . 27

3.5 Sequential Racket VM . 27

3.6 Parallel Racket VM . 28

3.7 GC Object References . 28

3.8 Place-Channel Performance . 33

3.9 Benchmark Machines . 41

3.10 IS, FT, and CG wall-clock results . 43

3.11 MG, SP, and BT wall-clock results . 44

3.12 LU wall-clock results . 45

3.13 IS, FT, and CG speedup results . 46

3.14 MG, SP, and BT speedup results . 47

3.15 LU speedup results . 48

4.1 Place’s Hello World . 52

4.2 Distributed Hello World . 52

4.3 Tuple RPC Example . 55

4.4 Tuple Server . 56

4.5 Macro Expansion of Tuple Server . 57

4.6 MapReduce Program . 61

4.7 NDP Program . 63

4.8 Distributed Places Nodes . 65

4.9 Descriptor (Controller) - Controlled Pairs . 66

4.10 Three Node Distributed System . 67

4.11 Fortran IS, CG, and MG class A results . 69

4.12 Racket IS, CG, and MG class A results . 70

4.13 Distributed Places "Hello World" . 72

ACKNOWLEDGMENTS

I am greatful to my advisor Matthew Flatt for his patience in guiding me through the Ph.D.

process. Matthew always had a positive suggestion for me when I was lost or discouraged. Much

thanks goes to all my committee members: John Regehr, Mary Hall, Matthew Might, and Peter

Dinda, whose critiques and suggestions improved my work.

CHAPTER 1

INTRODUCTION

1.1 Statement of Problem
Software developers and academic researchers need a cost-effective and time-efficient means to

prototype, design, and experiment with parallel programs. Ideally, such a playground would consist

of a multicore workstation and a dynamic programming language such as Racket, Python, or Ruby.

Unfortunately, dynamic language runtimes evolved into their present form without forethought

or design for supporting parallelism. Dynamic languages have attempted to obtain parallelism by

adding OS scheduled threads and locks to their respective language runtimes. Language interpreters,

however, are some of the most complex types of software. The lifecycle and structure of data in

interpreters are dynamic and difficult to predict. Objects created in one portion of the interpreter of-

ten travel throughout the interpreter and have highly varied lifetimes. These lifecycle characteristics

lead to huge numbers of invariants that make locking a multithreaded interpreter extremely difficult.

As languages adapt and evolve, each change to the runtime requires language implementers to check

and reverify that the invariants of their locking designs are preserved.

Ensuring locking correctness has proved too difficult, so implementations have surrendered

parallelization attempts by resorting to big interpreter locks (GIL), which serialize execution of

OS level threads in the language runtime. [5, 34, 42, 46].

1.2 Thesis Statement
Existing dynamic-language virtual machines can be transformed into effective parallel and dis-

tributed computing platforms by adding core parallel primitives and using the abstraction power of

programming languages to incorporate and extend those parallel primitives into higher-level parallel

constructs.

1.3 Context of Work
Parallel programs target either shared-memory or distributed-memory architectures. Both styles

of parallelism, shared-memory and distributed-memory, are typically implemented as libraries and

2

extensions of languages such as C, C++, and Fortran. Unfortunately, these languages and parallel

libraries demand a lot of expertise from the programmer to produce results.

Shared-memory systems require the use of threads and synchronization primitives to implement

parallelism. In shared-memory programs, programmers are left solely responsible for data con-

sistency across different contexts of execution. Shared-memory systems provide synchronization

primitives, but programmers have to ensure that synchronization is used correctly and is present

in every location where it is needed for safety. Just as there is always one more memory leak to

plug in a C program, there is always one more synchronization primitive to add to a shared-memory

program. Supposing all necessary synchronization is present in a program and composed correctly

to avoid deadlock, such synchronization correct programs often spend significant portions of their

time in synchronization primitives instead of accomplishing meaningful, parallel work.

Distributed-memory programs typically employ message-passing libraries, exemplified by MPI,

to communicate between compute nodes. Message-passing systems avoid the shared mutation prob-

lem of shared-memory systems by copying data and sending copies to other contexts of execution.

The downside to distributed-memory systems is the cost of data serialization and data transport be-

tween different contexts of execution. Message-passing programmers must also hurdle the obstacles

of remote process launch and authentication over a cluster of machines before beginning parallel

application development.

Distributed-memory techniques scale to huge numbers of systems and processors, well beyond

the size of the largest shared-memory machines. Because distributed-memory programmers are

forced to address data placement and communication costs from the earliest stages in their pro-

grams’ lifecycles, distributed-memory programs typically translate easily to shared-memory sys-

tems. Translated distributed-memory programs usually perform well on shared-memory machines

because they naturally avoid cache and memory contention and minimize communication. The

corollary for shared-memory systems is not true; generally they do not scale to massive processor

counts nor are they easily translated to distributed-memory programs.

1.3.1 Method
This dissertation demonstrates the addition of parallelism to the Racket language virtual machine

through the implementation of places and distributed places. Racket is a functional programming

language descended from LISP and Scheme. Only the name “places” is borrowed from the X10 [10]

language project. The design and implementation of Racket places is distinct and unique from X10

places.

3

Places implements shared-nothing, message passing parallelism. The process-like memory

isolation provided by places is enforced by the language runtime. Places, however, are implemented

as shared-memory, operating system threads. This design choice allows the runtime implementer to

exploit shared memory to increase communication performance and minimize resource utilization.

Finally, the places abstraction emphasizes locality and communication costs, the true bottlenecks to

parallelization.

Places implementation and development occured in a series of steps. First, the Racket VM was

modified to allow multiple racket interpreters to execute in parallel. An abstraction for creating OS

schedulable threads was created. Then, mutable global variables had to be converted to place local

variables.

The newly, place-retrofitted virtual machine requires a hierarchical, parallel garbage collector,

allowing individual place instances to collect independently. Separate garbage collection realms

gives each place the independence necessary to achieve maximum parallelism. A small, global

shared heap spans across all places, facilitating place creation and interplace communications. In

the future, it is expected that large amounts of static content will be shared across places. Some

examples of static content that could be shared include bytecode, jitted code, static data tables, and

module definitions.

Places communicate over bidirectional place channels. Place channels maintain separation of

places by ensuring that message contents are copied from one place to another. Passing an arbitrary

reference between places is strictly prohibited.

The distributed computing framework, distributed places, allows distributed computing among

a network of machines. Distributed places channels communicate over TCP sockets. New dis-

tributed places can be spawned during the execution of a distributed program. Racket’s distributed

programming environment provides facilities for detection of remote process failure.

The programming model for places and distributed places is a shared-nothing message passing

model. The places implementation, however, carves out an exception for certain algorithms and

problem sizes that benefit from shared-memory communication. Places accommodates a subset of

such algorithms through the use of shared vectors. Shared-vector primitives permit a restricted form

of shared-memory data structures while preserving the integrity of the language virtual machine.

Distributed places strictly adheres to the shared-nothing principle. Distributed places do not

provide any type of global address space across VM instances in a distributed system. The user is

responsible to distribute data to remote compute nodes through distributed place channels or other

means external to the distributed places framework.

4

The choice of a shared-nothing programming model is central to the places design and imple-

mentation. The isolation of the shared-nothing model allows a sequential language runtime, such

as Racket, to be converted to a parallel language runtime without the need to completely rewrite the

runtime from scratch. The shared-nothing programming model also enables the conversion of the

language runtime conversion without the extensive use of locks.

1.4 Contributions
The core idea of the dissertation is that an effective parallel runtime can be grown from a

sequential language runtime by using process-like isolation instead of locks. The idea of isolation

extends into the garbage collector as well. The isolation of place-specific garbage collectors allows

individual places to collect independently of each other.

There are algorithms that are better suited to shared memory environments than shared-nothing

environments. The idea of limited, yet shared vectors permits the use of shared-memory vectors

while preserving the integrity of the language virtual machine.

Last, the place primitives provide a foundation for building further parallelism constructs, such

as distributed places. Distributed places extend place channels by coupling them to TCP sockets.

These distributed place channels allow place messages to flow from one machine to another.

CHAPTER 2

RELATED WORK

Considerable prior work addresses the problem of language design for parallelism. In contrast

to most other work, this dissertation specifically addresses the problem of converting an existing

sequential run-time system into a parallel runtime system. Racket’s characteristics as a dynamic,

functional language with mutation presents unique challenges for parallelization. The Places design

builds upon the related work below and shows that parallelism can be added to an existing language

virtual machine such as Racket.

2.1 Languages with Parallelism
2.1.1 Racket’s futures

Racket’s futures [45], like places, provide a way to add parallelism to a legacy runtime system.

Futures are generally easier to implement than places, but the programming model is also more

constrained. Specifically, a place can run arbitrary Racket code, but a future can only run code that

is already in the “fast path” of the runtime system’s implementation. There are, however, a few

situations where futures are less constrained, namely when operating on shared, mutable tree data

structures. Some tasks (including many of the benchmarks in Section 3.7), are well-supported by

both futures and places and, in those cases, the performance is almost identical. It is expected that

the development of new constructs for parallelism in Racket will internally combine futures and

places to get the advantages of each.

2.1.2 Concurrent Caml Light
Concurrent Caml Light [14] relies on compile time distinction between mutable and immutable

objects to enable thread local collection. Concurrent Caml Light gives its threads their own nurs-

eries, but the threads all share a global heap. Concurrent Caml Light is more restrictive than Racket

places. In Concurrent Caml Light, only immutable objects can be allocated from thread-local

nurseries; mutable objects must be allocated directly from the shared heap. Concurrent Caml

6

Light presumes that allocation of mutable objects is infrequent and that mutable objects have longer

life spans. While Racket takes inspiration from Caml Light’s garbage collector, Racket’s garbage

collector performs the same regardless of mutable object allocation frequency or life span.

2.1.3 Erlang
Erlang [40] from the language VM’s perspective is a pure functional language without destruc-

tive update. Erlang uses a hybrid memory management scheme similar to Racket’s master and place

local GC realms. A pointer directionality invariant, stating that pointers only point from local heaps

to the shared message heap, permits independent collection of local processes. Racket uses the same

type of pointer directionality invariant to allow independent place-local garbage collection.

All Erlang message contents have to be allocated from the shared heap. This allows O(1)

message passing, assuming message contents are correctly allocated from the shared heap, not

from the Erlang process’ local nursery. Erlang employs static analysis to try to determine which

allocations will eventually flow to a message send. Since messages are always allocated to the

shared heap, Erlang must collect the share heap more often then Racket, which always allocates

messages into the destination place’s local heap. Erlang’s typical programming model has many

more processes than CPU cores and extensive message exchange. Places programming model is

normally one place per CPU core, with less message passing traffic.

2.1.4 Haskell
Haskell [28, 29] is a pure functional language with support for concurrency. Currently, Haskell

garbage collection is global; all threads must synchronize in order to garbage collect. The Haskell

implementors plan to develop local collection on private heaps, exploiting the predominance of im-

mutable objects similarly to Concurrent Caml Light’s implementation. In contrast to pure functional

languages, Racket programs often include mutable objects, so isolation of local heaps, not inherent

immutability, enables a place in Racket to independently garbage-collect a private heap.

2.1.5 Manticore
Manticore [19] from its beginning, was designed to be a parallel language. Like Erlang and

Haskell, the Manticore programming language (PML), does not have mutable datatypes. In contrast,

Racket places adds parallelism to an existing sequential language with mutable datatypes. As places

matures, the plan is to add multilevel parallelism, similar to Manticore.

7

2.1.6 Matlab
Matlab provides programmers with several parallelism strategies. First, compute intensive

functions, such as BLAS matrix operations, are implemented using multithreaded libraries. Simple

Matlab loops can be automatically parallelized by replacing for with parfor. Matlab’s automatic

parallelization can handle reductions such as min, max, and sum, but it does not parallelize loop

dependence. However, it should be noted that slice operations are more central to the Matlab

programming model than for loops. Matlab also provides task execution on remote Matlab instances

and MPI functionality. Rather than adding parallelism through libraries and extensions, places

integrates parallelism into the core of the Racket runtime.

2.1.7 Python’s multiprocessing library
Python’s multiprocessing library [35] provides parallelism by forking new processes, each of

which has a copy of the parent’s state at the time of the fork. In contrast, a Racket place is

conceptually a pristine instance of the virtual machine, where the only state a place receives from

its creator is its starting module and a communication channel. More generally, however, Python’s

multiprocessing library and Racket’s places both add parallelism to a dynamic language without

retrofitting the language with threads and locks.

Communication between Python processes occurs primarily through OS pipes. The multipro-

cessing library includes a shared-queue implementation, which is implemented by using a worker

thread to send messages over pipes to the recipient process. Any “picklable” (serializable) python

object can be sent through a multiprocessing pipe or queue. Python’s multiprocessing library also

provides shared-memory regions implemented via mmap(). Python’s pipes, queues and shared-

memory regions must be allocated prior to forking children, which need to use them. Racket’s

approach offers more flexibility in communication; channels and shared-memory vectors can be

created and sent over channels to already-created places; channels can communicate immutable

data without the need for serialization.

2.1.8 Python and Ruby
Python and Ruby implementors, like Racket implementors, have tried and abandoned attempts

to support OS-scheduled threads with shared data [5, 34, 42]. All of these languages were im-

plemented on the assumption of a single OS thread—which was a sensible choice for simplicity

and performance throughout the 1990s and early 2000s—and adding all of the locks needed to

support OS-thread concurrency seems prohibitively difficult. A design like places could be the right

approach for those languages, too.

8

Alterntative Ruby implementations such as Rubinius2 and JRuby provide parallelism by map-

ping Ruby threads to OS threads. JRuby and Rubinius are complete reimplementations of the Ruby

VM from the ground up. These shared-memory threads implementations of Ruby are vulnerable to

subtle race conditions due to opaque sharing and caching in their virtual machines implementations.

As with all shared-memory parallelism implementations, parallel ruby programmers are responsible

for using locks to ensure data consistency.

2.1.9 Perl
Perl [7, 6] supports thread based parallelism through interpreter threads. Although many distri-

butions build Perl with interpreter threads enabled, threads are not enabled by default. Anecdotal

evidence indicates that disabling threads can result in a 10% to 20% increase in performance. Each

creation of a thread spawns a new interpreter much like places. Interthread communication is

achieved using the shared-memory scalars, arrays, and hashs that are explicitly annotated as shared.

All other variables are implicitly thread local. Shared data can only store scalars or references to

other shared variables. Shared variables have slightly different semantics than thread local variables.

Some perl operations, such as changing array length via $#array and autovivification, do not work

when used with shared variables. Unlike places, Perl threads provide the traditional locks and

condition variables for maintaining data isolation of shared variables. In contrast, places relies on

message passing instead of shared memory for communication.

In the previous Perl threading model, 5005threads [11], all data were implicitly shared and

shared data had to be explicitly protected. Compared to Perl interpreter threads, 5005threads are

more unstable. Regular expression capture variables, such as $1, are not thread safe and are easily

corrupted by competing threads.

2.1.10 NESL
NESL [22] combines aspects of strict data-parallelism languages and control-parallelism lan-

guages. NESL uses flatten-nested-parallelism to map control-parallel programs to data-parallel

architectures. NESL is a small-core, side-effect-free language, where every parallel expression

is compiled into a parallel form.

2.1.11 OpenMP
OpenMP [33] is a collection of compiler directives that enable user-directed, shared-memory

parallelism in C, C++, and Fortran. The OpenMP parallel directive annotates a region of code

as a parallel region that will be executed by multiple threads. OpenMP does not provide any

9

safety properties. Programmers are responsible for using the API correctly and creating conforming

programs.

2.1.12 KaffeOS
KaffeOS [2, 3] is a Java runtime system, which enables process like isolation of multiple

applications with in a single Java virtual machine. Each process executes as if it were in its

own virtual machine. Each KaffeOS process has its own heap. A limited form of shared memory

communication is allowed via shared heaps. Objects in a shared heap are forbidden from having

references back into user process heaps. KaffeOS implements a user kernel boundary and allows

limits on individual processes resource consumption. KaffeOS outperforms commercial JVMs in

the presence of denial-of-service or misbehaving code but performs slower when programs are well

behaved.

2.2 Hybrid Parallelism Languages
2.2.1 Partitioned Global Address Space (PGAS)

Partitioned Global Address Space (PGAS) [51] languages use the convenient shared-memory

model as an abstraction for message passing. PGAS languages have local pointers that point

to a process’ local memory and global pointers which can point to remote or local variables.

Communication in PGAS languages is one sided; processes put and get values directly into remote

process’ memory, without involving the remote application.

Two of the most common PGAS languages are Unified Parallel C (UPC) [49] and Titanium [25]

(a scientific computing dialect of Java). Both of these PGAS languages are implemented as source-

to-source transformations which compile down to C code.

2.2.2 X10
X10 [10] is a partitioned global address space (PGAS) language whose sequential language is

largely taken from Java. Although our use of the term “place” is inspired by X10, places are more

static in X10, in that the number of places within an X10 program is fixed at startup. Like Racket

places, objects that exist at an X10 place are normally manipulated only by tasks within the place.

X10 includes an at construct that allows access to an object in one place from another place, so at

is effectively the communication construct for places in X10. Racket’s message-passing commu-

nication is more primitive, but also more directly exposes the cost of cross-place communication.

Features similar to X10’s cross-place references and at could be implemented on top of Racket’s

message-passing layer.

10

2.2.3 High-Performance Fortran
High-Performance Fortran [38] is a programming language designed for data parallel program-

ming. HPF allows the programmer to specify data alignment and data distribution. HPF also

contains a rich set of parallel array assignment and manipulation statements.

2.3 Languages with Distributed Parallelism
2.3.1 Erlang

Erlang’s [40] distributed capabilities are built upon its process concurrency model. Remote

Erlang nodes are identified by name@host identifiers. New Erlang processes can be started using

the slave:start procedure or at the command line. Erlang uses a feature called links to implement

fault notification. Two processes establish a link between themselves. Links are bidirectional; if ei-

ther process fails the other process dies also. Erlang also provides monitors which are unidirectional

notifications of a process exiting. Distributed Places and Erlang share a lot of similar features. While

Erlang’s distributed processes are an extension of its process concurrency model, Distributed Places

are an extension of Racket’s places parallelism strategy. Erlang provides a distributed message

passing capability that integrates transparently with its interprocess message passing capability.

The Disco project implements map reduce on top of a Erlang core. User level Disco programs,

however, are written in Python, not Erlang. In contrast, the implementation and user code of

distributed places’ map reduce are both expressed as Racket code. Erlang has a good foundation for

building higher-level distributed computing frameworks, but instead Erlang programmers seem to

build customized distributed solutions for each application.

2.3.2 MapReduce
MapReduce [13] is a specialized functional programming model, where tasks are automat-

ically parallelized and distributed across a large cluster of commodity machines. MapReduce

programmers supply a set of input files, a map function, and a reduce function. The map function

transforms input key/value pairs into a set of intermediate key/value pairs. The reduce function

merges all intermediate values with the same key. The framework does all the rest of the work.

Google’s MapReduce implementation handles partitioning of the input data, scheduling tasks across

distributed computers, restarting tasks due to node failure, and transporting intermediate results

between compute nodes. The MapReduce model can be applied to problems such as word occurance

counting, distributed grep, inverted index creation, and distributed sort.

11

2.3.3 Termite
Termite [21] is a distributed concurrent scheme built on top of Gambit-C Scheme. Direct

mutation of variables and data structures is forbidden in Termite. Instead, mutation is simulated

using messages and suspended, lightweight processes. Lookup in Termite’s global environment is

a node relative operation and resolves to the value bound to the global variable on the current node.

Termite supports process migration via serializable closures and continuations. Termite follows

Erlang’s style of failing hard and fast. Where Erlang has bidirectional links, Termite has directional

links that communicate process failure from one process to another. Failure detection only occurs

in one direction from the process being monitored to the monitoring process. Termite also has

supervisors which, like supervisors in Erlang, restart child processes which have failed. Distributed

Places could benefit from Termites superior serialization support, where nearly all Termite VM

objects are serializable.

2.3.4 Akka
Akka [48] is a concurrency and distributed processing framework for Scala and Java. Like

Erlang, Akka is patterned after the Actor model. Akka supports Erlang like supervisors and monitors

for failure and exit detection. Like Erlang, Akka leaves the creation of higher-level distributed

frameworks to custom application developers.

2.3.5 Kali
Kali [9] is a distributed version of Scheme 48 that efficiently communicates procedures and

continuations from one compute node to another. Kali’s implementation lazily faults continuation

frames across the network as they are needed. Kali’s proxies are really just address space relative

variables. Proxies are identified by a globally unique id. Sending a proxy involves sending only its

globally unique id. Retrieving a proxies value returns the value for the current address space. Kali

allow for retrieval of the proxy’s source node and spawning of new computations at the proxy’s

source.

2.3.6 Distributed Functional Programming in Scheme (DFPS)
Distributed Functional Programming in Scheme (DFPS) [43] uses futures semantics to build a

distributed programming platform. DFPS employs the Web Server collection’s serial-lambda

form to serialize closures between machines. Unlike Racket futures, DFPS’ touch form blocks

until remote execution of the future completes. DFPS has a distributed variable construct called a

dbox. For consistency, a dbox should only be written to once or a reduction function for writes to

12

the dbox should be provided. Once a dbox has be set, the DFPS implementation propagates the

dbox value other nodes that reference the dbox,

2.3.7 Cloud Haskell
Cloud Haskell [15, 16] is a distributed programming platform built in Haskell. Cloud Haskell

has two layers of abstraction. The lowest layer is the process layer, which is a message-passing

distributed programming API. Next comes the tasks layer, which provides a framework for failure

recovery and data locality. Communication of serialized closures requires explicit specification

from the user of what parts of environment will be serialized and sent with the code object.

On top of its message-passing process layer, Cloud Haskell implements typed channels that

allow only messages of a specific type to be sent down the channel. A Cloud Haskell channel

has a SendPort and a ReceivePort. ReceivePorts are not serializable and cannot be shared, which

simplifies routing. SendPorts, however, are serializable and can be sent to multiple processes,

allowing many to one style communication.

2.3.8 High-level Distributed-Memory Parallel Haskell (HdpH)
High-level Distributed-Memory Parallel Haskell (HdpH) [27] builds upon Cloud Haskell’s work

by adding support for polymorphic closures and lazy work stealing. HdpH does not require a special

language kernel or any modifications to the vanilla GHC runtime. It simply uses GHC’s Concurrent

Haskell as a systems language for building a distributed memory Haskell.

2.3.9 Dryad
Dryad [26] is an infrastructure for writing coarse-grain data-parallel distributed programs on the

Microsoft platform. Distributed programs are structured as a directed graph. Sequential programs

are the graph vertices and one-way channels are the graph edges. Unlike Distributed Places, Dryad

is not a programming language. Instead, it provides a execution engine for running sequential

programs on partitioned data at computational vertices. Although Dryad is not a parallel database,

the relational algebra can be mapped on top of a Dryad distributed compute graph. Unlike dis-

tributed places, which is language centric, Dryad is infrastructure piece, which does not extend the

expressiveness of any particular programming language.

2.3.10 Jade
Jade [39] is a implicitly parallel language. Implemented as a extension to C, Jade is intended to

exploit task-level concurrency. Like OpenMP, Jade consists of annotations that programmers add

13

to their sequential code. Jade uses data access and task granularity annotations to automatically

extract concurrency and parallelize the program. A Jade front end then compiles the annotated

code and outputs C. Programs parallelized with Jade continue to execute deterministically after

parallelization. Jade’s data model can interact badly with the programs that write to disjoint portions

of a single aggregate data structure. In contrast, Distributed Places is an explicitly parallel language

where the programmer must explicitly spawn tasks and explicitly handle communication between

tasks.

2.3.11 Dreme
Dreme [20] is a distributed Scheme. All first-class language objects in Dreme are mobile in the

network. Dreme describes the communication network between nodes using lexical scope and first

class closures. Dreme has a network-wide distributed memory and a distributed garbage collector.

By default, Dreme sends objects by reference across the network, which can lead to large quantities

of hidden remote operations. In contrast, distributed places copies all objects sent across the network

and leaves the programmer responsible for communication invocations and their associated costs.

2.4 Transactional Memory
TransactionalMemory [23, 36] allows a set of memory loads and stores to execute atomically.

Transactional memory is an optimistic, lock-free form of atomicity that logs loads and stores during

the execution of a transaction body. At the end of a transaction, if the load and store addresses have

not been modified by another thread, the stores are committed to memory. When another thread

modifies memory addresses used within the transaction, the transaction aborts and retires execution

at the beginning of the transaction body. Transactional memory provides the benefits of nonblocking

behavior and wait-freedom while allowing programmers to use a critical section style for writing

programs.

CHAPTER 3

PLACES

3.1 Introduction
The increasing availability of multicore processors on commodity hardware—from cell phones

to servers—puts increasing pressure on the design of dynamic languages to support multiprocessing.

Support for multiprocessing often mimics the underlying hardware: multiple threads of execution

within a shared address space. Unfortunately, the problem of developing correct parallel programs

with threads of execution in a single address space are well known, nontrivial, and afflict both

programmers using a language and the implementors of the language. Programmers and language

implementors alike need better alternatives.

A message-passing architecture, with threads of execution in separate address spaces, is widely

recognized as a more scalable design and easier to reason about than shared memory. Besides

avoiding the interference problems created by shared memory, the message-passing model encour-

ages programmers to consider the data-placement and communication needs of a program to enable

sustained scalability. The design and success of languages like Erlang demonstrate the viability of

this model for parallel programming.

Racket’s new place1 construct supports message-passing parallelism layered on top of a lan-

guage that (unlike Erlang) was not originally designed for parallelism. Racket’s existing threads and

synchronization support for concurrency are kept separate from new places support for parallelism,

except to the degree that message receipt interacts with other concurrent activities within a single

place. Message-passing parallelism is not novel in Racket, but our design and experience report for

layering places on top of an existing language should be useful to other designers and implementors.

The conventional approach to adding this style of parallelism to a language implementation

that has a large, sequential runtime system is to exploit the UNIX fork() primitive, much in the

way Python’s multiprocessing library works. This approach, however, limits the communication

between cooperating tasks to byte streams, making abstraction more difficult and communication

1The choice of the name “place” is inspired by X10’s construct. [10]

15

less efficient than necessary. The decision was made to implement places directly in the runtime

system, instead of relying on the operating system. This approach allows the runtime system to

maintain more control and also fits our ongoing effort to explore the boundary between the operating

system and the programming language [17, 18, 50].

The Racket runtime system begins with a single, initial place. A program can create additional

places, send messages to places over channels—including channels as messages, so that any two

places can communicate directly. Messages sent between places are normally immutable, pre-

venting the data races that plague shared-memory designs. To allow lower-level communication

when appropriate, however, places can share certain mutable data structures, including byte strings,

fixnum arrays, and floating-point arrays, all of which contain only atomic values.

As part of Racket’s broader approach to parallelism, places fully support the previously reported

construct for parallelism, futures [45]. In particular, each place can spawn and manage its own set

of future-executing threads. Places and futures are complementary; places support coarse-grained

parallelism without restrictions on the parallel computations, while futures support fine-grained

parallelism for sufficiently constrained computations (e.g., no I/O).

The rest of the chapter proceeds as follows. Section 3.2 explains in more detail the design

rationale for places. Section 3.3 briefly outlines the places API. Section 3.4 demonstrates how

message passing, shared memory, and higher-level parallelism constructs can be built on top of place

primitives. Section 3.5 explains the implementation of places within the Racket virtual machine.

Section 3.7 evaluates the performance and scaling of places using the NAS Parallel Benchmarks.

3.2 Design Overview
Each place is essentially a separate instance of the Racket virtual machine. All code modules are

loaded separately in each place, data are (almost always) allocated in a specific place, and garbage

collection proceeds (almost always) independently in each place.

Places communicate through place channels, which are endpoints for communication channels

that are shared among processes in much the way that Unix processes use file descriptors for

endpoints of shared pipes. Unlike file descriptors, a place channel supports structured data across the

channel, including booleans, numbers, characters, symbols, byte strings, Unicode strings, filesystem

paths, pairs, lists, vectors, and “prefab” structures (i.e., structures that are transparent and whose

types are universally named). Roughly speaking, only immutable data can be sent across a place

channel, which allows the implementation to either copy or share the data representation among

places as it sees fit. Place channels themselves can be sent in messages across place channels, so

16

that communication is not limited to the creator of a place and its children places; by sending place

channels as messages, a program can construct custom message topologies.

In addition to immutable values and place channels, special mutable byte strings, fixnum vectors,

and floating-point vectors can be sent across place channels. For such values, the runtime system

is constrained to share the underlying value among places, rather than copy the value as it is sent

across a channel. Mutation of the value by one place is visible to other places. By confining shared

mutable values to vectors of atomic data, race conditions inherent in sharing cannot create safety

problems for the runtime system or complicate garbage collection by allowing arbitrary references

from one address space to another. At the same time, shared vectors of atomic data directly support

many traditional parallel algorithms, such as a parallel prefix sum on a vector of numbers. Other

mutable values could be allowed in place messages with the semantics that they are always copied,

but such copying might be confusing, and explicit marshaling seems better to alert a programmer

that copying is unavoidable (as opposed to any copying that the runtime system might choose as the

best strategy for a given message).

The prohibition against sharing arbitrary mutable values implies that thunks or other procedures

cannot be sent from one place to another, since they may close over mutable variables or values.

Consequently, when a place is created, its starting code is not specified by a thunk (as is the case for

threads) but by a module path plus an exported “main” function. This specification of a starting point

is essentially the same as the starting point in Racket itself, except that the “main” function receives

a place channel to initiate communication between the new place and its creator. The place form

simplifies place creation where a procedure would be convenient, but it works by lifting the body of

the place form to an enclosing module scope at compile time.

Additional place channels can be created and sent to places, allowing the creation of specific

constructed capabilities. One common pattern is to have a master place spawn worker places and

collect all of the initial place-channels into a list. This list of place channels can then be sent to all

the places, which permits all-to-all communication. Place channels are asynchronous, so that the

sender of a message need not synchronize with a recipient. Place channels are also two-way as a

convenience; otherwise, since a typical communication patterns involve messages in both directions,

a program would have to construct two place channels. Finally, place channels are events in the

sense of Concurrent ML [37, 17]. Place channels can be combined with other events to build up

complex synchronization patterns, such as fair choice among multiple place channels.

Our current initial implementation of places shares little read-only data among places. Longer

term, it would be nice to automatically share read-only code modules and JIT-generated code across

17

places in much the same way that operating systems share libraries among separate applications. In

general, places are designed to allow such sharing optimizations in the language runtime system as

much as possible.

3.3 Places API
The Racket API for places2 supports place creation, channel messages, shared mutable vectors,

and a few administrative functions.

(dynamic-place module-path start-proc) → place?
module-path : module-path?
start-proc : symbol?

creates a place to run the procedure that is identified by module-path and start-proc.3 The

result is a place descriptor value that represents the new parallel task; the place descriptor is returned

immediately. The place descriptor is also a place channel to initiate communication between the new

place and the creating place.

The module indicated by module-path must export a function with the name start-proc.

The exported function must accept a single argument, which is a place channel that corresponds

to the other end of communication for the place channel that is returned by dynamic-place. For

example,

(dynamic-place "fib.rkt" ’go)

starts the module "fib.rkt" in a new place, calling the function go that is exported by the module.

(place id body ...+)

The place derived form creates a place that evaluates body expressions with id bound to a place

channel. The bodys close only over id plus the top-level bindings of the enclosing module, because

the bodys are lifted to a function that is exported by the module. The result of place is a place

descriptor, like the result of dynamic-place.

For example, given the definitions

2This section describes the API of places for the 5.1.2 release version of Racket at http://racket-lang.org/
download/.

3The dynamic- prefix on the function name reflects the similarity of this function to Racket’s dynamic-require
function.

http://racket-lang.org/download/
http://racket-lang.org/download/

18

(define (fib n))

(define (start-fib-30)
(place ch (fib 30)))

then calling start-fib-30 creates a place to run a new instantiation of the enclosing module, and

the fib function (which need not be exported) is called in the new place.

(place-channel-put ch v) → void?
ch : place-channel?
v : place-message-allowed?

(place-channel-get ch) → place-message-allowed?
ch : place-channel?

The place-channel-put function asynchronously sends a message v on channel ch and returns

immediately. The place-channel-get function waits until a message is available from the place

channel ch. See also sync below.

As an example, the following start-fib function takes a number n, starts (fib n) in a new

place, and returns a place descriptor to be used as a place channel for receiving the result:

(define (fib n))

(define (start-fib n)
(define p
(place ch

(define n (place-channel-get ch))
(place-channel-put ch (fib n))))

(place-channel-put p n)
p)

The start-fib function could be used to start two computations in parallel and then get both

results:

(define p1 (start-fib n1))
(define p2 (start-fib n2))
(values (place-channel-get p1)

(place-channel-get p2))

(place-channel-put/get ch v)
→ place-message-allowed?
ch : place-channel?
v : place-message-allowed?

A convenience function to combine a place-channel-put with an immediate place-channel-

get.

19

(place-channel) → place-channel? place-channel?

returns two place channels that are cross-linked through an underlying data channel. Data sent

through the first place channel are received through the second place channel and vice versa.

For example, if buyer and seller places are given channel endpoints, they can communicate

directly using the new channel and report only final results through their original channels:

(define b (dynamic-place "trade.rkt" ’buyer))
(define s (dynamic-place "trade.rkt" ’seller))

(define-values (b2s s2b) (place-channel))
(place-channel-put b b2s)
(place-channel-put s s2b)
; ... buyer and seller negotiate on their own ...

(values (place-channel-get b)
(place-channel-get s))

(sync evt ...+) → any?
evt : evt?

blocks until at least one of the argument evts is ready, and returns the value of the ready evt.

A place channel as an event becomes ready when a message is available for the channel, and the

corresponding value produced by sync is the channel message. Thus, (sync ch1 ch2) receives

a message from ch1 or ch2—whichever has a message first.

Racket includes other synchronization constructs, such as the sync/timeout function to poll

an event. Our examples in this paper need only sync.

(handle-evt evt handle) → handle-evt?
evt : (and/c evt? (not/c handle-evt?))
handle : (any/c . -> . any)

creates an event that is in a ready when evt is ready, but whose result is determined by applying

handle to the result of evt.
(place-wait p) → void?

p : place?

blocks until p terminates.

(make-shared-fxvector size [x]) → fxvector?
size : exact-nonnegative-integer?
x : fixnum? = 0

(make-shared-flvector size [x]) → flvector?
size : exact-nonnegative-integer?
x : flonum? = 0.0

20

creates a mutable, uniform vector of fixnums or floating-point numbers that can be shared across

places. That is, the vector is allowed as a message on a place channel, and mutations of the vector

by the sending or receiving place are visible to the other place. The concurrency model for shared

data is determined by the underlying processor (e.g., TSO [44] for x86 processors). Places can use

message passing or functions like place-wait to synchronize access to a shared vector.

For example,

(define (zero! vec)
(define p
(place ch

(define vec (place-channel-get ch))
(for ([i (fxvector-length vec)])
(fxvector-set! vec i 0))))

(place-channel-put p vec)
(place-wait p))

fills a mutable fixnum vector with zeros using a separate place. Waiting until the place is finished

ensures that the vector is initialized when zero! returns.

(processor-count) → exact-positive-integer?

returns the number of parallel computation units (e.g., processors or cores) that are available on the

current machine.

3.4 Design Evaluation
The evaluation of the design of places proceeds in two main ways. First, places was used for

Racket’s parallel-build infrastructure, where the implementation uses Erlang-style message han-

dling. Second, the NAS Parallel Benchmark suite were ported to Racket using MPI-like parallelism

constructs that are built on top of places. In addition to the main experiments, a Mandelbrot

example is presented that demonstrates how atomic-value vectors can be shared among places.

Together, these examples demonstrate the versatility of places for implementing different patterns

of parallelism.

3.4.1 Parallel Build
The full Racket source repository includes 700k lines of Racket code plus almost 200k of

documentation source (which is also code) that is recompiled with every commit to the repository.

A full build takes nearly an hour on a uniprocessor, but the build parallelizes well with places,

speeding up by 3.2x on 4 cores.

21

The build is organized as a controller in the main place that spawns workers in their own places.

One worker is created for each available processor. The controller keeps track of the files that need

to be compiled, while each worker requests a file to compile, applies the compile function to the

file, and repeats until no more files are available from the controller.

Concretely, the workers are created by place in a for/list comprehension that is indexed by

an integer from 0 to (processor-count):

(define ps ;list of place descriptors
(for/list ([i (processor-count)])
(place ch

(let worker ()
(match (place-channel-put/get ch ’get-job)
[’done (void)]
[job
(compile job)
(define msg (list ’job-finished job))
(place-channel-put ch msg)
(worker)])))))

Each worker runs a worker loop that sends a ’get-job message to the controller via ch and then

waits for a response. If the response to the ’get-job request is the symbol ’done, the controller

has no more jobs; the place quits running by returning (void) instead of looping. If the controller

responds with a job, the worker compiles the job, sends a completion message back to the controller,

and loops back to ask for another job.

After spawning workers, the controller waits in a loop for messages to arrive from the workers.

Any worker might send a message, and the controller should respond immediately to the first such

message. In Concurrent ML style, the loop is implemented by applying sync to a list of events,

each of which wraps a place channel with a handler function that answers the message and recurs to

the message loop. When no jobs are available to answer a worker’s request, the worker is removed

from the list of active place channels, and the message loop ends when the list is empty.

The message-handling part of the controller matches a given message m, handles it, and recurs

via message-loop (lines 21-33 in Figure 3.1). Specifically, when the controller receives a ’get-

job message, it extracts a job from the job queue. If the job queue has no remaining jobs so that

(get-job job-queue) returns #false, the ’done message is sent to the worker; otherwise,

the job from the queue is sent back to the worker. When the controller instead receives a (list

’job-finished job) message, it notifies the job queue of completion and resumes waiting for

messages.

Figure 3.1 contains the complete parallel-build example. Racket’s actual parallel-build imple-

22

1 #lang racket
2 (require "job-queue.rkt")
3

4 (define (main)
5 (define ps ;list of place descriptors
6 (for/list ([i (processor-count)])
7 (place ch
8 (let worker ()
9 (place-channel-put ch ’get-job)

10 (match (place-channel-get ch)
11 [’done (void)]
12 [job
13 (compile job)
14 (define msg (list ’job-finished job))
15 (place-channel-put ch msg)
16 (worker)])))))
17

18 (define job-queue (build-job-queue))
19

20 (define (make-message-handler p ps)
21 (define (message-handler m)
22 (match m
23 [’get-job
24 (match (get-job job-queue)
25 [#false
26 (place-channel-put p ’done)
27 (message-loop (remove p ps))]
28 [job
29 (place-channel-put p job)
30 (message-loop ps)])]
31 [(list ’job-finished job)
32 (job-finished job-queue job)
33 (message-loop ps)]))
34 (handle-evt p message-handler))
35

36 (define (message-loop ps)
37 (define (make-event p)
38 (make-message-handler p ps))
39 (unless (null? ps)
40 (apply sync (map make-event ps))))
41

42 (message-loop ps))

Figure 3.1: Parallel Build

23

mentation is more complicated to handle error conditions and the fact that compilation of one

module may trigger compilation of another module; the controller resolves conflicts for modules

that would otherwise be compiled by multiple workers.

3.4.2 Higher-level Constructs
Repeatedly creating worker modules, spawning places, sending initial parameters, and collect-

ing results quickly becomes tiresome for a Racket programmer. Racket’s powerful macro system,

however, permits the introduction of new language forms to abstract such code patterns. The Racket

version of the NAS parallel benchmarks are built using higher-level constructs: fork-join, CGfor

and CGpipeline.

3.4.2.1 CGfor
The CGfor form looks like the standard Racket for form, except for an extra communicator

group expression. The communicator group records a configuration in three parts: the integer

identity of the current place, the total number of places in the communicator group, and a vector

of place channels for communicating with the other places. The CGfor form consults a given

communicator group to partition the loop’s iteration space based on the number of places in the

group, and it executes the loop body only for indices mapped to the current place’s identity. For

example, if a communication group cg specifies 3 places, then (CGfor cg ([x (in-range

900)]) ...) iterates a total of 900 times with the first place computing iterations 1–300, the

second place iterating 301–600, and the third place iterating 601–900.

The fork-join form creates a communicator group and binds it to a given identifier, such as

cg. The following example demonstrates a parallel loop using fork-join and CGfor, which are

defined in the "fork-join.rkt" library:

1 #lang racket
2 (require "fork-join.rkt")
3

4 (define (main n)
5 (fork-join (processor-count) cg ([N n])
6 (CGfor cg ([i (in-range N)])
7 (compute-FFT-x i))
8 (CGBarrier cg)
9 (CGfor cg ([i (in-range N)])

10 (compute-FFT-y i))
11 (CGBarrier cg)
12 (CGfor cg ([i (in-range N)])
13 (compute-FFT-z i))))

24

The fork-join form on line 5 creates (processor-count) places and records the configuration

in a communicator group cg. The ([N n]) part binds the size n from the original place to N in

each place, since the new places cannot access bindings from the original place. The (CGBarrier

cg) expression blocks until all of the places in the communication group cg reach the barrier point.

The complete implementation for fork-join is shown in Figure 3.2. First fork-join spawns

places (line 4), sends a message to each place containing the place’s identity and other communication-

group parameters, and other arguments specified in the fork-join use (line 13). It then waits for

each place to report its final result, which is collected into a vector of results (line 18).

Each worker place waits for a message from its controller containing its communicator group

settings and initial arguments (lines 7-8). The place builds the local communicator group structure

(line 9) and evaluates the fork-join body with the received arguments (line 10). Finally, the result

of the place worker’s computation is sent back across a place channel to the place’s controller (line

11).

1 (define-syntax-rule
2 (fork-join NP cg ([params args] ...) body ...)
3 (define ps
4 (for/list ([i (in-range n)])
5 (place ch
6 (define (do-work cg params ...) body ...)
7 (match (place-channel-get ch)
8 [(list-rest id np ps rargs)
9 (define cg (make-CG id np (cons ch ps)))

10 (define r (apply do-work cg rargs))
11 (place-channel-put ch r)]))))
12

13 (for ([i (in-range NP)] [ch ps])
14 (place-channel-put
15 ch
16 (list i NP ps args ...)))
17

18 (for/vector ([i (in-range NP)] [ch ps])
19 (place-channel-get ch)))

Figure 3.2: fork-join

25

3.4.2.2 CGpipeline
In the same way a CGfor form supports simple task parallelism, a CGpipeline form supports

pipeline parallelism. For example, the LU benchmark uses a parallel pipeline to compute lower and

upper triangular matrices. As a simpler (and highly contrived) example, the following code uses

pipeline parallelism to compute across the rows of a matrix, where a cell’s new value is the squared

sum of the cell’s old value and the value of the cell to its left. Instead of treating each row as a task,

each column is a task that depends on the previous column, but rows can be pipelined through the

columns in parallel:

1 (define v (flvector 0.0 1.0 2.0 3.0 4.0
2 0.1 1.1 2.1 3.1 4.1
3 0.2 1.2 2.2 3.2 4.2
4 0.3 1.3 2.3 3.3 4.3
5 0.4 1.4 2.4 3.4 4.4))
6

7 (fork-join 5 cg ()
8 (for ([i (in-range 5)])
9 (CGpipeline cg prev-value 0.0

10 (define idx (+ (* i 5) (CG-id cg)))
11 (define (fl-sqr v) (fl* v v))
12 (fl-sqr (fl+ (fl-vector-ref v idx)
13 prev-value)))))

The pipeline is constructed by wrapping the CGpipeline form with a normal for loop inside

fork-join. The fork-join form creates five processes, each of which handles five rows in a

particular column. The CGpipeline form within the for loop propagates the value from previous

column—in the variable prev-value, which is 0.0 for the first column—to compute the current

column’s value. After a value is produced for a given row, a place can proceed to the next row while

its value for the previous row is pipelined to later columns. Like the CGfor form, the CGpipeline

form uses a communicator group to discover a place’s identity, the total number of places, and

communication channels between places.

Figure 3.3 shows the implementation of CGpipeline. All places except place 0 wait for a

value from the previous place, while place 0 uses the specified initial value. After place i finishes

executing its body, it sends its result to place i+1, except for the final place, which simply returns its

result. Meanwhile, place i continues to the next row, enabling parallelism through different places

working on different rows.

26

(define-syntax-rule
(CGpipeline cg prev-value init-value body ...)
(match cg
[(CG id np pls)
(define (send-value v)
(place-channel-put (list-ref pls (add1 id)) v))

(define prev-value
(if (= id 0)

init-value
(place-channel-get (car pls))))

(define result (begin body ...))
(unless (= id (sub1 np)) (send-value result))
result]))

Figure 3.3: CGpipeline

3.4.3 Shared Memory
Certain algorithims benefit from shared-memory communication. Places accommodates a sub-

set of such algorithms through the use of shared vectors. Shared-vector primitives permit a restricted

form of shared-memory data structures while preserving the integrity of the language virtual ma-

chine. Shared vectors have two integrity-preserving invariants: their sizes are fixed at creation time,

and they can only contain atomic values.

In the following Figure 3.4, the mandelbrot-point function is a black-box computational

kernel. It consumes an (x, y) coordinate and returns a Mandelbrot value at that point. The argument

N specifies the number lines and columns in the output image.

In this implementation, workers communicate mandelbrot-point results to the controller

through a shared byte vector b. Vector b’s size is fixed to (* N N) bytes, and all b’s elements

are initialized to 0. The fork-join construct spawns the worker places, creates the communicator

group cg, and sends the line length (N) and the shared result vector (b) to the workers.

Having received their initial parameters, each place computes its partition of the Mandelbrot

image and stores the resulting image fragment into the shared vector (b). After all of the worker

places finish, the controller prints the shared vector to standard output. The shared-memory imple-

mentation speeds up Mandelbrot by 3x on 4 cores.

27

1 #lang racket
2 (require "fork-join.rkt"
3 "mandelbrot-point.rkt")
4

5 (define (main N)
6 (define NP (processor-count))
7 (define b (make-shared-bytes (* N N) 0))
8

9 (fork-join NP cg ([N N] [b b])
10 (CGfor cg ([y (in-range N)])
11 (for ([x (in-range N)])
12 (define mp (mandelbrot-point x y N))
13 (byte-2d-array-set! b x y N mp))))
14

15 (for ([y (in-range N)])
16 (write-bytes/newline b y N)))

Figure 3.4: Shared Memory Mandelbrot

3.5 Implementing Places
Prior to support for places, Racket’s virtual machine used a single garbage collector (GC) and

single OS thread as shown in Figure 3.5. Although Racket has always supported threads, Racket

threads support concurrency rather than parallelism; that is, threads in Racket enable organizing a

program into concurrent tasks, but threads do not provide a way to exploit multiprocessing hardware

to increase a program’s performance. Indeed, although threads are preemptive at the Racket level,

they are co-routines within the runtime system’s implementation.

OS Process

Garbage Collector

Single OS Thread

Figure 3.5: Sequential Racket VM

28

Racket with places uses OS-scheduled threads within the Racket virtual machine. Each place

is essentially an instance of the sequential, pre-places virtual machine. To achieve the best parallel

performance, places are as independent and loosely coupled as possible, even to the point of sep-

arating memory regions among places to maximize locality within a place. Even better, separate

address spaces, in Figure 3.6, mean that each place has its own GC that can collect independently

from other places.

In Figure 3.7, each place-local GC allocates and manages almost all of the objects that a place

uses. An additional master GC is shared across all places to manage a few global shared objects,

such as read-only immortal objects, place channels, and shared vectors of atomic values. Object

references from places to the shared master heap are permitted, but references are not permitted in

the opposite direction.

Racket Process

Master Garbage Collector

GC

Place

GC

Place

GC

Place

Figure 3.6: Parallel Racket VM

Racket Process

Global Garbage Collector

Place GC Place GC Place GC

Figure 3.7: GC Object References

29

Disallowing references from the master space to place-specific spaces maintains isolation be-

tween places, and it is the invariant that allows places to garbage collect independently of one

another. Only a global collection of the shared master space requires the collective cooperation of

all the places, and such collections are rare.

The implementation of places thus consists of several tasks: adding OS schedulable threads

to the runtime system, converting global state variables within the runtime system to place-local

variables, modifying garbage collection strategies for concurrent-place execution, and implementing

channels for communicating between places.

3.5.1 Threads and Global Variables
The Racket runtime system has been continuously developed for the past decade and a half.

Like other mature runtime systems, the Racket implementation includes many global variables.

The presence of such global variables in the code base was the largest obstacle to introducing OS-

scheduled threads into the runtime system.

Using grep and a simple CIL [32] analysis, I conducted an audit of the 719 global variables

within the Racket implementation. The audit found 337 variables that fell into the category of

read-only singleton objects once they were set (during VM initialization). A few of the variables

encountered during the audit, such as scheme_true, scheme_false, and scheme_null, were

easy to identify as read-only singleton objects. These were annotated with a READ_ONLY tag as

documentation and to support further analysis. The auditing of most variables, however, required

locating and reviewing all code sites where a particular variable was referenced. About 155 global

variables were deemed permissible to share and annotated as SHARED_OK. The remaining 227

variables needed to be localized to each place and were tagged as THREAD_LOCAL_DECL.

Tool support simplifies the arduous task of annotating and auditing global variables. Tools that

simply identify all global variables are remarkably helpful in practice. Finding all the code sites

where a global variable is used helps the runtime developer ensure that isolation invariants are

preserved in each place that a global variable is referenced.

Testing the global variable audit was relatively easy. The entire Racket test suite was ran in

multiple places simultaneously. For almost all global variables that I overlooked or misclassified,

parallel execution of the test suite identified the problem.

3.5.2 Thread-Local Variables
To prevent collisions from concurrent access, many global variables were localized as place-

specific variables. I considered moving all global variables into a structure that is threaded through

30

the entire runtime system. Although this restructuring is clean in principle, restructuring the runtime

system along those lines would have required extensive modifications to function signatures and

code flow. Instead, I decided to use thread-local variables, as supported by the OS, to implement

place-local state.

OSes support thread-local variables through library calls, such as pthread_get_specific()

and pthread_put_specific(), and sometimes through compiler-implemented annotations, such

as __threadlocal or __declspec(thread). Compiler-implemented thread-local variables tend

to be much faster, and they work well for Racket on Linux and most other variants of Unix. Although

Windows supports compiler-implemented thread-local variables, Windows XP does not support

them within DLLs (as used by Racket); Vista and later Windows versions remedy this problem,

but Racket 32-bit builds must work on older versions of Windows. Finally, Mac OS X does not

currently support compiler-implemented thread-local variables.

Our initial experiments indicated that using library calls for thread-local variables on Windows

and Mac OS X would make the runtime system unacceptably slow. Reducing the cost of thread-local

variables on those platforms requires two steps.

First, all place-local variables were first collected into a single table. Each place-local variable,

such as toplevels_ht, has an entry in the table with an underscore suffix:
struct Thread_Locals {

struct Scheme_Hash_Table *toplevels_ht_;
....

};

inline struct Thread_Locals *GET_TLV() { ... }

#define toplevels_ht (GET_TLV()->toplevels_ht_)

A preprocessor definition for each variable avoids the need to change uses in the rest of the source.

Collecting all thread-local variables into a table supports threading a pointer to the table through

the most performance-sensitive parts of the runtime system, notably the GC. Along similar lines,

JIT-generated code keeps a pointer to the thread-local table in a register or in a local variable.

Second, for uses of thread-local variables outside the GC or JIT-generated code, I implement

GET_TLV() in a way that is faster than calling pthread_get_specific(). In 32-bit Windows, a

host executable (i.e., the one that links to the Racket DLL) provides a single thread-local pointer to

hold the table of thread-local variables; inline assembly in GET_TLV() imitates compiler-supported

access to the executable-hosted variable. For Mac OS X, GET_TLV() contains an inline-assembly

version of pthread_get_specific() that accesses the table of thread-local variables.

31

3.5.3 Garbage Collection
At startup, a Racket process creates an initial GC instance and designates it the master GC.

Read-only global variables and shared global tables such as a symbol table, resolved-module path

table, and the type table are allocated from the master GC. After the prerequisite shared structures

are instantiated, the initial thread disconnects from the master GC, spawns its own GC instance, and

becomes the first place. After the bootstrapping phase of the Racket process, the master GC does

little besides allocating communication channels and shared atomic-value containers.

Places collect garbage in one of two modes: independently, when collecting only the local heap,

or cooperatively as part of a global collection that includes the master GC. Place-local GCs collect

their local heap without any synchronization; a place collector traverses the heap and marks objects

it allocated as live, and all other encountered objects, including objects allocated by the master GC,

are irrelevant and ignored.

When the master GC needs to perform a collection, all places must pause and cooperate with

the master GC. Fortunately, most allocation from the master GC occurs during the initialization of

a program. Thus, the master GC normally reaches a steady state at the beginning of some parallel

program, allowing places to run in parallel without interruption in common situations.

To initiate a global collection, the master GC sends a signal to all places asking them to pause

mutation and cooperatively collect. Each place then performs a local collection in parallel with

one another. During cooperative collection, a place GC marks as live not only traversed objects it

allocated but also objects that were allocated by the master GC; races to set mark bits on master-GC

objects are harmless. Master-GC objects that are referenced only by place-local storage are thus

correctly preserved.

After all place-specific collections have finished, each place waits until the master GC marks and

collects. Although place-specific collection can move objects to avoid fragmentation, the master

GC never moves objects as it collects; master-GC allocation is rare and coarse-grained enough

that compaction is not needed. Each place can therefore resume its normal work as soon as the

master-GC collection is complete.

3.5.4 Place Channels
To maintain the invariant that allows the place-specific GCs to work independently, sending a

message over a place channel copies data from the originating place to the destination place.

Place channels implement efficient, one-copy message passing by orphaning memory pages

from the source place and adopting those memory pages into the destination place. A place channel

begins this process by asking its local allocator for a new orphan allocator. The orphan allocator

32

groups all its allocations onto a new set of orphaned memory pages. Orphaned pages are memory

blocks that are not owned by any GC. The place channel then proceeds to copy the entire message

using the orphan allocator. After the copy is completed, the new orphaned message only contains

references to objects within itself and shared objects owned by the master GC. The originating place

sends this new message and its associated orphaned memory pages to the destination place.

A place channel, receiving a message, adopts the message’s orphaned memory pages into its

own nursery generation and returns the received message to the user program. Message contents

that survive the nursery generation will relocate to memory more localized to the receiving place as

the objects are promoted from the nursery to the mature object generation. This orphan-adoption

process allows for single copy asynchronous message passing without needing to coordinate during

message allocation.

Messages less than 1024 bytes in length are handled in a slightly different manner. These short

messages are allocated onto an orphan page and sent to the destination place exactly as described

above. At the short message’s destination, instead of adopting the messages orphaned pages, the

destination place copies the message from the orphan page into its local allocator. By immediately

copying short messages into the destination place allocator, the orphaned page can be returned to

the system immediately for use by subsequent place-channel messages.

The graphs in Figure 3.8 summarize the performance of place-channel communication. The

first graph compares memcpy() in C, place channels in Racket, and pipes in Racket on a byte-string

message. The results, which are plotted on a log scale, show that place channels can be much slower

than raw memcpy() for small messages, where the cost of memory-page management limits place-

channel throughput. Messages closer to a page size produce similar throughput with all techniques.

The second graph shows place-channel, pipe, and socket performance when the message is a list,

where Racket’s write and read are used to serialize lists for pipes and sockets. The graph shows

that place-channel communication remains similar to pipe and socket communication for structured

data. Together, the results show that our communication strategy does not make communication

particularly cheap, but it is competitive with services that have been optimized by OS implementors.

3.5.5 OS Page-Table Locks
Compilation of Racket’s standard library was one of our early tests of performance with places.

After eliminating all apparent synchronization points as possible points of contention, I found that

using separate processes for the build scaled better than using places within a single Racket process.

On closer inspection of the system calls being made in each case, I saw that the build used many

33

0.000031

0.000977

0.031250

1.000000

32.000000

1024.000000

32768.000000

1048576.000000

 0 5 10 15 20 25 30

M
B

/s

Log(2) of Message Size in Bytes

Racket Places
GCC memcpy -O3

Racket OS Pipes

Byte-String Throughput

0.000061

0.000244

0.000977

0.003906

0.015625

0.062500

0.250000

1.000000

4.000000

16.000000

 0 5 10 15 20 25

M
e
g

a
 I
te

m
s/

s

Log(2) of List Length

Racket Places
Racket OS Pipes
Racket Sockets

Structured-Data Throughput

Figure 3.8: Place-Channel Performance

mprotect() calls that took a long time to complete.

The Racket generational garbage collector uses OS-implemented memory protection to im-

plement write barriers. Each garbage collection uses mprotect() to clear and set read-only

permissions on memory pages. After consulting the Linux source code, I realized that mprotect()

acquires a lock on the process’s page table. When two or more places garbage collect at the same

34

time, contention for the process’s page table lock greatly increased the time for mprotect() calls

to complete. To avoid this problem, I implemented an extra layer for the Racket allocator to produce

larger blocks of contiguous mature objects; issuing a single mprotect() call for the contiguous

block reduces the overall number of mprotect() calls by an order of magnitude, which eliminates

the bottleneck.

The more general lesson is that OSes are designed to support separate processes with minimal

interference, but some corners of an OS rely on relatively heavy locks within a single process.

Fortunately, I do not encounter these corners often—for example, concurrent filesystem access

seems to perform as well with places as with separate processes—but the possibility is an extra

concern for the implementation.

3.5.6 Overlooked Cases and Mistakes
Retrofitting a language virtual machine and garbage collector for parallelism is a huge effort

that is bound to result in bugs and overlooked cases. The foreign function interface (FFI) is one

example. The FFI contains a "opened_libs" hash that holds opened libraries handles. The FFI

for Racket lives outside the main VM source directory, "src/racket/src". In auditing the VM

source code, I overlooked the FFI and failed to annotate "opened_libs" as a place local variable.

As a result, multiple places contended over use of "opened_libs" until it was marked to be place

specific.

There were multiple occasions when I forgot to write garbage collector mark routines for new

VM structures or members. In several cases, structures which should have been created as place

specific were overlooked because they were lazily created on demand. In another case, when using

the Racket event system, a place message could be leaked if an exception was thrown. The in-transit

place message needed to be freed before the exception could be allowed to propagate.

Pairs in the Racket VM are a very common and highly optimized data structure. Pairs cache

whether they are a member of a list or not by setting bits in their object header . When copying pairs

across a place channel, I copied the obvious first and second members of the pair but forgot to copy

the list optimization flag bits that were stored in the object header.

The complexity and power of language virtual machines is impressive yet demands respect.

Bugs humble all programmers, but garbage collection and virtual machine bugs can have an extra

measure of nastiness.

35

3.5.7 Overall: Harder than it Sounds, Easier than Locks
The conversion of Racket to support places took approximately two graduate-student years,

which is at least four times longer than I originally expected. At the same time, the implementation

of places has proven more reliable than I expected; when I eventually flipped the default configu-

ration of Racket from no-places (and a parallel library build based on OS processes) to places (and

using them for building libraries), our automatic test builds continued exactly as before—with the

same success rate and performance. Further deployments uncovered memory leaks, but those were

quickly corrected.

Our experience with places contrasts sharply with our previous experience introducing concur-

rency into the runtime system, where months of additional testing and use were required to uncover

many race conditions that escaped detection by the test suite. I attribute this difference primarily to

the small amount of sharing among places, and therefore the small number of locking locations and

potential races in the code.

While implementing places, I made many mistakes where data from one place were incorrectly

shared with another place, either due to incorrect conversion of global variables in the runtime

system or an incorrect implementation of message passing. Crashes from such bugs were highly

reproducible, however, because a bad reference in a place tends to stick around for a long time, so

it is detected by an eventual garbage collection. Bugs due to incorrect synchronization, in contrast,

hide easily because they depend on relatively unlikely coincidences of timing that are exacerbated

by weak memory models.

In adding places to Racket, I did not find as easy a path to parallelism as I had hoped. I did,

however, find a preferable alternative to shared memory and locks.

3.6 Places Complete API
Places enable the development of parallel programs that take advantage of machines with mul-

tiple processors, cores, or hardware threads. A place is a parallel task that is effectively a separate

instance of the Racket virtual machine. Places communicate through place channels, which are

endpoints for a two-way buffered communication.

To a first approximation, place channels support only immutable, transparent values as mes-

sages. In addition, place channels themselves can be sent across channels to establish new (possibly

more direct) lines of communication in addition to any existing lines. Finally, mutable values pro-

duced by shared-flvector, make-shared-flvector, shared-fxvector, make-shared-

fxvector, shared-bytes, and make-shared-bytes can be sent across place channels; muta-

36

tion of such values is visible to all places that share the value, because they are allowed in a shared

memory space. See place-message-allowed?.

A place channel can be used as a synchronizable event to receive a value through the channel.

A place can also receive messages with place-channel-get, and messages can be sent with

place-channel-put. Two place channels are equal? if they are endpoints for the same under-

lying channels while both or neither is a place descriptor. Place channels can be equal? without

being eq? after being sent messages through a place channel.

Constraints on messages across a place channel—and therefore on the kinds of data that places

share—enable greater parallelism than future, even including separate garbage collection of sep-

arate places. At the same time, the setup and communication costs for places can be higher than for

futures. For example, the following expression launches two places, echoes a message to each, and

then waits for the places to terminate:

(let ([pls (for/list ([i (in-range 2)])
(dynamic-place "place-worker.rkt" ’place-main))])

(for ([i (in-range 2)]
[p pls])

(place-channel-put p i)
(printf "∼a\n" (place-channel-get p)))

(map place-wait pls))

The "place-worker.rkt" module must export the place-main function that each place

executes, where place-main must accept a single place channel argument:

#lang racket
(provide place-main)

(define (place-main pch)
(place-channel-put pch (format "Hello from place ∼a"

(place-channel-get pch))))

(place-enabled?) → boolean?

returns #t if Racket is configured so that dynamic-place and place create places that can run in

parallel, #f if dynamic-place and place are simulated using thread.

(place? v) → boolean?
v : any/c

returns #t if v is a place descriptor value, #f otherwise. Every place descriptor is also a place

channel.

37

(place-channel? v) → boolean?
v : any/c

returns #t if v is place channel, #f otherwise.

(dynamic-place module-path start-name) → place?
module-path : (or/c module-path? path?)
start-name : symbol?

creates a place to run the procedure that is identified by module-path and start-name. The

result is a place descriptor value that represents the new parallel task; the place descriptor is returned

immediately. The place descriptor value is also a place channel that permits communication with

the place.

The module indicated by module-path must export a function with the name start-proc.

The function must accept a single argument, which is a place channel that corresponds to the other

end of communication for the place descriptor returned by place.

When the place is created, the initial exit handler terminates the place, using the argument to the

exit handler as the place’s completion value. Use (exit v) to immediately terminate a place with

the completion value v. Since a completion value is limited to an exact integer between 0 and 255,

any other value for v is converted to 0. If the function indicated by module-path and start-proc

returns, then the place terminates with the completion value 0.

In the created place, the current-input-port parameter is set to an empty input port, while

the values of the current-output-port and current-error-port parameters are connected

to the current ports in the creating place. If the output ports are file-stream ports, then the connected

ports in the places share the underlying stream, otherwise a thread in the creating place pumps bytes

to the current ports in the creating place.

The module-path argument must not be a module path of the form (quote sym) unless the

module is predefined (see module-predefined?).

(dynamic-place* module-path
start-name

[#:in in
#:out out

#:err err]) →

place?
(or/c output-port? #f)
(or/c input-port? #f)
(or/c input-port? #f)

module-path : (or/c module-path? path?)
start-name : symbol?

38

in : (or/c input-port? #f) = #f
out : (or/c output-port? #f) = (current-output-port)
err : (or/c output-port? #f) = (current-error-port)

like dynamic-place, but accepts specific ports to the new place’s ports, and returns a created

port when #f is supplied for a port. The in, out, and err ports are connected to the current-

input-port, current-output-port, and current-error-port ports, respectively, for the

place. Any of the ports can be #f, in which case a file-stream port (for an operating-system pipe) is

created and returned by dynamic-place*. The err argument can be ’stdout, in which case the

same file-stream port or that is supplied as standard output is also used for standard error. For each

port or ’stdout that is provided, no pipe is created and the corresponding returned value is #f.

The caller of dynamic-place* is responsible for closing all returned ports; none are closed

automatically.

The dynamic-place* procedure returns four values:

• a place descriptor value representing the created place;

• an output port piped to the place’s standard input, or #f if in was a port;

• an input port piped from the place’s standard output, or #f if out was a port;

• an input port piped from the place’s standard error, or #f if err was a port or ’stdout.

(place id body ...+)

creates a place that evaluates body expressions with id bound to a place channel. The bodys close

only over id plus the top-level bindings of the enclosing module, because the bodys are lifted to a

function that is exported by the module. The result of place is a place descriptor, like the result of

dynamic-place.

(place* maybe-port ...
id
body ...+)

maybe-port =
| #:in in-expr
| #:out out-expr
| #:err err-expr

like place, but supports optional #:in, #:out, and #:err expressions (at most one of each) to

specify ports in the same way and with the same defaults as dynamic-place*. The result of a

place* form is also the same as for dynamic-place*.

39

(place-wait p) → exact-integer?
p : place?

returns the completion value of the place indicated by p, blocking until the place has terminated.

If any pumping threads were created to connect a nonfile-stream port to the ports in the place for

p (see dynamic-place), place-wait returns only when the pumping threads have completed.

(place-dead-evt p) → evt?
p : place?

returns a synchronizable event that is ready if and only if p has terminated.

If any pumping threads were created to connect a nonfile-stream port to the ports in the place

for p (see dynamic-place), the event returned by place-dead-evt may become ready even if a

pumping thread is still running.

(place-kill p) → void?
p : place?

immediately terminates the place, setting the place’s completion value to 1 if the place does not

have a completion value already.

(place-break p [kind]) → void?
p : place?
kind : (or/c #f ’hang-up ’terminate) = #f

sends the main thread of place p a break.

(place-channel) → place-channel? place-channel?

returns two place channels. Data sent through the first channel can be received through the second

channel, and data sent through the second channel can be received from the first.

Typically, one place channel is used by the current place to send messages to a destination place;

the other place channel is sent to the destination place (via an existing place channel).

(place-channel-put pch v) → void
pch : place-channel?
v : place-message-allowed?

sends a message v on channel pch. Since place channels are asynchronous, place-channel-put

calls are nonblocking.

See place-message-allowed? form information on automatic coercions in v, such as con-

verting a mutable string to an immutable string.

40

(place-channel-get pch) → place-message-allowed?
pch : place-channel?

returns a message received on channel pch, blocking until a message is available.

(place-channel-put/get pch v) → any/c
pch : place-channel?
v : any/c

sends an immutable message v on channel pch and then waits for a message (perhaps a reply) on

the same channel.

(place-message-allowed? v) → boolean?
v : any/c

returns #t if v is allowed as a message on a place channel, #f otherwise.

If (place-enabled?) returns #f, then the result is always #t and no conversions are per-

formed on v as a message. Otherwise, the following kinds of data are allowed as messages:

• numbers, characters, booleans, and #<void>;

• symbols, where the eq?ness of uninterned symbols is preserved within a single message, but

not across messages;

• strings and byte strings, where mutable strings and byte strings are automatically replaced by

immutable variants;

• paths (for any platform);

• pairs, lists, vectors, and immutable prefab structures containing message-allowed values,

where a mutable vector is automatically replaced by an immutable vector;

• hash tables where mutable hash tables are automatically replaced by immutable variants;

• place channels, where a place descriptor is automatically replaced by a plain place channel;

• file-stream ports and TCP ports, where the underlying representation (such as a file descriptor,

socket, or handle) is duplicated and attached to a fresh port in the receiving place;

• C pointers as created or accessed via ffi/unsafe; and

• values produced by shared-flvector, make-shared-flvector, shared-fxvector,

make-shared-fxvector, shared-bytes, and make-shared-bytes.

41

3.7 Performance Evaluation
I evaluated the performance of places by running the NASA Advanced Supercomputing (NAS)

Parallel Benchmarks [4].4 These benchmarks represent simplified kernels from computation fluid-

dynamics problems. This section presents results for Racket,5 Java, and Fortran/C versions of the

NAS benchmarks.

I use two high-end workstations, Figure 3.9 that might be typical of a scientist’s desktop ma-

chine. Penghu is a dual socket, quad-core per processor, Intel Xeon machine running Mac OS X.

Drdr is a dual socket, hex-core per processor, AMD machine running Linux.

The NAS Parallel Benchmarks consists of seven benchmarks. Integer Sort (IS) is a simple

histogram integer sort. Fourier Transform (FT) is a 3-D fast Fourier transform. FT computes three 1-

D FFTs, one for each dimension. Conjugate Gradient (CG) approximates the smallest eigenvalue of

a sparse unstructured matrix, which tests the efficiency of indirect memory access. MultiGrid (MG)

solves a 3-D scalar Poisson equation and exercises memory transfers. Scalar Pentadiagonal (SP) is a

3-D Navier-Stokes solver using Beam-Warming approximate factorization. Block Tridiagonal (BT)

is a Navier-Stokes solver using Alternating Direction Implicit approximate factorization. Lower and

Upper (LU) is a Navier-Stokes solver using the symmetric successive over-relaxation method.

Penghu Drdr
OS OS X 10.6.2 Ubuntu 10.4
Arch x86_64 x86_64
Processor Type Xeon Opteron 2427
Processors 2 2
Total Cores 8 12
Clock Speed 2.8 GHz 2.2 GHz
L2 Cache 12MB 3MB
Memory 8 GB 16 GB
Bus Speed 1.6 GHz 1 GHz
Racket v5.1.1.6 v5.1.1.6
gfortran 4.6.0 2010/7 4.4.3
Java 1.6.0_20 OpenJDK 1.6.0_18

Figure 3.9: Benchmark Machines

4http://www.nas.nasa.gov/Resources/Software/npb.html

5The Racket version of the NAS Parallel Benchmarks is available at https://github.com/tewk/racketNAS.

http://www.nas.nasa.gov/Resources/Software/npb.html
https://github.com/tewk/racketNAS

42

Each NAS benchmark consists of a range of problem size classes: from smallest to largest, they

are S, W, A, B, and C. I ran the A size class on the shorter IS, FT, CG, MG benchmarks. On the

longer benchmarks, SP, BT, and LU, I ran the W size class.

Each benchmark is represented by a row of graphs in Figures 3.10, 3.11, 3.12, 3.13, 3.14, and

3.15. The raw-performance graphs for each of the two benchmark machines comes first, followed

by the speedup graphs. The raw-performance graph plots the number of threads versus the time to

complete the benchmark with the left-most point (labelled “S”) indicating the time for running the

sequential benchmark without creating any places. The speedup graphs plot the number of threads

versus the benchmark runtime divided by the benchmark time for one parallel thread. The gray line

in the speed up graphs indicates perfect linear speedup.

In terms of raw performance, the Fortran/C implementation is the clear winner. Java comes in

second in most benchmarks. Racket is third in most benchmarks, although it handily wins over Java

in the SP and LU benchmarks.

More importantly, the Racket results demonstrate that our places implementation generally

scales as well as the Java and Fortran/C versions do. In many of the benchmarks, running the

Racket code with one parallel place takes only slightly longer than running the sequential code. The

small difference in run times between sequential and one-place parallel versions suggests that the

runtime cost of places for parallelization is practical.

The IS C result for the Penghu (Mac OS X) machine is uncharacteristically slower than the Java

and Racket run times. The IS benchmark on the Drdr (Linux) machine is much faster. The NPB im-

plementors wrote all the reference benchmarks in Fortran, except for IS. The NPB developers wrote

the IS benchmark in C, using OpenMP’s threadprivate directive. GCC versions prior to 4.6

refused to compile the IS benchmark under Mac OS X, emitting an error that __threadlocal was

not supported. However, the prerelease GCC 4.6 successfully compiles and runs the IS benchmark.

I believe that GCC 4.6 calls the pthread_get_specific() API function to implement OpenMP

thread private variables, which increases the runtime of the IS implementation on Mac OS X.

The 3x difference in FT performance between Racket and Java is most likely due to Racket’s

lack of instruction-level scheduling and optimization. The negative scaling seen in the CG bench-

mark on Drdr for processor counts 7-12 is likely a chip locality issue when the computation requires

both processor sockets. Unlike all the other benchmark kernels, the CG benchmark operates on a

sparse matrix. The extra indirection in the sparse matrix representation reduces the effectiveness of

memory caches and tests random memory accesses.

43

Wall-clock time
Penghu Drdr

Integer Sort (IS) - Class A

Thread count

Se
co

nd
s

0

0.5

1

1.5

2

2.5

3

3.5

S 1 2 3 4 5 6 7 8

Thread count

Se
co

nd
s

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

S 1 2 3 4 5 6 7 8 9 101112

Fourier Transform (FT) - Class A

Thread count

Se
co

nd
s

0

10

20

30

40

50

60

70

S 1 2 3 4 5 6 7 8

Thread count

Se
co

nd
s

0

10

20

30

40

50

60

70

80

S 1 2 3 4 5 6 7 8 9 101112

Conjugate Gradient (CG) - Class A

Thread count

Se
co

nd
s

0

5

10

15

20

25

30

35

S 1 2 3 4 5 6 7 8

Thread count

Se
co

nd
s

0
5
10
15
20
25
30
35
40
45

S 1 2 3 4 5 6 7 8 9 101112

Racket Java Fortran (IS is C)

Figure 3.10: IS, FT, and CG wall-clock results

44

Wall-clock time
Penghu Drdr

Multi-grid (MG) - Class A

Thread count

Se
co

nd
s

1
2
3
4
5
6
7
8
9
10
11
12
13

S 1 2 3 4 5 6 7 8

Thread count

Se
co

nd
s

0
2
4
6
8
10
12
14
16
18
20
22

S 1 2 3 4 5 6 7 8 9 101112

Scalar Pentadiagonal (SP) - Class W

Thread count

Se
co

nd
s

0
25
50
75
100
125
150
175
200
225
250
275
300

S 1 2 3 4 5 6 7 8

Thread count

Se
co

nd
s

0
50
100
150
200
250
300
350
400
450
500
550

S 1 2 3 4 5 6 7 8 9 101112

Block Tridiagonal (BT) - Class W

Thread count

Se
co

nd
s

0

10

20

30

40

50

60

70

80

S 1 2 3 4 5 6 7 8

Thread count

Se
co

nd
s

0
10
20
30
40
50
60
70
80
90
100
110
120

S 1 2 3 4 5 6 7 8 9 101112

Racket Java Fortran (IS is C)

Figure 3.11: MG, SP, and BT wall-clock results

45

Wall-clock time
Penghu Drdr

Lower and Upper (LU) - Class W

Thread count

Se
co

nd
s

0
50
100
150
200
250
300
350
400
450
500
550

S 1 2 3 4 5 6 7 8

Thread count

Se
co

nd
s

0
100
200
300
400
500
600
700
800
900
1000

S 1 2 3 4 5 6 7 8 9 101112

Racket Java Fortran

Figure 3.12: LU wall-clock results

46

Speedup
Penghu Drdr

Integer Sort (IS) - Class A

Thread countSp
ee

du
p

re
la

ti
ve

 to
 o

ne
 th

re
ad

0

1

2

3

4

5

6

7

S 1 2 3 4 5 6 7 8

Thread countSp
ee

du
p

re
la

ti
ve

 to
 o

ne
 th

re
ad

0
1
2
3
4
5
6
7
8
9

S 1 2 3 4 5 6 7 8 9 101112

Fourier Transform (FT) - Class A

Thread countSp
ee

du
p

re
la

ti
ve

 to
 o

ne
 th

re
ad

0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

S 1 2 3 4 5 6 7 8

Thread countSp
ee

du
p

re
la

ti
ve

 to
 o

ne
 th

re
ad

0
1
2
3
4
5
6
7
8
9

S 1 2 3 4 5 6 7 8 9 101112

Conjugate Gradient (CG) - Class A

Thread countSp
ee

du
p

re
la

ti
ve

 to
 o

ne
 th

re
ad

0.5

1

1.5

2

2.5

3

3.5

4

4.5

S 1 2 3 4 5 6 7 8

Thread countSp
ee

du
p

re
la

ti
ve

 to
 o

ne
 th

re
ad

1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6

S 1 2 3 4 5 6 7 8 9 101112

Racket Java Fortran (IS is C)

Figure 3.13: IS, FT, and CG speedup results

47

Speedup
Penghu Drdr

Multi-grid (MG) - Class A

Thread countSp
ee

du
p

re
la

ti
ve

 to
 o

ne
 th

re
ad

0

1

2

3

4

5

6

7

S 1 2 3 4 5 6 7 8

Thread countSp
ee

du
p

re
la

ti
ve

 to
 o

ne
 th

re
ad

0
1
2
3
4
5
6
7
8
9

S 1 2 3 4 5 6 7 8 9 101112

Scalar Pentadiagonal (SP) - Class W

Thread countSp
ee

du
p

re
la

ti
ve

 to
 o

ne
 th

re
ad

0.5

1

1.5

2

2.5

3

3.5

4

4.5

S 1 2 3 4 5 6 7 8

Thread countSp
ee

du
p

re
la

ti
ve

 to
 o

ne
 th

re
ad

0

1

2

3

4

5

6

7

S 1 2 3 4 5 6 7 8 9 101112

Block Tridiagonal (BT) - Class W

Thread countSp
ee

du
p

re
la

ti
ve

 to
 o

ne
 th

re
ad

0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
6.5

S 1 2 3 4 5 6 7 8

Thread countSp
ee

du
p

re
la

ti
ve

 to
 o

ne
 th

re
ad

0
1
2
3
4
5
6
7
8
9

S 1 2 3 4 5 6 7 8 9 101112

Racket Java Fortran (IS is C)

Figure 3.14: MG, SP, and BT speedup results

48

Speedup
Penghu Drdr

Lower and Upper (LU) - Class W

Thread countSp
ee

du
p

re
la

ti
ve

 to
 o

ne
 th

re
ad

0.5

1

1.5

2

2.5

3

3.5

4

4.5

S 1 2 3 4 5 6 7 8

Thread countSp
ee

du
p

re
la

ti
ve

 to
 o

ne
 th

re
ad

0

1

2

3

4

5

6

7

8

S 1 2 3 4 5 6 7 8 9 101112

Racket Java Fortran

Figure 3.15: LU speedup results

The MG benchmark stresses a machine’s memory subsystem in a different manner. During its

computation, MG copies data back and forth between coarse and fine representations of its grid.

On Mac OS X, I had to increase the Java maximum heap size from 128MB to 600MB for the

MG benchmark to finish successfully. Java’s maximum heap size on Linux appears to default to

approximately 1/4th of the total system memory, which was sufficient for the MG benchmark to

finish on our Linux test platform.

The 4x difference in runtimes between Java and Racket in SP and LU is most likely due to poor

common subexpression elimination. While porting the Java benchmarks to Racket, I manually

eliminated hundreds of common subexpressions by introducing local variables. The reference

implementation’s Fortran code has the same duplicated subexpressions as the Java version. In

contrast to Java, the Fortran compiler appears to have a very effective subexpression elimination

optimization pass.

When considering performance, one should take in account the programmer effort to achieve

performance. Racket’s state of the art macro facilities enable programmers to employ high levels

of abstraction and eliminate highly parameterized, yet repeated code patterns. Table 3.1 compares

programmer effort using the lines of code (LOC) metric. Racket handily wins the contest of small

code size. Eliminating repeated code patterns with macros results in programs that more clearly

identify the differences in the repeated patterns. Repeated code leads to cut and paste mistakes

during authoring. When bugs are found, fixes must be repeated for each instance of repeated code.

Languages which empower programmers to write concise, abstracted code, save programmer’s time

and grief.

49

Table 3.1: NAS Parallel Benchmarks Lines of Code

Benchmark Racket LOC Java LOC Fortran LOC
IS 259 382 625
FT 414 900 615
CG 414 667 565
MG 587 1483 841
SP 1236 3825 2276
BT 1191 4099 3585
LU 1121 4555 3657

3.8 Conclusion
Places in Racket demonstrate how adding a message-passing layer to an existing runtime system

can provide effective support for parallelism with a reasonable implementation effort. Our bench-

mark results demonstrate good scaling on traditional parallel tasks, and the use of places for parallel

library compilation demonstrates that the implementation holds up in real-world use.

Although places are primarily designed for message-passing parallelism, shared mutable vectors

of bytes, fixnums, or floating-point numbers are also supported; careful programmers may have

good reasons to use these structures. Crucially, shared vectors of atomic data create few problems

for the language implementation, so they are easily accommodated by the places API. Meanwhile,

the Racket implementation is free to implement message-passing of immutable objects through

sharing, if the trade-off in implementation complexity versus performance favors that direction,

since sharing of immutable data is safe.

Places are a better model than the conventional “add threads; add locks until it stops crashing;

remove locks until it scales better; repeat” approach to programming-language concurrency. Simply

running the Racket test suite in multiple places uncovered the vast majority of bugs in our imple-

mentation. The same has not been true of our attempts to support concurrency with shared memory

(e.g., with futures). Indeed, there seems to be no comparably simple way to find race conditions

with threads and locks; many tools have been designed to help programmers find concurrency

bugs—from Eraser [41] to GAMBIT [12]—but they suffer from problems with false positives,

restrictions on supported code, problems scaling to large systems, or requiring assertions or other

manual annotations. In contrast, bugs in the implementation of places were easy to find because

they create permanently broken references (that are detected by the garbage collector) rather than

fleeting timing effects.

CHAPTER 4

DISTRIBUTED PLACES

4.1 Introduction
Dynamic, functional languages are important as rapid development platforms for solving every-

day problems and completing tasks. As programmers embrace parallelism in dynamic programming

languages, the need arises to extend multicore parallelism to multinode parallelism. Distributed

places delivers multinode parallelism to Racket by building on top of the existing places [47]

infrastructure.

The right extensions to dynamic, functional languages enable the introduction of a hierarchy of

parallel programming abstractions. Language extension allows these parallel programming abstrac-

tions to be concisely mapped to different hardware such as a shared memory node or a distributed

memory machine. Distributed places are not an add-on library or a foreign function interface

(FFI). Instead, Racket’s places and distributed places are language extensions on which higher-level

distributed programming frameworks can easily be expressed. An RPC mechanism, map reduce,

MPI, and nested-data parallelism are all concisely and easily built on top of distributed places.

These higher-level frameworks meld with the Racket language to create extended languages, which

describe different types of distributed programming.

Making distributed places integrate seamlessly into a dynamic language requires a few key

steps. First, the language needs to implement the safe, robust, and scalable parallelism solution

which the places design provides. Second, the places API must be extended to support spawning

places on remote machines. Place channels also have to be extended to allow transparent internode

communication over an underlying sockets layer. Third, the language’s concurrency system must

be extensible and include new distributed places events. As an example, Racket distributed places

and place channels are events which can be waited on concurrently with other Racket event objects

such as file ports, sockets, threads, channels, etc. Together, places and distributed places form a

foundation capable of supporting higher-level parallel frameworks.

51

4.2 Design
Distributed places’ design orginates from the design of places. Places is Racket’s message-

passing form of parallelism. The isolated execution of places avoids the typical interference prob-

lems of threads executing in a single address space. Instead, places positions the programmer to

think about the data-placement and communication needs of a parallel program to enable sustained

scalability. As a program moves from multicore parallelism to multinode parallelism latency in-

creases and bandwidth decreases. Data-placement and communication patterns become even more

crucial.

Much of a distributed programming API is littered with system administration tasks that impede

programmers from focusing on programming and solving problems. First, programmers have to

authenticate and launch their programs on each node in the distributed system. Then they have to

establish communication links between the nodes in the system, before they can begin working on

the problem itself. The work of the distributed places framework is to provide support for handling

the problems of program launch and communication link establishment.

Racket’s distributed places API design is centered around machine nodes that do computation

in places. The user/programmer configures a new distributed system using declarative syntax and

callbacks. By specifying a hostname and port number, a programmer can launch a new place on

a remote host. In the simplest distributed-places programs, hostnames and port numbers are hard-

wired. When programmers need more control, distributed places permits complete programmatic

configuration of node launch and communication link parameters.

The hello world example in Figure 4.1 demonstrates the key components of a places program.

Appearing first, the hello-world procedure is called to create hello-world places. The main

module follows and contains the code to construct and communicate with a hello-world place.

Looking closer at the main module, the hello-world place is created using dynamic-place.

(dynamic-place module-path start-proc) → place?
module-path : module-path?
start-proc : symbol?

The dynamic-place procedure creates a place to run the procedure that is identified by module-

path and start-proc. The result is a place descriptor value that represents the new parallel task;

the place descriptor is returned immediately. The place descriptor is also a place channel to initiate

communication between the new place and the creating place.

The module indicated by module-path must export a function with the name start-proc.

The exported function must accept a single argument, which is a place channel that corresponds to

the other end of communication for the place channel that is returned by dynamic-place.

52

1 #lang racket/base
2 (require racket/place
3 racket/place/distributed)
4

5 (provide hello-world)
6

7 (define (hello-world ch)
8 (printf/f "hello-world received: ∼a\n"
9 (place-channel-get ch))

10 (place-channel-put ch "Hello World\n")
11 (printf/f "hello-world sent: Hello World\n"))
12

13 (module+ main
14 (define p (dynamic-place (quote-module-path "..")
15 ’hello-world))
16

17 (place-channel-put p "Hello")
18 (printf/f "main received: ∼a\n"
19 (place-channel-get p))
20 (place-wait p))

Figure 4.1: Place’s Hello World

The (quote-module-path "..") and ’hello-world arguments on lines 17 and 18 of

Figure 4.2 specify the procedure address of the new place to be launched on the remote node. In

this example, the (quote-module-path "..") argument provides the module path to the parent

module of main, where the ’hello-world procedure is located.

13 (module+ main
14 (define n (create-place-node "host2"
15 #:listen-port 6344))
16 (define p (dynamic-place #:at n
17 (quote-module-path "..")
18 ’hello-world))
19 ...)

Figure 4.2: Distributed Hello World

53

Places communicate over place channels which allow structured data communication between

places. Supported structured data includes booleans, numbers, characters, symbols, byte strings,

Unicode strings, filesystem paths, pairs, lists, vectors, and “prefab” structures (i.e., structures that

are transparent and whose types are universally named). Place channels themselves can be sent in

messages across place channels, so that communication is not limited to the creator of a place and its

children places; by sending place channels as messages, a program can construct custom message

topologies.

(place-channel-put ch v) → void?
ch : place-channel?
v : place-message-allowed?

(place-channel-get ch) → place-message-allowed?
ch : place-channel?

The place-channel-put function asynchronously sends a message v on channel ch and returns

immediately. The place-channel-get function waits until a message is available from the place

channel ch.

(place-wait p) → void?
p : place?

Finally, the place-wait procedure blocks until p terminates.

The distributed hello world example in Figure 4.2 shows the two differences between a simple

places program and a simple distributed places program. The create-place-node procedure

uses ssh to start a new remote node on host2 and assumes that ssh is configurered correctly. Upon

launch, the remote node listens on port 6344 for incoming connections. Once the remote node is

launched, a TCP connection to the new node is established. The create-place-node returns a

node descriptor object, n, which allows for administration of the remote node. The remote place is

created using dynamic-place. The new #:at keyword argument specifies the node on which to

launch the new place.

Remotely spawned places are private. Only the node that spawned the place can communicate

with it through its descriptor object. Named places allow programmers to make a distributed place

publicly accessible. Named places are labeled with a name when they are created.

(define p (dynamic-place #:at n
#:named ’helloworld1
(quote-module-path "..")
’hello-world))

Any node can connected to a named place by specifying the node and name to connect to.

54

(connect-to-named-place node ’helloworld1)

4.3 Higher-Level APIs
The distributed places implementation is a foundation that can support a variety of higher-level

APIs and parallel processing frameworks such as Remote Procedure Calls (RPC), Message Passing

Interface (MPI) [30], MapReduce [13], and Nested Data Parallelism [8]. All of these higher-level

APIs and frameworks are built on top of named places.

4.3.1 RPC via Named Places
Named places make a place’s interface public at a well-known address: the host, port, and name

of the place. They provide distributed places with a form of computation similar to the actor model

[24]. Using named places and the define-named-remote-server form, programmers can build

distributed places that act as remote procedure call (RPC) servers. The example in Figure 4.3

demonstrates how to launch a remote Racket node instance, launch a remote procedure call (RPC)

tuple server on the new remote node instance, and start a local event loop that interacts with the

remote tuple server.

The create-place-node procedure in Figure 4.3 connects to "host2" and starts a distributed

place node there that listens on port 6344 for further instructions. The descriptor to the new dis-

tributed place node is assigned to the remote-node variable. Next, the dynamic-place procedure

creates a new named place on the remote-node. The named place will be identified in the future

by its name symbol ’tuple-server.

The code in Figure 4.4 contains the use of the define-named-remote-server form, which

defines a RPC server suitable for invocation by dynamic-place. The RPC tuple-server allows

for named tuples to be stored into a server-side hash table and later retrieved. It also demonstrates

one-way “cast” procedures, such as hello, that do not return a value to the remote caller.

For the purpose of explaining the tuple-server implementation, Figure 4.5 shows the macro

expansion of the RPC tuple server. Typical users of distributed places do not need to understand

the expanded code to use the define-named-remote-server macro. The define-named-

remote-server form, in Figure 4.5, takes an identifier and a list of custom expressions as its

arguments. A place function is created by prepending the make- prefix to the identifier tuple-

server. The make-tuple-server identifier is the symbol given to the dynamic-place form

55

1 #lang racket/base
2 (require racket/place/distributed
3 racket/class
4 racket/place
5 racket/runtime-path
6 "tuple.rkt")
7 (define-runtime-path tuple-path "tuple.rkt")
8

9 (module+ main
10 (define remote-node (create-place-node
11 "host2"
12 #:listen-port 6344))
13 (define tuple-place (dynamic-place
14 #:at remote-node
15 #:named ’tuple-server
16 tuple-path
17 ’make-tuple-server))
18

19 (define c (connect-to-named-place remote-node
20 ’tuple-server))
21 (define d (connect-to-named-place remote-node
22 ’tuple-server))
23 (tuple-server-hello c)
24 (tuple-server-hello d)
25 (displayln (tuple-server-set c "user0" 100))
26 (displayln (tuple-server-set d "user2" 200))
27 (displayln (tuple-server-get c "user0"))
28 (displayln (tuple-server-get d "user2"))
29 (displayln (tuple-server-get d "user0"))
30 (displayln (tuple-server-get c "user2")))

Figure 4.3: Tuple RPC Example

in Figure 4.3. The define-state custom form translates into a simple define form, which is

closed over by the define-rpc forms.

The define-rpc form is expanded into two parts. The first part is the client stubs that call

the RPC functions. The stubs can be seen at the top of Figure 4.5. The client function name is

formed by concatenating the define-named-remote-server identifier, tuple-server, with

the RPC function name, set, to form tuple-server-set. The RPC client functions take a

destination argument which is a remote-connection% descriptor followed by the RPC function’s

arguments. The RPC client function sends the RPC function name, set, and the RPC arguments to

the destination by calling an internal function named-place-channel-put. The RPC client then

56

1 #lang racket/base
2 (require racket/match
3 racket/place/define-remote-server)
4

5 (define-named-remote-server tuple-server
6

7 (define-state h (make-hash))
8 (define-rpc (set k v)
9 (hash-set! h k v)

10 v)
11 (define-rpc (get k)
12 (hash-ref h k #f))
13 (define-cast (hello)
14 (printf "Hello from define-cast\n")
15 (flush-output)))

Figure 4.4: Tuple Server

calls named-place-channel-get to wait for the RPC response.

The second part of the expansion part of define-rpc is the server implementation of the RPC

call. The server is implemented by a match expression inside the make-tuple-server function.

Messages to named places are placed as the first element of a list where the second element is

the source or return channel on which to respond. For example, in (list (list ’set k v)

src) the inner list is the message while src is the place-channel to send the reply on. The match

clause for tuple-server-set matches on messages beginning with the ’set symbol. The server

executes the RPC call with the communicated arguments and sends the result back to the RPC client.

The define-cast form is similar to the define-rpc form except there is no reply message from

the server to client.

The named place, shown in the tuple server example, follows an actor-like model by receiving

messages, modifying state, and sending responses. Racket macros enables the easy construction of

RPC functionality on top of named places.

4.3.2 Racket Message Passing Interface
RMPI is Racket’s implementation of the basic MPI operations. A RMPI program begins with

the invocation of the rmpi-launch procedure, which takes two arguments. The first is a hash

from racket keywords to values of default configuration options. The rmpi-build-default-

config helper procedure takes a list of Racket keyword arguments and forms the hash of optional

57

1 (module named-place-expanded racket/base
2 (require racket/place racket/match)
3 (define/provide
4 (tuple-server-set dest k v)
5 (named-place-channel-put dest (list ’set k v))
6 (named-place-channel-get dest))
7 (define/provide
8 (tuple-server-get dest k)
9 (named-place-channel-put dest (list ’get k))
10 (named-place-channel-get dest))
11 (define/provide
12 (tuple-server-hello dest)
13 (named-place-channel-put dest (list ’hello)))
14 (define/provide
15 (make-tuple-server ch)
16 (let ()
17 (define h (make-hash))
18 (let loop ()
19 (define msg (place-channel-get ch))
20 (match
21 msg
22 ((list (list ’set k v) src)
23 (define result (let ()
24 (hash-set! h k v)
25 v))
26 (place-channel-put src result)
27 (loop))
28 ((list (list ’get k) src)
29 (define result (let ()
30 (hash-ref h k #f)))
31 (place-channel-put src result)
32 (loop))
33 ((list (list ’hello) src)
34 (define result
35 (let ()
36 (printf
37 "Hello from define-cast\n")
38 (flush-output)))
39 (loop)))
40 loop)))
41 (void))

Figure 4.5: Macro Expansion of Tuple Server

58

configuration values. The second argument is a list of configurations, one for each node in the

distributed system. A configuration is made up of a hostname, a port, a unique name, a numerical

RMPI process id, and an optional hash of additional configuration options. An example of rmpi-

launch follows.
(rmpi-launch
(rmpi-build-default-config

#:racket-path "/tmp/mplt/bin/racket"
#:distributed-launch-path
(build-distributed-launch-path

"/tmp/mplt/collects")
#:rmpi-module "/tmp/mplt/kmeans.rkt"
#:rmpi-func ’kmeans-place
#:rmpi-args
(list "/tmp/mplt/color100.bin"

#t 100 9 10 0.0000001))

(list (list "n1.example.com" 6340 ’kmeans_0 0)
(list "n2.example.com" 6340 ’kmeans_1 1)
(list "n3.example.com" 6340 ’kmeans_2 2)
(list "n4.example.com" 6340 ’kmeans_3 3

(rmpi-build-default-config
#:racket-path "/bin/racket"))))

The rmpi-launch procedure spawns the remote nodes first and then spawns the remote places

named with the unique name from the config structure. After the nodes and places are spawned,

rmpi-launch sends each spawned place its RMPI process id, the config information for establish-

ing connections to the other RMPI processes, and the initial arguments for the RMPI program. The

last function of rmpi-launch is to rendezvous with RMPI process 0 when it calls rmpi-finish

at the end of the RMPI program.

The rmpi-init procedure is the first call that should occur inside the #:rmpi-func place

procedure. The rmpi-init procedure takes one argument ch, which is the initial place-channel

passed to the #:rmpi-func procedure. The rmpi-init procedure communicates with rmpi-

launch over this channel to receive its RMPI process id and the initial arguments for the RMPI

program.
(define (kmeans-place ch)
(define-values (comm args tc) rmpi-init ch)
;;; kmeans rmpi computation ...
(rmpi-finish comm tc))

The rmpi-init procedure has three return values: an opaque communication structure which

is passed to other RMPI calls, the list of initial arguments to the RMPI program, and a typed channel

wrapper for the initial place-channel it was given. The typed channel wrapper allows for the out of

order reception of messages. Messages are lists and their type is the first item of the list, which must

59

be a racket symbol. A typed channel returns the first message received on the wrapped channel that

has the type requested. Messages of other types that are received are queued for later requests.

The rmpi-comm structure, returned by rmpi-init, is the communicator descriptor used by all

other RMPI procedures. The RMPI informational functions rmpi-id and rmpi-cnt return the

current RMPI process id and the total count of RMPI processes, respectively.

> (rmpi-id comm)
3

> (rmpi-cnt comm)
8

The rmpi-send and rmpi-recv procedures provide point-to-point communication between two

RMPI processes.

> (rmpi-send comm dest-id ’(msg-type1 "Hi"))

> (rmpi-recv comm src-id)
’(msg-type1 "Hi")

With the rmpi-comm structure, the programmer can also use any of the RMPI collective procedures:

rmpi-broadcast, rmpi-reduce, rmpi-allreduce, or rmpi-barrier to communicate values

between the nodes in the RMPI system.

The (rmpi-broadcast comm 1 (list ’a 12 "foo")) expression broadcasts the list (list

’a 12 "foo") from RMPI process 1 to all the other RMPI processes in the comm communication

group. Processes receiving the broadcast execute (rmpi-broadcast comm 1) without speci-

fying the value to send. The (rmpi-reduce comm 3 + 3.45) expression does the opposite

of broadcast by reducing the local value 3.45 and all the other procesess local values to RMPI

process 3 using the + procedure to do the reduction. The rmpi-allreduce expression is similar to

rmpi-reduce except that the final reduced value is broadcasted to all processes in the system after

the reduction is complete. Synchronization among all the RMPI processes occurs through the use of

the (rmpi-barrier comm) expression, which is implemented internally using a simple reduction

followed by a broadcast.

Distributed places are simply computation resources connected by socket communications.

This simple design matches MPI’s model and makes RMPI’s implementation very natural. The

60

RMPI layer demonstrates how distributed places can provide the foundations of other distributed

programming frameworks such as MPI.

4.3.3 Map Reduce
Our MapReduce implementation is patterned after the Hadoop [1] framework. Key value pairs

are the core data structures that pass through the map and reduce stages of the computation. In the

following example, the number of word occurrences is counted across a list of text files. The files

have been preprocessed so that there is only one word per line.

Figure 4.6 shows the different actors in the MapReduce paradigm. The program node P creates

the MapReduce workers group. When a map-reduce call is made, the program node serves as

the controller of the worker group. It dispatches mapper tasks to each node and waits for them to

respond as finished with the mapping task. Once a node has finished its mapping task, it runs the

reduce operation on its local data. Given two nodes in the reduced state, one node can reduce to the

other freeing one node to return to the worker pool for allocation to future tasks. Once all the nodes

have reduced to a single node, the map-reduce call returns the final list of reduced key values.

The first step in using distributed place’s MapReduce implementation is to create a list of worker

nodes. This is done by calling the make-map-reduce-workers procedure with a list of hostnames

and ports to launch nodes at.
(define config (list (list "host2" 6430)

(list "host3" 6430)))
(define workers (make-map-reduce-workers config))

Once a list of worker nodes have been spawned, the programmer can call map-reduce sup-

plying the list of worker nodes, the config list, the procedure address of the mapper, the procedure

address of the reducer, and a procedure address of an optional result output procedure. Procedure

addresses are lists consisting of the quoted-module-path and the symbol name of the procedure

being addressed.
(map-reduce workers config tasks

(list (quote-module-path "..") ’mapper)
(list (quote-module-path "..") ’reducer)
#:outputer (list (quote-module-path "..")

’outputer))

Tasks can be any list of key value pairs. In this example, the keys are the task numbers and the

values are the input files the mappers should process.
(define tasks (list (list (cons 0 "/tmp/w0"))

(list (cons 1 "/tmp/w1"))
...))

61

Map Reduce Program
P

Map Reduce Workers

worker pool

1 2 3 4

1 3 2 4

1 3 2 4

1 2

1

P program node

worker nodes

mapping step

reducing step

Figure 4.6: MapReduce Program

The mapper procedure takes a list of key value pairs as its argument and returns the result of the

map operation as a new list of key value pairs. The input to the mapper, in this example, is a list of a

single pair containing the task number and the text file to process, (list (cons 1 "w0.txt")).

The output of the mapper is a list of each word in the file paired with 1, its initial count. Repeated

words in the text are repeated in the mappers output list. Reduction happens in the next step.
;;(->
;; (listof (cons any any))
;; (listof (cons any any)))
(define/provide (mapper kvs)
(for/first ([kv kvs])

(match kv
[(cons k v)
(with-input-from-file
v
(lambda ()

(let loop ([result null])
(define l (read-line))
(if (eof-object? l)

result
(loop (cons (cons l 1)

result))))))])))

After a task has been mapped, the MapReduce framework sorts the output key value pairs by

key. The framework also coalesces pairs of key values with the same key into a single pair of the

key and the list of values. As an example, the framework transforms the output of the mapper

62

’(("house" 1) ("car" 1) ("house" 1)) into ’(("car" (1)) ("house" (1 1)))

The reducer procedure takes, as input, this list of pairs, where each pair consists of a key and a

list of values. For each key, the reducer reduces the list of values to a list of a single value. In the

word count example, an input pair, (cons "house" ’(1 1 1 1)) will be transformed to (cons

"house" ’(4)) by the reduction step.
;;(->
;; (listof (cons any (listof any)))
;; (listof (cons any (listof any))))
(define/provide (reducer kvs)
(for/list ([kv kvs])

(match kv
[(cons k v)
(cons k (list (for/fold ([sum 0])

([x v])
(+ sum x))))])))

Once each mapped task has been reduced, the outputs of the reduce steps are further reduced

until a single list of word counts remains. Finally, an optional output procedure is called which

prints out a list of words and their occurrence count and returns the total count of all words.
(define/provide (outputer kvs)
(displayln

(for/fold ([sum 0]) ([kv kvs])
(printf "∼a - ∼a\n" (car kv) (cadr kv))
(+ sum (cadr kv)))))

4.3.4 Nested Data Parallelism
The last parallel processing paradigm implemented on top of distributed places is nested data

parallelism [22]. In this paradigm, recursive procedure calls create subproblems that can be

parallelized. An implementation of parallel quicksort demonstrates nested data parallelism built

on top of distributed places.

The distributed places, nested data parallelism API – ndp-get-node, ndp-sendwork, ndp-

get-result, and ndp-return-node – is built on top of the RMPI layer. The main program node,

depicted as P in Figure 4.7, creates the ndp-group. The ndp-group consists of a coordinating

node, 0, and a pool of worker nodes 1, 2, 3, 4. The coordinating node receives a sort request

from ndp-sort and forwards the request to the first available worker node, node 1. Node 1 divides

the input list in half and requests a new node from the coordinator to process the second half of

the input. The yellow bars on the right side of Figure 4.7 show the progression as the sort input is

subdivided and new nodes are requested from the coordinator node. Once the sort is complete, the

result is returned to the coordinator node, which returns the result to the calling program P.

63

NDP Quicksort Program
P

NDP Group
ndp coordinator node

0

ndp worker pool

1 2 3 4

1

1 2

1 3 2 4

P program node

coordinator node

worker nodes

divide progression

Figure 4.7: NDP Program

Like the previous two examples, the nested data parallel quicksort example begins by spawning

a group of worker processes.
(define config
(list (list "host2" 6340)

(list "host3" 6340)
(list "host4" 6340)
(list "host5" 6340)
(list "host6" 6340)))

(define ndp-group (make-ndp-group config))

Next, the sort is performed by calling ndp-qsort.
(displayln (ndp-qsort (list 9 1 2 8 3 7 4 6 5 10)

ndp-config))

The ndp-qsort procedure is a stub that sends the procedure address for the ndp-parallel-

qsort procedure and the list to sort to the ndp-group. The work of the parallel sort occurs in

the ndp-parallel-sort procedure. First, the partit procedure picks a pivot and partitions the

input list into three segments: less than the pivot, equal to the pivot, and greater than the pivot. If

a worker node can be obtained from the ndp-group by calling ndp-get-node, the gt partition is

sent to the newly obtained worker node to be recursively sorted. If all the worker nodes are taken,

the gt partition is sorted locally using the ndp-serial-qsort procedure. Once the lt partition

is sorted recursively on the current node, the gt-part is checked to see if it was computed locally

or dispatched to a remote node. If the part was dispatched to a remote node, its results are retrieved

64

from the remote node by calling ndp-get-result. After the results are obtained, the remote node

node can be returned to the ndp-group for later use. Finally, the sorted parts are appended to form

the final sorted list result.
(define (ndp-parallel-qsort l ndp-group)
(cond

[(< (length l) 2) l]
[else
(define-values (lt eq gt) (partit l))

;; spawn off gt partition
(define gt-ref

(define node (ndp-get-node ndp-group))
(cond

[node
(cons #t (ndp-send-work

ndp-group
node
(list (quote-module-path)

’ndp-parallel-qsort)
gt))]

[else
(cons #f (ndp-serial-qsort gt))]))

;; compute lt partition locally
(define lt-part

(ndp-parallel-qsort lt ndp-group))

;; retrieve remote results
(define gt-part

(match gt-ref
[(cons #t node-id)

(begin0
(ndp-get-result ndp-group node-id)
(ndp-return-node ndp-group node-id))]

[(cons #f part) part]))

(append lt-part eq gt-part)]))

4.4 Implementation
A key part of the distributed place implementation is that distributed places is a layer over

places, and parts of the places layer are exposed through the distributed places layer. In particular,

each node, in Figure 4.8, begins life with one initial place, the message router. The message router

listens on a TCP port for incoming connections from other nodes in the distributed system. The

message router serves two primary purposes: it multiplexes place messages and events on TCP

connections between nodes and it services remote spawn requests for new places.

65

Node
node% place

message
router

compute
place

compute
place

compute
place

Node
node% place

message
router

compute
place

compute
place

compute
place

Node
node% place

message
router

compute
place

compute
place

compute
place

Node
node% place

message
router

compute
place

compute
place

compute
place

Figure 4.8: Distributed Places Nodes

There are a variety of distributed places commands which spawn remote nodes and places.

These command procedures return descriptor objects for the nodes and places they create. The

descriptor objects allow commands and messages to be communicated to the remote controlled

objects. In Figure 4.9, when node A spawns a new node B, A is given a remote-node% object

with which to control B. Consequently, B is created with a node% object that is connected to A’s

remote-node% descriptor via a TCP socket connection. B’s node% object is the message router for

the new node B. A can then use its remote-node% descriptor to spawn a new place on node B. Upon

successful spawning of the new place on B, A is returned a remote-place% descriptor object. On

node B, a place% object representing the newly spawned place is attached to B’s node% message-

router. The remote-connection% descriptor object represents a connection to a named place. At

the remote node, B, a connection% object intermediates between the remote-connection% and

its destination named-place.

To communicate with remote nodes, a place message must be serializable. As a message-passing

implementation, places send a copy of the original message when communicating with other places.

Thus, the content of a place message is inherently serializable and transportable between nodes of

a distributed system.

To make place channels distributed, place-socket-bridge% proxies need to be created under

the hood. The place-socket-bridge%s listen on local place channels and forward place mes-

sages over TCP sockets to remote place channels. Each node in a Racket distributed system must

either explicitly pump distributed messages by registering each proxy with sync or bulk register the

66

Machine A Machine B
remote-node% node%

remote-place% place%

remote-connection% connection%

Figure 4.9: Descriptor (Controller) - Controlled Pairs

proxies, via the remote-node% descriptor, with a message router which can handle the pumping in

a background thread.

Figure 4.10 shows the layout of the internal objects in a simple three node distributed system.

The node at the top of the figure is the original node spawned by the user. Early in the instantiation of

the top node, two additional nodes are spawned, node 1 and node 2. Then two places are spawned

on each of node 1 and node 2. The instantiation code of the top node ends with a call to the

message-router form. The message-router contains the remote-node% instances and the

after-seconds and every-seconds event responders. Event responders execute when specific

events occur, such as a timer event, or when messages arrive from remote nodes. The message

router de-multiplexes events and place messages from remote nodes and dispatches them to the

correct event responder.

Finally, function overloading is used to allow place- functions, such as place-channel-get,

place-channel-put, and place-wait, to operate transparently on both place and distributed

place instances. To accomplish this, distributed place descriptor objects are tagged as implementing

the place<%> interface using a Racket structure property. Then place- functions dynamically

dispatch to the distributed place version of the function for distributed place instances or execute the

original function body for place instances.

4.5 Distributed Places Performance
Two of the NAS Parallel Benchmarks, IS and CG, are used to test the performance of the

Racket distributed places implementation. The Fortran/C MPI version of the benchmarks were

ported to Racket’s distributed places. Performance testing occurred on 8 quad-core Intel i7 920

machines. Each machine was equipped with at least 4 gigabytes of memory and a 1 gigabit Ethernet

connection.

67

node% - top
message-router

remote-node% - 1
spawned-process%

socket-connection%

remote-places

remote-place%
parent-node

place-socket-bridge%

remote-place%
parent-node

place-socket-bridge%

after-seconds

every-seconds

remote-node% - 2
spawned-process%

socket-connection%

remote-places

remote-place%
parent-node

place-socket-bridge%

remote-place%
parent-node

place-socket-bridge%

node% - 1
socket-connection%

superivised places

place%

place-socket-bridge%

place%

place-socket-bridge%

node% - 2
socket-connection%

superivised places

place%

place-socket-bridge%

place%

place-socket-bridge%

Figure 4.10: Three Node Distributed System

68

Performance numbers are reported for both Racket and Fortran/C versions of the benchmarks

in Figure 4.11 and Figure 4.12, respectively. Racket’s computational times scaled appropriately as

additional nodes were added to the distributed system. Computational times are broken out and

graphed in isolation to make computational scaling easier to see.

Racket communication times were larger than expected. There are several factors, stacked on

top of one another, that explain the large communication numbers. First, five copies of the message

occur during transit from source to destination. In a typical operation, a segment of a large flonum

vector needs to be copied to a destination distributed place. The segment is copied out of the large

flonum vector into a new flonum vector message. The message vector’s length is the length of the

segment to be sent. Next, the newly constructed vector message is copied over a place channel

from the computational place to the main thread which serializes the message out a TCP socket

to its destination. When the message arrives at its destination node, the message is deserialized

and copied a fourth time over a place channel to the destination computational place. Finally, the

elements of the message vector are copied into the mutable destination vector.

Racket’s MPI implementation, RMPI, is not as sophisticated as the standard MPICH [31] imple-

mentation. MPICH has nonblocking sends and receives that allow messages to flow both directions

simultaneously. Both the NAS Parallel Benchmarks used, IS and CG, use nonblocking MPI re-

ceives. RMPI on the other hand, always follows the typical protocol design of sending data in one

direction and then receiving data from the opposite direction.

The largest contributor to Racket’s excessive communication times is the serialization costs of

the Racket primitive write. On Linux, serialization times are two orders of magnitude larger than

the time to write raw buffers. One solution would be to replace distributed place’s communication

subsystem with FFI calls to an external MPI library. This solution would bypass the expensive

write calls currently used in distributed places. Another viable solution would be to recognize

messages that are vectors of flonums and use a restricted-form of write that could write flonum

vectors as efficiently as raw buffers. Finally, it should be noted that using Racket’s write is

advantageous in cases where the message to be sent is a complex object graph instead of a simple

raw buffer.

69

Fortran Wall-clock Time
Integer Sort (IS) Conjugate Gradient (CG)

Processes

Se
co

nd
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S 1 2 3 4 5 6 7 8

Processes
Se

co
nd

s
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S 1 2 3 4 5 6 7 8

Total Time Compute Time Communication Time
Fortran Compute Wall-clock time

Integer Sort (IS) Conjugate Gradient (CG)

Processes

Se
co

nd
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S 1 2 3 4 5 6 7 8

Processes

Se
co

nd
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S 1 2 3 4 5 6 7 8

Figure 4.11: Fortran IS, CG, and MG class A results

70

Racket Wall-clock time
Integer Sort (IS) Conjugate Gradient (CG)

Processes

Se
co

nd
s

0
10
20
30
40
50
60
70
80
90

S 1 2 3 4 5 6 7 8

Processes
Se

co
nd

s
0
5
10
15
20
25
30
35
40
45
50
55

S 1 2 3 4 5 6 7 8

Total Time Compute Time Communication Time
Racket Compute Wall-clock time

Integer Sort (IS) Conjugate Gradient (CG)

Processes

Se
co

nd
s

0

2

4

6

8

10

12

14

S 1 2 3 4 5 6 7 8

Processes

Se
co

nd
s

0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
6.5

S 1 2 3 4 5 6 7 8

Figure 4.12: Racket IS, CG, and MG class A results

71

4.6 Distributed Places Complete API
Distributed places support programs whose computation may span physical machines. The

design relies on machine nodes that perform computation. The programmer configures a new

distributed system using a declarative syntax and callbacks. A node begins life with one initial

place: the message router. After a node has been configured, its message router is activated by

calling the message-router function. The message router listens on a TCP port for incoming

connections from other nodes in the distributed system. Places can be spawned within the node by

sending place-spawn request messages to the node’s message router.

The distributed places implementation relies on two assumptions:

• The user’s ".ssh/config" and ".ssh/authorized_keys" files are configured correctly

to allow passwordless connection to remote hosts via public key authentication.

• Distributed places does not support the specification of ssh usernames. If a nondefault ssh

username is required, the ".ssh/config" file should be used to specifiy the username.

• All machines run the same version of Racket. Futures versions of distributed places may use

the zo binary data format for serialization.

The following example, in Figure 4.13, illustrates a configuration and use of distributed places

that starts a new node on the current machine and passes it a "Hello World" string.

(message-router ec ...+) → void?
ec : (is-a?/c event-container<%>)

waits in an endless loop for one of many events to become ready. The message-router procedure

constructs a node% instance to serve as the message router for the node. The message-router

procedure then adds all the declared event-container<%>s to the node% and finally calls the

never ending loop sync-events method, which handles events for the node.

(spawn-node-with-place-at
hostname
instance-module-path
instance-place-function-name

[#:listen-port port
#:initial-message initial-message
#:racket-path racket-path
#:ssh-bin-path ssh-path
#:distributed-launch-path launcher-path
#:restart-on-exit restart-on-exit
#:named place-name
#:thunk thunk])

72

(module hello-world-example racket/base
(require racket/place/distributed

racket/place)

(provide hello-world)

(define (hello-world)
(place ch

(printf "hello-world received: ∼a\n" (place-channel-get ch))
(place-channel-put ch "Hello World\n")
(printf "hello-world sent: Hello World\n")))

(module+ main
; 1) spawns a node running at "localhost" and listenting on port
; 6344 for incomming connections.
; 2) connects to the node running at localhost:6344 and creates a
; place on that node by calling the hello-world procedure from
; the current module.
; 3) returns a remote-node% instance (node) and a
; remote-connection% instance (pl) for communicating with the
; new node and place
(define-values (node pl)

(spawn-node-supervise-place-at "localhost"
#:listen-port 6344
#:thunk #t
(quote-module-path "..")
’hello-world))

; starts a message router which adds three event-container<%>s to
; its list of events to handle: the node and two after-seconds
; event containers . Two seconds after the launch of the
; message-router, a message will be sent to the pl place. After
; six seconds, the program and all spawned nodes and places will
; terminate.
(message-router

node
(after-seconds 2
(*channel-put pl "Hello")
(printf "message-router received: ∼a\n" (*channel-get pl)))

(after-seconds 6
(exit 0)))))

Figure 4.13: Distributed Places "Hello World"

73

→ (is-a?/c remote-connection%)
hostname : string?
instance-module-path : module-path?
instance-place-function-name : symbol?
port : port-no? = DEFAULT-ROUTER-PORT
initial-message : any = #f
racket-path : string-path? = (racket-path)
ssh-path : string-path? = (ssh-bin-path)
launcher-path : string-path?

= (path->string distributed-launch-path)
restart-on-exit : any/c = #f
place-name : (or/c #f symbol?) = #f
thunk : (or/c #f #t) = #f

spawns a new remote node at hostname with one instance place specified by the instance-

module-path and instance-place-function-name. When thunk is #f, the place is created

as the result of the framework calling (dynamic-place instance-module-path instance-

place-function-name). in the new node. When thunk is #t, the instance-place-function-

name function should use dynamic-place or place to create and return an initial place in the

new node. When the place-name symbol is present, a named place is created. The place-name

symbol is used to establish later connections to the named place.

The result is a remote-node% instance, not a remote-connection%. Use get-first-place on

the result to obtain a remote-connection%.

The restart-on-exit argument can be #t to instruct the remote-connection% instance

to respawn the place on the remote node should it exit or terminate at any time. It can also be a

procedure of zero arguments to implement the restart procedure, or it can be an object that supports

a restart method that takes a place argument.

(spawn-node-supervise-place-at
hostname
instance-module-path
instance-place-function-name

[#:listen-port port
#:initial-message initial-message
#:racket-path racket-path
#:ssh-bin-path ssh-path
#:distributed-launch-path launcher-path
#:restart-on-exit restart-on-exit
#:named named
#:thunk thunk])

→ (is-a?/c remote-node%)
(is-a?/c remote-connection%)

74

hostname : string?
instance-module-path : module-path?
instance-place-function-name : symbol?
port : port-no? = DEFAULT-ROUTER-PORT
initial-message : any = #f
racket-path : string-path? = (racket-path)
ssh-path : string-path? = (ssh-bin-path)
launcher-path : string-path?

= (path->string distributed-launch-path)
restart-on-exit : any/c = #f
named : (or/c #f string?) = #f
thunk : (or/c #f #t) = #f

like spawn-node-with-dynamic-place-at, but the result is two values: the new remote-

node% and its remote-connection% instance.

(spawn-remote-racket-node
hostname

[#:listen-port port
#:racket-path racket-path
#:ssh-bin-path ssh-path
#:distributed-launch-path launcher-path]
#:use-current-ports use-current-ports)
→ (is-a?/c remote-node%)
hostname : string?
port : port-no? = DEFAULT-ROUTER-PORT
racket-path : string-path? = (racket-path)
ssh-path : string-path? = (ssh-bin-path)
launcher-path : string-path?

= (path->string distributed-launch-path)
use-current-ports : #f

spawns a new remote node at hostname and returns a remote-node% handle.

(create-place-node hostname
[#:listen-port port
#:racket-path racket-path
#:ssh-bin-path ssh-path
#:distributed-launch-path launcher-path
#:use-current-ports use-current-ports])

→ (is-a?/c remote-node%)
hostname : string?
port : port-no? = DEFAULT-ROUTER-PORT
racket-path : string-path? = (racket-path)
ssh-path : string-path? = (ssh-bin-path)
launcher-path : string-path?

= (path->string distributed-launch-path)

75

use-current-ports : boolean? = #t

like spawn-remote-racket-node, but the current-output-port and current-error-port

are used as the standard ports for the spawned process instead of new pipe ports.

(supervise-place-at remote-node
instance-module-path
instance-place-function-name

[#:restart-on-exit restart-on-exit
#:named named
#:thunk thunk])

→ (is-a?/c remote-connection%)
remote-node : (is-a?/c remote-node%)
instance-module-path : module-path?
instance-place-function-name : symbol?
restart-on-exit : any/c = #f
named : (or/c #f symbol?) = #f
thunk : (or/c #f #t) = #f

when thunk is #f, it creates a new place on remote-node by using dynamic-place to invoke

instance-place-function-name from the module instance-module-path. When thunk

is #t, it creates a new place at remote-node by executing the thunk exported as instance-

place-function-name from the module instance-module-path. The function should use

dynamic-place or place to create and return a place in the new node. When the place-name

symbol is present, a named place is created. The place-name symbol is used to establish later

connections to the named place.

(supervise-process-at hostname
commandline-argument ...+

[#:listen-port port])
→ (is-a?/c remote-process%)
hostname : string?
commandline-argument : string?
port : port-no? = DEFAULT-ROUTER-PORT

spawns an attached external process at host hostname.

(supervise-thread-at remote-node
instance-module-path
instance-thunk-function-name

[#:restart-on-exit restart-on-exit])
→ (is-a?/c remote-connection%)
remote-node : (is-a?/c remote-node%)
instance-module-path : module-path?
instance-thunk-function-name : symbol?
restart-on-exit : any/c = #f

76

creates a new thread on the remote-node by using dynamic-require to invoke instance-

place-function-name from the module instance-module-path.

(restart-every seconds
[#:retry retry
#:on-final-fail on-final-fail])

→ (is-a/c respawn-and-fire%)
seconds : (number?)
retry : (or/c number? #f) = #f
on-final-fail : (or/c #f (-> any/c)) = #f

returns a restarter% instance that should be supplied to a #:restart-on-exit argument.

(every-seconds seconds-expr body)

returns a respawn-and-fire% instance that should be supplied to a message-router. The

respawn-and-fire% instance executes bodys once every N seconds, where N is the result of

seconds-expr.

(after-seconds seconds-expr body)

returns a after-seconds% instance that should be supplied to a message-router. The after-

seconds% instance executes the bodys after a delay of N seconds from the start of the event loop,

where N is the result of seconds-expr.

(connect-to-named-place node name)
→ (is-a?/c remote-connection%)
node : (is-a?/c remote-node%)
name : symbol?

connects to a named place on the node named name and returns a remote-connection% object.

(log-message severity msg) → void?
severity : (or/c ’fatal ’error ’warning ’info ’debug)
msg : string?

logs a message at the root node.
event-container<%> : interface?

All objects that are supplied to the message-router must implement the event-container<%>

interface. The message-router calls the registermethod on each supplied event-container<%>

to obtain a list of events on which the event loop should wait.

(send an-event-container register events) → (listof events?)
events : (listof events?)

77

Returns the list of events inside the event-container<%> that should be waited on by the message-

router.

The following classes all implement event-container<%> and can be supplied to a message-

router: spawned-process%, place-socket-bridge%, node%, remote-node%, remote-

connection%, place% connection%, respawn-and-fire%, and after-seconds%.

spawned-process% : class?
superclass: object%
extends: event-container<%>

(send a-spawned-process get-pid) → exact-positive-integer?

(new spawned-process%
[cmdline-list cmdline-list]

[[parent parent]])
→ (is-a?/c spawned-process%)
cmdline-list : (listof (or/c string? path?))
parent : (is-a?/c remote-node%) = #f

The cmdline-list is a list of command line arguments of type string and/or path.

The parent argument is a remote-node% instance that will be notified when the process dies

via a (send parent process-died this) call.

place-socket-bridge% : class?
superclass: object%
extends: event-container<%>

(send a-place-socket-bridge get-sc-id)
→ exact-positive-integer?

(new place-socket-bridge%
[pch pch]
[sch sch]
[id id])

→ (is-a?/c place-socket-bridge%)
pch : place-channel?
sch : (is-a?/c socket-connection%)
id : exact-positive-integer?

The pch argument is a place-channel. Messages received on pch are forwarded to the socket-

connection% sch via a dcgm message, e.g., (sconn-write-flush sch (dcgm DCGM-TYPE-

INTER-DCHANNEL id id msg)). The id is an exact-positive-integer that identifies the

socket-connection subchannel for this internode place connection.

78

socket-connection% : class?
superclass: object%
extends: event-container<%>

(new socket-connection%
[[host host]
[port port]
[retry-times retry-times]
[delay delay]
[background-connect? background-connect?]
[in in]
[out out]
[remote-node remote-node]])

→ (is-a?/c socket-connection%)
host : (or/c string? #f) = #f
port : (or/c port-no? #f) = #f
retry-times : exact-nonnegative-integer? = 30
delay : number? = 1
background-connect? : any/c = #f
in : (or/c input-port? #f) = #f
out : (or/c output-port #f) = #f
remote-node : (or/c (is-a?/c remote-node%) #f) = #f

When a host and port are supplied, a new tcp connection is established. If a input-port? and

output-port? are supplied as in and out, the ports are used as a connection to the remote host.

The retry-times argument specifies how many times to retry the connection attempt should it

fail to connect and defaults to 30 retry attempts. Often a remote node is still booting up when a

connection is attempted and the connection needs to be retried several times. The delay argument

specifies how many seconds to wait between retry attempts. The background-connect? argu-

ment defaults to #t and specifies that the constructor should retry immediately and that connection

establishment should occur in the background. Finally, the remote-node argument specifies the

remote-node% instance that should be notified should the connection fail.

node% : class?
superclass: object%
extends: event-container<%>

The node% instance controls a distributed places node. It launches places and routes internode place

messages in the distributed system. The message-router form constructs a node% instance under

the hood. Newly spawned nodes also have a node% instance in their initial place that serves as the

node’s message router.

(new node% [[listen-port listen-port]]) → (is-a?/c node%)
listen-port : tcp-listen-port? = #f

79

constructs a node% that will listen on listen-port for internode connections.

(send a-node sync-events) → void?

starts the never ending event loop for this distributed places node.

remote-node% : class?
superclass: object%
extends: event-container<%>

The node% instance controls a distributed places node. It launches compute places and routes intern-

ode place messages in the distributed system. This is the remote api to a distributed places node. In-

stances of remote-node% are returned by spawn-remote-racket-node, spawn-node-supervise-

dynamic-place-at, and spawn-node-supervise-place-thunk-at.

(new remote-node%
[[listen-port listen-port]
[restart-on-exit restart-on-exit]])

→ (is-a?/c remote-node%)
listen-port : tcp-listen-port? = #f
restart-on-exit : any/c = #f

constructs a node% that will listen on listen-port for internode connections.

When set to true, the restart-on-exit parameter causes the specified node to be restarted

when the ssh session spawning the node dies.

(send a-remote-node get-first-place)
→ (is-a?/c remote-connection%)

returns the remote-connection% object instance for the first place spawned on this node.

(send a-remote-node get-first-place-channel) → place-channel?

returns the communication channel for the first place spawned on this node.

(send a-remote-node get-log-prefix) → string?

returns (format "PLACE ∼a:∼a" host-name listen-port)

(send a-remote-node launch-place
place-exec

[#:restart-on-exit restart-on-exit
#:one-sided-place? one-sided-place?])
→ (is-a?/c remote-connection%)
place-exec : list?
restart-on-exit : any/c = #f
one-sided-place? : any/c = #f

80

launches a place on the remote node represented by this remote-node% instance.

The place-exec argument describes how the remote place should be launched, and it should

have one of the following shapes:

• (list ’place place-module-path place-thunk)

• (list ’dynamic-place place-module-path place-func)

The difference between these two launching methods is that the ’place version of place-exec

expects a thunk to be exported by the module place-module-path. Executing the thunk is

expected to create a new place and return a place descriptor to the newly created place. The

’dynamic-place version of place-exec expects place-func to be a function taking a single

argument, the initial channel argument, and calls dynamic-place on behalf of the user and creates

the new place from the place-module-path and place-func.

The restart-on-exit argument is treated in the same way as for spawn-node-with-dynamic-

place-at.

The one-sided-place? argument is an internal use argument for launching remote places

from within a place using the old design pattern.

(send a-remote-node remote-connect name) → remote-connection%
name : string?

connects to a named place on the remote node represented by this remote-node% instance.

(send a-remote-node send-exit) → void?

sends a message instructing the remote node represented by this remote-node% instance to exit

immediately.

(node-send-exit remote-node%) → void?
remote-node% : node

sends node a message telling it to exit immediately.

(node-get-first-place remote-node%)
→ (is-a?/c remote-connection%)
remote-node% : node

returns the remote-connection% instance of the first place spawned at this node.

(distributed-place-wait remote-connection%) → void?
remote-connection% : place

81

waits for place to terminate.
remote-connection% : class?

superclass: object%
extends: event-container<%>

The remote-connection% instance provides a remote api to a place running on a remote dis-

tributed places node. It launches a places or connects to a named place and routes internode place

messages to the remote place.

(new remote-connection%
[node node]
[place-exec place-exec]
[name name]
[restart-on-exit restart-on-exit]
[one-sided-place? one-sided-place?]
[on-channel on-channel])

→ (is-a?/c remote-connection%)
node : (is-a?/c remote-node%)
place-exec : list?
name : string?
restart-on-exit : #f
one-sided-place? : #f
on-channel : #f

constructs a remote-connection% instance. The place-exec argument describes how the re-

mote place should be launched in the same way as for launch-place in remote-node%. The

restart-on-exit argument is treated in the same way as for spawn-node-with-dynamic-

place-at.

The one-sided-place? argument is an internal use argument for launching remote places

from within a place using the old design pattern.

See set-on-channel! for description of the on-channel argument.

(send a-remote-connection set-on-channel! callback) → void?
callback : (-> channel msg void?)

installs a handler function that handles messages from the remote place. The setup/distributed-

docs module uses this callback to handle job completion messages.

place% : class?
superclass: object%
extends: event-container<%>

The place% instance represents a place launched on a distributed places node at that node. It

launches a compute places and routes internode place messages to the place.

82

(new place%
[node node]
[place-exec place-exec]
[ch-id ch-id]
[sc sc]

[[on-place-dead on-place-dead]]) → (is-a?/c place%)
node : (is-a?/c remote-connection%)
place-exec : list?
ch-id : exact-positive-integer?
sc : (is-a?/c socket-connection%)
on-place-dead : (-> event void?) = default-on-place-dead

constructs a remote-connection% instance. The place-exec argument describes how the re-

mote place should be launched in the same way as for launch-place in remote-node%. The ch-id

and sc arguments are internally used to establish routing between the remote node spawning this

place and the place itself. The on-place-dead callback handles the event when the newly spawned

place terminates.

(send a-place wait-for-die) → void?

blocks and waits for the subprocess representing the remote-node% to exit.

connection% : class?
superclass: object%
extends: event-container<%>

The connection% instance represents a connection to a named-place instance running on the

current node. It routes internode place messages to the named place.

(new connection%
[node node]
[name name]
[ch-id ch-id]
[sc sc]) → (is-a?/c connection%)

node : (is-a?/c remote-node%)
name : string?
ch-id : exact-positive-integer?
sc : (is-a?/c socket-connection%)

constructs a remote-connection% instance. The place-exec argument describes how the re-

mote place should be launched in the same way as for launch-place in remote-node%. The

ch-id and sc arguments are internally used to establish routing between the remote node and

this named-place.

83

respawn-and-fire% : class?
superclass: object%
extends: event-container<%>

The respawn-and-fire% instance represents a thunk that should execute every n seconds.

(new respawn-and-fire%
[seconds seconds]
[thunk thunk])

→ (is-a?/c respawn-and-fire%)
seconds : (and/c real? (not/c negative?))
thunk : (-> void?)

constructs a respawn-and-fire% instance that when placed inside a message-router construct

causes the supplied thunk to execute every n seconds.

after-seconds% : class?
superclass: object%
extends: event-container<%>

The after-seconds% instance represents a thunk that should execute after n seconds.

(new after-seconds%
[seconds seconds]
[thunk thunk])

→ (is-a?/c after-seconds%)
seconds : (and/c real? (not/c negative?))
thunk : (-> void?)

constructs an after-seconds% instance that when placed inside a message-router construct

causes the supplied thunk to execute after n seconds.

restarter% : class?
superclass: after-seconds%
extends: event-container<%>

The restarter% instance represents a restart strategy.

(new restarter%
[seconds seconds]

[[retry retry]
[on-final-fail on-final-fail]])

→ (is-a?/c restarter%)
seconds : number?
retry : (or/c number? #f) = #f
on-final-fail : (or/c #f (-> any/c)) = #f

84

constructs a restarter% instance that when supplied to a #:restart-on-exit argument, at-

tempts to restart the process every seconds. The retry argument specifies how many times to

attempt to restart the process before giving up. If the process stays alive for (* 2 seconds), the

attempted retries count is reset to 0. The on-final-fail thunk is called when the number of

retries is exceeded

distributed-launch-path : path?

contains the local path to the distributed places launcher. The distributed places launcher is the

bootsrap file that launches the message router on a new node.

(ssh-bin-path) → string?

returns the path to the ssh binary on the local system in string form.

Example:

> (ssh-bin-path)

#<path:/usr/bin/ssh>

(racket-path) → path?

returns the path to the currently executing Racket binary on the local system.

(build-distributed-launch-path collects-path) → string?
collects-path : path-string?

returns the path to the distributed places launch file. The function can take an optional argument

specifying the path to the collects directory.

(spawn-node-at hostname
[#:listen-port port
#:racket-path racket-path
#:ssh-bin-path ssh-path
#:distributed-launch-path launcher-path])

→ channel?
hostname : string?
port : port-no? = DEFAULT-ROUTER-PORT
racket-path : string-path? = (racket-path)
ssh-path : string-path? = (ssh-bin-path)
launcher-path : string-path?

= (path->string distributed-launch-path)

85

spawns a node in the background using a Racket thread and returns a channel that becomes ready

with a remote-node% once the node has spawned successfully

(spawn-nodes/join nodes-descs) → void?
nodes-descs : list?

spawns a list of nodes by calling (lambda (x) (apply keyword-apply spawn-node-at x))

for each node description in nodes-descs and then waits for each node to spawn.

(*channel-put ch msg) → void?

ch :
(or/c place-channel? async-bi-channel?

channel? (is-a?/c remote-connection%))
msg : any

sends msg over ch channel.

(*channel-get ch) → any

ch :
(or/c place-channel? async-bi-channel?

channel? (is-a?/c remote-connection%))

returns a message received on ch channel.

(*channel? v) → boolean?
v : any/c

returns #t if v is one of place-channel?, async-bi-channel?, channel?, or (is-a?/c

remote-connection%).

(send-new-place-channel-to-named-dest ch
src-id
dest-list)

→ place-channel?
ch : *channel?
src-id : any
dest-list : (listof string? port-no? string?)

creates and returns a new place channel connection to a named place at dest-list. The dest-

list argument is a list of a remote-hostname remote-port and named-place name. The channel ch

should be a connection to a message-router.

(mr-spawn-remote-node mrch
host

[#:listen-port listen-port
#:solo solo]) → void?

mrch : *channel?
host : string?
listen-port : port-no? = DEFAULT-ROUTER-PORT
solo : boolean? = #f

86

sends a message to a message router over mrch channel asking the message router to spawn a new

node at host listening on port listen-port. If the #:solo keyword argument is supplied, the

new node is not folded into the complete network with other nodes in the distributed system.

(mr-supervise-named-dynamic-place-at mrch
dest
name
path
func) → void?

mrch : *channel?
dest : (listof string? port-no?)
name : string?
path : string?
func : symbol?

sends a message to a message router over mrch channel asking the message router to spawn a named

place at dest named name. The place is spawned at the remote node by calling a dynamic place with

module-path path and function func. The dest parameter should be a list of remote-hostname

and remote-port.

(mr-connect-to mrch dest name) → void?
mrch : *channel?
dest : (listof string? port-no?)
name : string?

sends a message to a message router over mrch channel asking the message router to create a new

connection to the named place named name at dest. The dest parameter should be a list of

remote-hostname and remote-port.

(start-message-router/thread [#:listen-port listen-port
#:nodes nodes])

→ thread? channel?
listen-port : port-no? = DEFAULT-ROUTER-PORT
nodes : list? = null

starts a message router in a Racket thread connected to nodes, listening on port listen-port, and

returns a channel? connection to the message router.

(port-no? no) → boolean?
no : (and/c exact-nonnegative-integer? (integer-in 0 65535))

returns #t if no is an exact-nonnegative-integer? between 0 and 65535.

DEFAULT-ROUTER-PORT : port-no?

87

the default port for a distributed places message router.
named-place-typed-channel% : class?

superclass: object%

(new named-place-typed-channel% [ch ch])
→ (is-a?/c named-place-typed-channel%)
ch : place-channel?

The ch argument is a place-channel.

(send a-named-place-typed-channel get type) → any
type : symbol?

returns the first message received on ch that has the type type. Messages are lists and their type is

the first item of the list, which should be a symbol?. Messages of other types that are received are

queued for later get requests.

(tc-get type ch) → void?
type : symbol?
ch : place-channel?

gets a message of type type from the named-place-typed-channel% ch.

(write-flush datum port) → void?
datum : any
port : port?

writes datum to port and then flushes port.

(printf/f format args ...) → void?
format : string?
args : any

calls printf followed by a call to flush-output.

(displayln/f item) → void?
item : any

calls displayln followed by a call to flush-output.

Example:

> (write-flush "Hello World" (current-output-port))

"Hello World"

88

4.7 Conclusion
Building distributed places as a language extension allows the compact and clean construction

of higher-level abstractions such as RPC, MPI, map reduce, and nested data parallelism. Distributed

places programs are more compact and easier to write than traditional C MPI programs. A Racket

MPI implementation of parallel k-means was written with distributed places using less than half

the lines of code of the original C and MPI version. With distributed places, messages can be

heterogeneous and serialization is handled automatically by the language.

In addition to distributed parallel computing, Racket has many features that make it a great

coordination and control language. Rackets provides a rich FFI (foreign function interface) for

invoking legacy C code. Racket also includes extensive process exec capabilities for launching

external programs and communicating with them over standard IO pipes. Racket’s FFI, process

exec capabilities, and distributed places gives programmers a powerful distributed coordination and

workflow language.

With distributed places, programmers can quickly develop parallel and distributed solutions

to everyday problems. Developers can also build new distributed computing frameworks using

distributed places as a common foundation. Distributed places extension of places augments the

Racket programmer’s toolbox and provides a road map other language implementers to follow.

CHAPTER 5

FUTURE WORK

The places and distributed places features of Racket empowers programmers to utilize multi-

core chips and distributed machines. The places design also provides a roadmp language designers

can follow to add parallelism to existing, dynamic languages that were primarily created to express

sequential programs.

Places are essentially copies of the Racket VM, all running within the same operating system

process. Early in the development of places, the initial plan was to enable sharing among places of

read-only resources such as module definitions, byte code, and jitted code. Because these objects

would be shared between places, they would have to be allocated from the master GC realm. Master

GC allocations, however, trigger master GC collections, which require synchronized collection

across all places. In a space-time tradeoff, the decision was made to consume space with duplicate

module definitions, byte code, and jitted code. The alternative was to consume time with more

frequent master GC collections. Future work should examine what could be done to make collection

of the master GC realm more efficient. Future work should also further explore the space-time

tradeoff of resource sharing vs master GC collection.

Another possible area of future work is the construction of application specific APIs for building

object graphs in the shared, master GC realm. Such APIs would have to ensure that references

are not constructed from the master GC realm to place local objects. Such references violate the

invariant that allows places to independently collect their local heaps. The key would be to enforce

copy semantics whenever a place-local object is attached to the master GC object graph. There are

plenty of parallel graph algorithms that could benefit from such a shared-object graph API.

Future work should add support for serialized closures in place channel messages. In Racket,

closures are implemented in the C runtime of the language. Traversing and serializing a closed

over object graph in C requires a significant amount of engineering work. Closures do not report

their total size and communication costs. The total cost of closure serialization is not known until a

serialization attempt is complete. A closure may close over a significant portion of the heap or even

90

the entire heap, making serialization prohibitively expensive. Introspection and memory accounting

of closure sizes may be an interesting future topic of research.

There are many objects types which are not serializable. Workarounds for these unserializable

types need to be designed and implemented. For file port objects, a workaround may be to proxy

the object across place channels. Other objects, such as continuations, represent more difficult

workaround problems that future reseach should address. Some objects may best serialize to a

serialization-not-possible marker. Finally, remaining failures to serialize may best be represented as

an exception.

Finally, distributed places could be improved to automatically deploy the Racket runtime on new

remote nodes. This improvement would free users from having to ensure that Racket is installed

on remote nodes before launching remote places. Distributed places could also be modified to load

module byte code over place channels from parent places. This modification would alleviate the

user from being responsible for distributing code to remote nodes.

CHAPTER 6

CONCLUSION

Places and Distributed Places demonstrate that existing dynamic-language virtual machines,

such as Racket, can be transformed into effective parallel and distributed computing platforms by

adding core parallel primitives. Dynamic-language virtual machines have evolved over tens of years

into large sequential programs with lots of state mutation. The obvious parallelization technique,

adding shared-memory threads and locks, fails to safely parallelize these virtual machines.

The places’ design specifies the separation of the virtual machine’s shared state into isolated

place-local copies. Each place is an instance of the Racket VM with its own private set of place-local

variables. All places spawned by a Racket process are represented as window threads or pthreads

inside the same OS process. Since places share a common address space inside the same OS process,

message passing is as simple as copying the message contents and assigning ownership of the newly

copied message to the destination place.

The places’ programming model does not allow memory references to be shared between places.

This invariant permits each place to garbage collect its memory independently of other running

places. The Racket garbage collector had to be modified to accommodate places. While the quantity

of modifications was significant, modifying the existing garbage collector was much easier than the

alternative of writing a new garbage collector specifically for places.

Distributed places augments the syntax and implementation of places to enable spawning of

Racket processes and places on remote machines. Once a distributed place is created, the usage

of the new distributed place is no different than a local Racket place. Place channel messages are

transparently sent across TCP sockets to remote distributed places without any intervention by the

programmer.

The abstraction power of programming language extension enables the construction of a variety

of parallel constructs on the foundation of places’ and distributed places’ primitives. MPI-like

frameworks have been built for both places and distributed places. Example implementations of

RPC, map reduce, and nested data parallelism exist for distributed places.

92

Places and distributed places enlarge the Racket programmer’s toolbox with parallel and dis-

tributed programming capabilities. Places and distributed places provide a core set of parallel

primitives that serve as a foundation for higher-level frameworks to build on. Finally, places and

distributed places provide a strategy for adding parallelism and distributed processing to existing

dynamic language runtimes.

REFERENCES
[1] Apache Software Foundation. Hadoop. , 2012. http://hadoop.apache.org

[2] Godmar Back. Isolation, Resource Management and Sharing in the KaffeOS Java Runtime
System. PhD dissertation, University of Utah, 2002.

[3] Godmar Back and Wilson C. Hsieh. The KaffeOS Java Runtime System. ACM Transactions
on Programming Languages and Systems (TOPLAS), 2005. http://doi.acm.org/10.
1145/1075382.1075383

[4] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS Parallel Benchmarks. NAS
Technical Report RNR-91-002, 1991.

[5] David Beazley. Understanding the Python GIL. PyCon 2010, 2010.

[6] Artur Bergman. threads::shared. http://perldoc.perl.org/threads/shared.html, 2012. http:
//perldoc.perl.org/threads/shared.html

[7] Artur Bergman. threads. http://perldoc.perl.org/threads.html, 2012. http://perldoc.
perl.org/threads.html

[8] Guy E. Blelloch. Programming Parallel Algorithms. Communications of the ACM, 1996.

[9] Henry Cejtin, Suresh Jagannathan, and Richard Kelsey. Higher-Order Distributed Objects.
ACM Transactions on Programming Languages and Systems (TOPLAS), 1995.

[10] Phillippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra,
Kemal Ebcioglu, Christoph von Praun, and Vivek Sarker. X10: An Object-Oriented Approach
to Non-Uniform Cluster Computing. In Proc. ACM Intl. Conf. on Object-Oriented Program-
ming, Systems, Languages, and Applications, 2005.

[11] Nicholas Clark. Thread. http://search.cpan.org/∼nwclark/perl-5.8.9/lib/Thread.pm, 2012.
http://search.cpan.org/~nwclark/perl-5.8.9/lib/Thread.pm

[12] Katherine E. Coons, Sebastian Burckhardt, and Madanlal Musuvathi. GAMBIT: Effective
Unit Testing for Concurrency Libraries. In Proc. ACM Symp. Principles and Practice of
Parallel Programming, 2010.

http://hadoop.apache.org
http://doi.acm.org/10.1145/1075382.1075383
http://doi.acm.org/10.1145/1075382.1075383
http://perldoc.perl.org/threads/shared.html
http://perldoc.perl.org/threads/shared.html
http://perldoc.perl.org/threads.html
http://perldoc.perl.org/threads.html
http://search.cpan.org/~nwclark/perl-5.8.9/lib/Thread.pm

94

[13] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. OSDI’04: Sixth Symposium on Operating System Design and Implementation,
2004.

[14] Damien Doligez and Xavier Leroy. A Concurrent, Generational Garbage Collector for a
Multithreaded Implementation of ML. In Proc. ACM Symp. Principles of Programming
Languages, 1993.

[15] Jeff Epstein, Andrew P. Black, and Simon Peyton-Jones. Haskell for the Cloud. In Proceed-
ings of the 4th ACM symposium on Haskell (Haskell ’11), 2011.

[16] Jeffrey Epstein. Functional programming for the data centre. MS thesis, University of
Cambridge, 2011.

[17] Matthew Flatt and Robert Bruce Findler. Kill-Safe Synchronization Abstractions. In Proc.
ACM Conf. Programming Language Design and Implementation, 2004.

[18] Matthew Flatt, Robert Bruce Findler, Shriram Krishnamurthi, and Matthias Felleisen. Pro-
gramming Languages as Operating Systems (or, Revenge of the Son of the Lisp Machine). In
Proc. ACM Intl. Conf. Functional Programming, 1999.

[19] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Implicitly-threaded parallelism
in Manticore. In Proc. ACM Intl. Conf. Functional Programming, 2008.

[20] Matthew Fuchs. Dreme: for Life in the Net. PhD dissertation, New York University, 1995.

[21] Guillaume Germain, Marc Feeley, and Stefan Monnier. Concurrency Oriented Programming
in Termite Scheme. In Proc. Scheme and Functional Programming, 2006.

[22] Guy E. Blelloch, Jonathan C. Hardwick, Siddhartha Chatterjee, Jay Sipelstein, and Marco
Zagha. Implementation of a portable nested data-parallel lang. In Proceedings of the fourth
ACM SIGPLAN symposium on Principles and practice of parallel programming (PPOPP ’93),
1993.

[23] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Architectural Support for
Lock-free Data Structures. In Proceedings of the 20th Annual International Symposium on
Computer Architecture, 1993.

[24] Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular ACTOR Formalism for
Artificial Intelligence. In Proceedings of the 3rd International Joint Conference on Artificial
Intelligence (IJCAI’73), 1973.

95

[25] P. Hilfinger, D. Bonachea, K. Datta, D. Gay, S. Graham, B. Liblit, G. Pike, J. Su, and K.
Yelick. Titanium Language Reference Manual. U.C. Berkeley Tech Report UCB/EECS-2005-
15, 2005.

[26] Michael Isard, Mihai Budiur, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: Dis-
tributed Data-Parallel Programs from Sequential Building Blocks. European Conference on
Computer Systems (EuroSys), 2007.

[27] Patrick Maier, Phil Trinder, and Has-Wolgang Loidl. High-level Distributed-Memory Parallel
Haskell in Haskell. Symposium on Implementation and Application of Functional Languages,
2011.

[28] Simon Marlow, Tim Harris, Roshan P. James, and Simon Peyton Jones. Parallel Generational-
copying Garbage Collection with a Block-structured Heap. In Proc. Intl. Symp. on Memory
Management, 2008.

[29] Simon Marlow, Simon Peyton Jones, and Satnam Singh. Runtime Support for Multicore
haskell. In Proc. ACM Intl. Conf. Functional Programming, 2009.

[30] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface.
http://www.mpi-forum.org/docs/mpi2-report.pdf, 2003. http://www.mpi-forum.org/
docs/mpi2-report.pdf

[31] MPICH. MPICH. http://www.mcs.anl.gov/mpich2, 2013.

[32] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL: Intermedi-
ate Language and Tools for Analysis and Transformation of C Programs. In Proc. Intl. Conf.
Compiler Construction, pp. 213–228, 2002.

[33] OpenMP Architecture Review Board. OpenMP Application Program Interface Version 3.0. ,
2008.

[34] Python Software Foundation. Python design note on threads.
http://www.python.org/doc/faq/library/#can-t-we-get-rid-of-the-global-interpreter-lock,
2008.

[35] Python Software Foundation. multiprocessing — Process-based “threading” interface.
http://docs.python.org/release/2.6.6/library/multiprocessing.html#module-multiprocessing,
2011.

[36] Ravi Rajwar and James R. Goodman. Transactional Lock-Free Execution of Lock-Based
Programs. Proceedings of the Tenth Symposium on Architectural Support for Programming
Languages and Operating Systems, 2002.

http://www.mpi-forum.org/docs/mpi2-report.pdf
http://www.mpi-forum.org/docs/mpi2-report.pdf

96

[37] John H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.

[38] Harvey Richardson. High Performance Fortran: History, Overview and Current Develop-
ments. Thinking Machines Corporation TMC-261, 1996.

[39] M. C. Rinard and M. S. Lam. The Design, Implementation, and Evaluation of Jade. ACM
Transactions on Programming Languages and Systems 20(1), pp. 1–63, 1998.

[40] Konstantinos Sagonas and Jesper Wilhelmsson. Efficient Memory Management for Con-
current Programs that use Message Passing. Science of Computer Programming 62(2), pp.
98–121, 2006.

[41] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson.
Eraser: A Dynamic Data Race Detector for Multithreaded Programs. Transactions on Com-
puter Systems 15(4), pp. 391–411, 1997.

[42] Werner Schuster. Future of the Threading and Garbage Collection in Ruby
- Interview with Koichi SasadaThread State and the Global Interpreter Lock.
http://www.infoq.com/news/2009/07/future-ruby-gc-gvl-gil, 2009.

[43] Alex Schwendner. Distributed Functional Programming in Scheme. MS thesis, Mas-
sachusetts Institute of Technology, 2010. http://groups.csail.mit.edu/commit/
papers/2010/alexrs-meng-thesis.pdf

[44] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen.
x86-TSO: A Rigorous and Usable Programmer’s Model for x86 Multiprocessors. Communi-
cations of the ACM 53(7), pp. 89–97, 2010.

[45] James Swaine, Kevin Tew, Peter Dinda, Robert Bruce Findler, and Matthew Flatt. Back to the
futures: Incremental Parallelization of Existing Sequential Runtime Systems. In Proc. ACM
Intl. Conf. on Object-Oriented Programming, Systems, Languages, and Applications, 2010.

[46] Unladen Swallow. Unladen Swallow: A faster implementation of Python.
http://code.google.com/p/unladen-swallow/, 2010.

[47] Kevin Tew, James Swaine, Matthew Flatt, Robert Bruce Findler, and Peter Dinda. Places:
Adding Message-Passing Parallelism to Racket. Dynamic Language Symposium 2011, 2011.

[48] Typesafe Inc. Akka. http://akka.io, 2012.

[49] UPC Languge Specification v1.2. Technical Report LBNL-59208, Berkley National Lab,
2005.

http://groups.csail.mit.edu/commit/papers/2010/alexrs-meng-thesis.pdf
http://groups.csail.mit.edu/commit/papers/2010/alexrs-meng-thesis.pdf

97

[50] Adam Wick and Matthew Flatt. Memory Accounting without Partitions. In Proc. Intl. Symp.
on Memory Management, 2004.

[51] Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik Datta, Jason Duell,
Susan L. Graham, Paul Hargrove, Paul Hilfinger, Parry Husbands, Costin Iancu, Amir Kamil,
Rajesh Nishtala, Jimmy Su, Michael Welcome, and Tong Wen. Productivity and Performance
using Partitioned Global Address Space Languages. In Proceedings of the 2007 International
Workshop on Parallel Symbolic Computation (PASCO ’07). ACM, 2007.

	Abstract
	LIST OF FIGURES
	Acknowledgments
	CHAPTERS
	1. =10000=10000=0Introduction
	-22pt
	1.1 Statement of Problem
	1.2 Thesis Statement
	1.3 Context of Work
	1.3.1 Method

	1.4 Contributions

	2. =10000=10000=0Related Work
	-22pt
	2.1 Languages with Parallelism
	2.1.1 Racket's futures
	2.1.2 Concurrent Caml Light
	2.1.3 Erlang
	2.1.4 Haskell
	2.1.5 Manticore
	2.1.6 Matlab
	2.1.7 Python's multiprocessing library
	2.1.8 Python and Ruby
	2.1.9 Perl
	2.1.10 NESL
	2.1.11 OpenMP
	2.1.12 KaffeOS

	2.2 Hybrid Parallelism Languages
	2.2.1 Partitioned Global Address Space (PGAS)
	2.2.2 X10
	2.2.3 High-Performance Fortran

	2.3 Languages with Distributed Parallelism
	2.3.1 Erlang
	2.3.2 MapReduce
	2.3.3 Termite
	2.3.4 Akka
	2.3.5 Kali
	2.3.6 Distributed Functional Programming in Scheme (DFPS)
	2.3.7 Cloud Haskell
	2.3.8 High-level Distributed-Memory Parallel Haskell (HdpH)
	2.3.9 Dryad
	2.3.10 Jade
	2.3.11 Dreme

	2.4 Transactional Memory

	3. =10000=10000=0Places
	-22pt
	3.1 Introduction
	3.2 Design Overview
	3.3 Places API
	3.4 Design Evaluation
	3.4.1 Parallel Build
	3.4.2 Higher-level Constructs
	3.4.2.1 CGfor
	3.4.2.2 CGpipeline

	3.4.3 Shared Memory

	3.5 Implementing Places
	3.5.1 Threads and Global Variables
	3.5.2 Thread-Local Variables
	3.5.3 Garbage Collection
	3.5.4 Place Channels
	3.5.5 OS Page-Table Locks
	3.5.6 Overlooked Cases and Mistakes
	3.5.7 Overall: Harder than it Sounds, Easier than Locks

	3.6 Places Complete API
	3.7 Performance Evaluation
	3.8 Conclusion

	4. =10000=10000=0Distributed Places
	-22pt
	4.1 Introduction
	4.2 Design
	4.3 Higher-Level APIs
	4.3.1 RPC via Named Places
	4.3.2 Racket Message Passing Interface
	4.3.3 Map Reduce
	4.3.4 Nested Data Parallelism

	4.4 Implementation
	4.5 Distributed Places Performance
	4.6 Distributed Places Complete API
	4.7 Conclusion

	5. =10000=10000=0Future Work
	-22pt
	6. =10000=10000=0Conclusion
	-22pt
	REFERENCES

