
COMPILE-TIME INFORMATION IN

SOFTWARE COMPONENTS

by

Scott Owens

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

May 2007



Copyright c© Scott Owens 2007

All Rights Reserved



THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

Scott Owens

This dissertation has been read by each member of the following supervisory committee
and by majority vote has been found to be satisfactory.

Co-chair: Matthew Flatt

Co-chair: Konrad Slind

Gary Lindstrom

John Regehr

Shriram Krishnamurthi



THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the dissertation of Scott Owens in its final form and have found that (1) its
format, citations, and bibliographic style are consistent and acceptable; (2) its illustrative
materials including figures, tables, and charts are in place; and (3) the final manuscript is
satisfactory to the Supervisory Committee and is ready for submission to The Graduate
School.

Date Matthew Flatt
Co-chair, Supervisory Committee

Date Konrad Slind
Co-chair, Supervisory Committee

Approved for the Major Department

Martin Berzins
Chair/Dean

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School



ABSTRACT

Component programming techniques help programmers manage the intrinsic complex-

ity of large software systems by supporting their modular construction from collections

of smaller, independent pieces. Each component presents to the other components an

abstraction of its functionality with an explicitly specified interface. This dissertation

presents two component systems based on the unit model of components, and it demon-

strates how both systems support flexible placement of component-based abstraction

boundaries by allowing component authors to specify compile-time information in inter-

face specifications. It also emphasizes the importance of supporting a simple module

system, alongside the component system, for the management of source-code namespaces

and compilation.

The first component system is embedded in a model of an ML-like typed functional

programming language that includes a Haskell-style module construct. I formalize a

type system that supports more flexible specification of type imports and exports than

previous unit models in similar settings. These specifications are similar to those found

in the imports and exports of ML’s functors, and I investigate the connections between

units and functors, showing formally how a simplified model of functors can be translated

into the component system.

The second component system is for languages that can be extended through the

use of macros, and I describe its implementation for the PLT Scheme dialect of the

Scheme programming language. By allowing definitions of macros to appear inside of

component interface definitions, I preserve both compile-time expansion of macros and

component independence while allowing different components to encapsulate features that

share compile-time information. To accommodate new forms of compile-time information

that can accompany new language extensions, the specification language for component

interfaces can itself be extended with macros.



To all of my teachers, starting with my parents



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTERS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Component Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Component Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Units and Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Unit Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3 Units in a Typed Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.4 Units in an Extensible Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Contributions and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Related Module Systems and Component Systems . . . . . . . . . . . . . . . . . . . 9
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2. UNITS AND MODULES IN A TYPED LANGUAGE . . . . . . . . . . . . 14

2.1 Modules and Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.3 Other Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Expressiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Structures and Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Diamond Imports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Translating Structures and Functors . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.3 Cyclic Linking Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.3.1 Avoiding double vision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.3.2 Bootstrapped heap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.3.3 Independent compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Toward a Practical Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3. THE FORMAL SEMANTICS OF TYPED UNITS . . . . . . . . . . . . . . . . 51

3.1 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.1 Path Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1.2 Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



3.1.3 Type Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.4 Type System Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.1 Operational Semantics Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Type Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.1 Context Function Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.2 Lookup Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3.3 Progress Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.4 Preservation Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3.5 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4. UNITS AND MODULES IN AN EXTENSIBLE LANGUAGE . . . . . 90

4.1 Modules and Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.1.1 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1.2 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.1.3 Compilation Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3 Compile-time Values in Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.1 Nominal Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4 The Extensible Signature Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5.1 Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5.2 Parameterized Language Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.5.3 Infix Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.6 Contributions and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5. A PRACTICAL UNIT SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1 Initialization Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.1.1 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.1.2 Units and Value Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 Link Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2.1 Relationship with Type Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Structural Signature Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.3.1 Convenience Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6. IMPLEMENTATION AND EXPERIENCE . . . . . . . . . . . . . . . . . . . . . . 130

6.1 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.2 Signature Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3 Signature Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.4 First-Order Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.5 Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

APPENDIX: UNIT GRAMMAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

vii



LIST OF TABLES
1.1 Module systems overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Glossary for the structure and functor type system . . . . . . . . . . . . . . . . . . . 30

2.2 Glossary for the structure and functor to module and unit translation . . . . 38

3.1 Glossary for the module and unit type system . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Glossary for the module and unit operational semantics . . . . . . . . . . . . . . . . 65

4.1 Compile-time error checking for units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Compound unit sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



ACKNOWLEDGEMENTS

I thank my advisors Matthew Flatt and Konrad Slind for their advice and encourage-

ment during the creation of this dissertation, and also for their dedication in helping me

arrive at this topic alongside their tolerance as I explored many other potential research

areas (e.g., mechanized theorem proving). I also greatly appreciate their efforts in securing

funding for my research.

I thank my entire committee for their time and comments, and also for making it far

easier for me to schedule the various meetings and defense than fabled.

I am grateful for the efforts of the PLT Scheme team in creating mzscheme and

DrScheme, which has inspired and facilitated much of my research. I also thank Ryan

Culpepper, my collaborator on the GPCE 2005 paper that was a precursor to the fourth

chapter of this document.

I’m especially grateful to my wife Kathy for always being ready to listen when I needed

to talk through a rough part of this document.

Lastly, thank you to the owners, staff and patrons of Game Night Games in Salt Lake

for all the fun we had when I would take a break from creating this document.



CHAPTER 1

INTRODUCTION

While working on a large program, a programmer should ideally implement, maintain,

and reason about only small pieces of it at a time. To allow the programmer to limit his

or her focus, the program’s high-level structure is a set of modules or components whose

boundaries encode useful abstractions. This style of development, called “programming-

in-the-large” [DeRemer and Kron 1975], relies on the flexibility to place module or com-

ponent boundaries wherever the programmer sees a need. Flexible boundary placement

depends on the ability of a wide range of different kinds of information to cross the

boundaries.

The boundary around a module is described by an interface that specifies what the

module requires from the rest of the program and what the module provides to the rest

of the program. To use the module in a program, the programmer uses a linking language

to specify how the module’s requirements are met by the other modules in the program,

and how this module satisfies their requirements. Thus, the crucial features of a module

system are the kind of interface definitions and linking languages that it supports.

1.1 Component Programming

A component is a kind of module that emphasizes flexible reuse [McIlroy 1969; Szyper-

ski 1997]. Flexibility comes from a loose coupling between the components that constitute

an entire program, which the guiding principle behind component systems guarantees:

A component can be implemented, compiled, and deployed independently of

other components that might link with it.

This principle requires that a component be a stand-alone entity (with respect to other

components) that can be shipped to another developer who can use it, consistent with

its interface, without knowledge of the encapsulated details of its implementation. This

allows developers to acquire components from diverse sources and use them together.



2

Not all module systems support components. If the contents of a module M1 refer

directly to another moduleM2, then the moduleM1 cannot be deployed or even compiled

apart from the referenced moduleM2. For example, to type checkM1, the compiler will

need to consult the definition of M2 to identify the types of the bindings (or the shapes

of the classes, or the definitions of the macros) thatM1 references fromM2. I call these

kinds of direct intermodule references internal linkages or concrete linkages to emphasize

that the linkage between the two modules is part of one of the modules itself. Thus,

internally linked modules are not suitably independent to be called components.

To achieve independence, the references between components must be independent of

the components’ definitions. When considering a component’s contents, any information

about its environment must come from its interface. For example, to type check a compo-

nent, the compiler consults the component’s interface to extract the type of an imported

binding (or the shape of an imported class, or the definition of an imported macro).

Because a component has a definite meaning apart from any linkages, I call the linkages

between components external linkages. Thus, the interface attached to a component

specifies the assumptions that it can make about its environment once deployed, and

the interface also specifies which obligations the component must meet. Similarly, when

considering a linking expression, any information about the linked components’ contents

must also come from their interfaces, not from their implementations.

The expressiveness of a component system is strongly influenced by the kinds of

entities that can appear in interfaces when defining and linking components; these are

exactly the kinds of entities that a component can abstract over. A large selection of

potential abstractions allows a component’s author greater flexibility in creating com-

ponent boundaries, since the boundary can only involve features that can be mentioned

in the component’s interface. In addition to a flexible interface language, a component

system needs a flexible linking language that supports the kinds of abstractions that can

appear in interfaces, and that avoids restricting the set of potential linkages further than

required by the linked components’ interfaces.

Of the wide variety of possible component systems, I consider those whose interfaces

comprise a list of imported and exported source-code resources (functions, values, types,

etc.).1 In such a system, a linking expression must ensure that every import of a linked

1Computational resources (CPU time, memory, bus access, etc.) are all potential component
interface entities that I do not consider.



3

component is connected to an appropriate export of a linked component. It is crucial for

the system to support linking expressions whose sets of components have cycles in the

import and export connections. Otherwise, the programmer will be unable to create a

component that encapsulates only part of any mutually recursive program feature.

1.2 Component Compilation

Independent (also called compositional) compilation is the crucial characteristic of a

component system. If a component can be compiled with knowledge of only its contents

and interface, then a compiled version of the component can be used by another developer

in any context that satisfies the component’s interface. Although the interface must

accompany the deployment, the source code need not. To ensure that a component can

be compiled in such isolation, its imports must contain all of the information needed to

give the component’s body a well-defined meaning.

In contrast to independent compilation, many module systems support a notion of

separate compilation that allows some intermodule dependencies at compile time. A

separately-compiled module system allows internal linkages between modules. An internal

link allows a module to refer to a specific export of another specific module, thereby

preventing the first module from being deployed or used without the referenced module

present. Thus, separate compilation allows the semantic meaning of a module to depend

on the other modules that it references. Separate compilation differs from whole-program

compilation because a module can be compiled apart from the modules that refer to it.

For both internal and external linkages there are two kinds of information that traverse

the module/component boundary: run-time information and compile-time information.

The import of compile-time information into a module or component must occur when the

module or component is compiled, whereas the run-time information is not yet needed.

A typical example of compile-time information is the type associated with an imported

function, whereas the function’s actual definition is run-time information.

Although internal linkages naturally propagate compile-time information across mod-

ule boundaries, an independent component, while being compiled, does not have access

to the other components that will eventually be linked into its imports. Instead, the

component’s interface must specify all of the compile-time information needed for each

of its imports. This document explores the thesis that:

Component interfaces that can include compile-time information enable flex-



4

ible program partitioning in a typed or extensible programming language.

To this end, I develop two variations on the unit system of components [Flatt and Felleisen

1998; Flatt 2006]:

• a component system for a typed language (in the style of ML) where compo-

nent interfaces can contain type definitions. This system improves the previous

model of typed units by supporting translucent type exports in the style of SML’s

functors [Milner et al. 1997]. It also fully integrates with an internally-linked

module system, whereas the previous unit work proposed units as the sole program

organization mechanism.

• a component system for an extensible language (the PLT dialect of the Scheme

programming language [Kelsey et al. 1998; Flatt 2006]) where component interfaces

can be extended to contain new kinds of compile-time information as the underlying

language is extended. This system improves the previous implementation of units

in Scheme by allowing interfaces to contain compile-time information for language

constructs that are not known to the unit system’s implementation (i.e., macro-

based language extensions).

1.3 Units

The unit system closely follows the notion of components explained in Section 1.1;

thus, a unit is an externally-linked component that has an explicitly specified interface.

The interface comprises a sequence of imported bindings and a sequence of exported

bindings, and each binding might have some accompanying information (such as the

binding’s type). There are two ways of constructing units: atomic unit expressions and

compound unit expressions.

An atomic unit contains, in addition to its interface specification, a sequence of

definitions, called the unit’s body, that create the functionality exported by the unit. The

body can refer to imported bindings, and so the imported bindings must contain enough

information to compile the body without knowing which component will be used to satisfy

the imports. In a simple untyped setting, the binding’s name is enough information, and

in a typed setting, each import binding must have its type attached.

Units are linked together externally by a compound unit. A compound unit’s interface

is specified as a list of imported and exported bindings, just like an atomic unit’s interface.

Instead of containing a body of definitions, a compound unit contains a sequence of



5

references to other units that it links together by specifying how the exports of the listed

units are used to satisfy the imports of the listed units. Each import of a linked unit is

connected to an export of a linked unit, or to an import of the compound unit, and each

export from the compound unit must be exported from one of its constituent units.

Because compound unit linking is external, a compound unit expression does not have

any information about the contents of the units it links together, except for their inter-

faces. It cannot even determine whether the linked units are atomic or compound. Link

checking ensures that every import is satisfied, and that any compile-time information

attached to the import is consistent. For example, if a unit imports a binding x that has

type t, then the export being linked into x must have a type compatible with t. No other

checks have to be performed; in particular the linkages can be cyclic, and a unit’s export

can even be used to satisfy its own import.

A fully-linked component program is represented by a unit with no imports. Such a

unit can be invoked, which descends into the bodies of the linked units and executes their

definitions. This process is applied recursively when a linked unit is a compound unit. If

the same unit is encountered multiple times, its encapsulated state is replicated and each

invocation is completely separate.

Replication prevents unwanted interference when two compound units C1 and C2 are

linked together, if both of these units contain a common third unit U3. This is crucial

to independence because the programmer linking C1 and C2 may not have knowledge of

how they were created and which units they contain. When state sharing is desired, it

can be arranged explicitly by having C1 and C2 both import the interface of U3. Now the

interfaces of C1 and C2 indicate which stateful module they need, and the programmer

can link them with either one or two copies of U3 as desired.

1.3.1 Units and Modules

In order to link a unit U with other units, a compound unit expression must contain a

reference to U . Thus, the language of compound unit expressions must have a mechanism

for resolving references to unit bindings. A simple solution, such as a single file that

contains unit definitions and associates them with global names, is unsuitable because U

might have come from an entirely different source than the units it is being linked with.

Thus, the binding mechanism must be able to resolve references to definitions that exist

in multiple locations. Although units can perform this sort of binding resolution with



6

their external linkages, attempting to use units to organize unit linking merely raise the

same issue in deciding how to organize the organizing units.

An internally linked module system is an excellent way to manage external linking ex-

pressions. If all of the units are deployed inside of separate modules, a module containing

a compound unit expression can use internal linkages to refer to the desired units. For

example, if two modules,M1 andM2, both contain a definition for a unit named U then

a compound unit expression that needs a U can select which one it wants by referring to

either toM1 orM2. The internally specified nature of the linkage means that the author

of the compound expression has complete control over which units to link together.

Internal linkages can be useful in other situations, when external linking is undesirable

or impossible, but separation and namespace management are still required. Building

a program designed for reuse can take a considerable amount of effort that may not

be worthwhile in certain situations. For example, most programs rely on the standard

library that comes with their implementation language. Although in certain specialized

situations it can be valuable to parameterize a program over the standard library, usually

it is not worth the programmer’s effort to account for the possibility. Alternately, a

programmer might want to rely on a module’s behavior that cannot be documented in its

interface, and so he does not want to permit the flexibility to link with other components

that might not prove fit. The ability to make internal links is therefore an important

pragmatic feature beyond the necessity of component-management tasks. To this end,

the internally linked module system is not limited to managing unit definitions, but it

can manage the other kinds of program definitions as well.

A practical component-oriented language is a two-level system with internally linked

modules at the top level, managing component definitions and ordinary definitions alike.

1.3.2 Unit Signatures

Unit interfaces comprise lists of imported and exported bindings, with associated

information. It can become tedious to specify such interfaces directly, especially because

each piece of an interface must be used on at least one unit that imports it and on at

least one unit that exports it. To streamline the process of writing unit interfaces, pieces

of an interface can be defined alone in a signature. Atomic and compound units specify

their interfaces not as a collection of bindings, but as a collection of signatures, each of

which can be used in the imports and exports of many different units.



7

Besides providing a significant convenience, signatures serve as a point of documen-

tation: the intended purpose of a signature’s part in an interface can be documented

alongside the signature. By using the signature in a unit’s interface, a programmer

expresses the intention that the unit expects its interface to follow the documentation.

Signatures also facilitate reuse because programmers can write components that import

or export widely distributed signatures, and thereby gain the ability to easily link with

other units written to those signatures.

Because a unit’s imports and exports are needed to compile the unit, its signatures

must be attached to it at compile time. An internally linked module system provides an

ideal way to attach them since the links can be followed by the compiler.

Flatt’s and Felleisen’s unit system does not include a separate signature construct,

but Flatt’s implementation of units for PLT Scheme does. My typed system of units does

not include an explicit treatment of signatures, but my Scheme system does.

1.3.3 Units in a Typed Language

In a component-oriented typed programming language, types are the key compile-

time information that must appear in component interfaces. Units can support a typed

language by requiring types to appear as annotations on imported and exported bindings,

so that the compiler can type check unit bodies and unit linkages independently of one

another. Furthermore, units allow types themselves to be imported and exported, and

the types of imported and exported values can use the imported and exported types.

A type can be imported and exported from a unit in two ways: opaquely or translu-

cently. An opaque (also called abstract) type hides all information about its definition.

An opaque type export from a unit is similar to an existential type; the unit exports the

information that the type exists and nothing else. An opaque type imported into a unit

is likewise similar to a universal type; the unit’s body must be able to handle any type

that could be given to the import.

When an opaque type t is used in conjunction with values whose types involve t, it

enforces abstractions along the unit’s boundary. For example, consider a signature with

t and two functions make-t and print-t where make-t has type (int → t), and print-t

has type (t → string). If a unit imports this signature, it can create values of type t

from ints, and it can then print them to strings, but it cannot perform any operation

that depends on how t is defined. If a unit exports this signature, it can define t as any

type it chooses because it is certain that no external code can rely on t’s implementation.



8

This allows different units that export the signature to choose different types in their

implementation.

A translucent (also called transparent and manifest) type exposes its definition. A

unit importing a translucent type can take advantage of knowledge of the type’s structure,

and a unit exporting a translucent type is required to use compatible types internally.

Similarly, in linkages, any type linked into a translucent type must be compatible. In

contrast, any type, translucent or opaque, can be linked into an opaque type import.

Translucent types can be combined with opaque types to partially hide a type’s imple-

mentation. For example, an interface could include an opaque type t1 and a translucent

type t2 that is equal to the tuple type < int × t1 >. An importing unit could rely on

values of type t2 being tuples with integers in the first position, but would not know

anything about the value in the second position. Similarly, an exporting unit would have

to define t2 as a tuple of an integer and some other type of its choice.

Translucent and opaque types have been well-studied in the context of ML’s func-

tors [Harper and Lillibridge 1994; Leroy 1994], and their combination is crucial to resolv-

ing well-known problems such as the “diamond import” problem (discussed further in

Chapter 2). However, functors are not components as defined in Section 1.1 because they

do not support cyclic linking patterns. In contrast, the previous model of typed units

supported cyclic linking and opaque types with a limited facility for type abbreviations,

but it did not support translucent types that could exhibit full interactions with the

opaque types.

1.3.4 Units in an Extensible Language

Scheme is an extensible programming language; new constructs can be added to the

language without modifying its core implementation. A language extension can introduce

new kinds of compile-time information that are required for the compilation of the new

construct.

For example, Scheme can be extended with syntax to create algebraic datatypes and

with pattern-matching expressions to deconstruct them. To process a pattern-matching

construct over a dataype D, the pattern-matching extension needs to know D’s layout,

so that it can generate code that extracts values from constructed instances. For a

unit to encapsulate a pattern-matching expression apart from the datatype definition,

the compile-time information about the layout of the datatype needs to appear in the

unit’s signature. Since the information was created by a language extension, the language



9

of unit signatures also needs to support extensions to allow it to include new kinds of

compile-time information.

1.4 Contributions and Evaluation

This dissertation proposes novel solutions to four problems encountered with the unit

component system. First, it addresses a significant inflexibility in the handling of type

information by adding full support for translucent type imports and exports to unit

interfaces. Second, it integrates an internally linked module system with the unit system

in a typed setting. Third, it removes the need to extend the core unit implementation

to account for language extensions by adding an extensible facility for supporting new

language constructs, including those that contain compile-time information. Fourth,

it alleviates several practical inconveniences in using units by adopting a combination

of nominal and structural signature matching and by supporting linkage inference for

compound units.

I prove my thesis by demonstrating the ability of my component systems to express

programs whose natural component-oriented decomposition requires certain compile-time

information to travel across the components’ boundaries. In particular, the applicabil-

ity of component-based programming to these examples is made possible only by my

extensions to units.

1.5 Related Module Systems and
Component Systems

Many programming languages use an internally linked module system to support a

hierarchical name space for program definitions, and often to manage multifile programs.

Table 1.1 presents an overview of the module systems of several languages. In contrast,

few languages support a component system. In the languages that lack component

systems, strict adherence to internal linking can prove excessively inflexible. This leads

many internally-linked module systems to allow some amount of external resolution of

internal linkages, yielding a hybrid linking solution that has neither fully general external

linking, nor fully concrete internal linking. It is a primary tenet of this dissertation

that the two types of linking are orthogonal, and that they should be implemented with

separate language constructs.



10

Table 1.1. Module systems overview. The “Dot Notation” column indicates individual internal links that have both the module
name and definition name (e.g., modName.defName). The “Import Notation” column indicates that a module can incorporate another
module’s definitions into its namespace to be referenced as local definitions (e.g., import modName followed later by defName). The
“Nested Mods.” column indicates that a module can be defined inside of another module. The “Comp. Mgmt.” column indicates
that the module system allows language-based tools to manage compilation and recompilation of module-based programs. This can
only happen when module paths contain enough information to unambiguously locate the referenced module.

Language Construct Dot Notation Import Notation Nested Mods. Comp. Mgmt.
PLT Scheme module X X
Bigloo Scheme [Serrano 2004] module X
Scheme48 [Kelsey et al. 2005] structure X
Chez Scheme [Waddell and Dybvig 1999] module X X X
Haskell [Jones 2003] module X X X
SML [Milner et al. 1997] structure X X X
SML CM [Blume and Appel 1999] Library X
SML MLBasis [Cejtin et al. 2005] basis X X X X
SML extension [Swasey et al. 2006] unit X X
OCaml [Leroy 2004] module X X X
Java [Gosling et al. 2000] package X X X2

Modula-2 [Wirth 1982] MODULE X X X

2except for the effect of the CLASSPATH environment setting.



11

For example, in Java, a reference to a class through a full package name is resolved

relative to the contents of the CLASSPATH environment setting. The module that is

actually referenced can be changed by changing the CLASSPATH; however, the class names

and structures are expected to be the same regardless of what the CLASSPATH is. In

fact, problems can arise if the compile-time CLASSPATH is different from the run-time one.

Similarly, OCaml treats top-level ML structures as compilation units, and an internal

link in one refers to another by name. However, it is up to the invocation of the linker

to determine which of potentially many top-level modules with the same name are to be

included in the final program.

Of languages with constructs for component-oriented programming, ML has the most

in common with units, and will be discussed in further detail in Chapter 2. Object-

oriented programming offers some of the benefits of component-oriented programming.

In particular, it places a strong emphasis on accessing objects only through explicitly

specified interfaces. Because this dissertation concentrates on component interfaces, its

techniques can be applied to these sorts of systems, although my focus is limited to units.

For example, in a syntactically extensible, object-oriented language, macro definitions

should appear in class interfaces, and the addition of a new kind of class member should

appear alongside the definition of a corresponding new interface entity.

Recently, the Scala [Odersky and Zenger 2005] programming language has combined

several object-oriented technologies, including mixin-based inheritance, to support com-

ponent abstractions and compositions. In Scala, a component is represented by a class,

which can be abstracted over its parent classes and composed via a mixin application that

supplies the missing parents. Similar to units, the mixin-based approach relies on the

result of a component composition being a component itself. Scala’s class-based system

also handles recursive linking naturally. A significant difference between the unit and

the Scala approach comes from Scala’s “class linearization” which reduces the directed,

acyclic graph of class parents to a duplicate-free list. This leads to the kind of interference

discussed in Section 1.3.

The CORBA [Vinoski 1997] system for dynamic components or object-oriented lan-

guages follows the methodology of external linking and independent compilation. A

component in CORBA is represented not as a class (as in Scala above), but as an object.

Each object can make requests of other objects—essentially remote method calls—whose

identities are not determined until run time. As in units, these objects are described by



12

interfaces which the CORBA requests must follow. However, the language for specifying

interfaces, OMG IDL, is not extensible, so new kinds of objects and primitive data

(perhaps from a new language) may not fit well into a CORBA-based framework. This

restriction is important to CORBA’s support for multiple nonextensible languages, since

interoperability is simplest when the interoperating languages are similar. However, in

the setting of a single, extensible language, the interface language must be extensible.

Mixin modules [Duggan and Sourelis 1996; Wells and Vestergaard 2000; Hirschowitz

et al. 2004; Makholm and Wells 2005] support the separation of mutually recursive

program values across modules. Like units, mixin modules separate the composition

operation from the invocation operation. Ancona and Zucca [2002] define a core calculus

for module systems with higher-order and recursive features, and their line of work has

produced a module system for Java [Ancona and Zucca 2001]. More recent work on

polymorphic bytecode [Ancona et al. 2005] addresses both direct and indirect references,

much like structures and functors. This work is similar in spirit to units, but with no

connection to SML-style concerns such as translucency, sharing by specification, etc.

The goal of application product lines is similar to that of component programming: a

program is assembled from several pieces, each of which represents some particular feature

of the program. In fact, product line system such as AHEAD [Batory et al. 2004] and

unit-based systems such as Jiazzi [McDirmid et al. 2001] have similar expressive power

on some problems [Lopez-Herrejon et al. 2005]. However, a slight difference in the goal

of the two approaches leads to a fundamental technical split. The product line approach

focuses on the automatic creation of several similar applications from a repository of

in-house source code. For example, a product-line methodology might automate the

construction of a restricted student version of a program alongside a fully functional

professional version. Because all of the source code is available when the application is

constructed, product line techniques do not have the strong requirements for independent

compilation and deployment that are fundamental to component-oriented technologies,

and that impact design choices throughout this dissertation. In particular, the AHEAD

tool approaches feature composition based on program source fragments.

Despite these differences, AHEAD illustrates an important facet of extensibility. It

not only composes program source fragments, but other resources such as makefiles and

XML metadata. As new resources are required for a particular project, AHEAD must

be extended so that it knows how to compose the new resources. A special purpose tool



13

supports the construction of such extensions to AHEAD. This situation arises whenever

a component system is given a new type of construct to manage, which is exactly the

problem that this dissertation solves for units in an extensible language.

Findler and Flatt [1998] describe idioms for creating extensible software (programs

that can be extended with new features, as opposed to extensible languages) that rely

on a combination of component- and object-oriented programming techniques. They

use PLT Scheme’s existing unit system and class system to create architectures where

a component can represent either a new data variant or a new operation on a family of

existing variants. In both cases, the component imports classes and exports subclasses.

Because PLT Scheme’s classes are first-class values that are parameterized over their

superclass, the unit system provides no special support for these idioms; the body simply

defines classes whose superclass expression refers to a unit import. Jiazzi [McDirmid

et al. 2001] supports similar idioms for the Java programming language with units whose

interfaces include the description, although not implementation, of imported and exported

classes to facilitate type checking.

1.6 Outline

Chapter 2 presents a typed language that includes internally linked modules and units

that fully support opaque and translucent types. It includes several examples drawn from

the literature on functors, and furthermore, it precisely relates units and functors with

a formal translation from functors into units. Chapter 3 presents a formal type system

and operational semantics for typed units, along with a proof of type-soundness. Chap-

ter 4 describes Scheme’s mechanisms for language extensibility, and demonstrates how to

incorporate those into unit signatures. Chapter 5 presents extensions to units designed

to make component-oriented programming practical. It includes several examples from

the DrScheme’s [Findler et al. 2002] source code. Chapter 6 presents the implementation

of the unit constructs as language extensions to Scheme, and it discusses my experience

applying them to the DrScheme source code. The appendix contains a full grammar for

the Scheme unit system, which is introduced throughout Chapters 4 and 5.



CHAPTER 2

UNITS AND MODULES IN A TYPED

LANGUAGE

Chapter 1 explained several of the requirements that the module system for a typed

functional language should meet: it should include an internally linked module construct

that can express concrete program organization, and it should include an externally linked

component system that supports these features:

• the ability to compile a component without regard to any linkages that it partici-

pates in (that is, independent component compilation)

• opaque type imports and exports to hide a type’s definition

• translucent type imports and exports to expose a type’s definition

• hybrid type imports and exports that combine both translucent and opaque types

to partially expose and partially hide a type’s definition

• recursive (cyclic) linkages

• multiple independent instantiations of a component.

Besides these, the component system should also support type sharing, the ability of a

component to require that several of its imported opaque types are all linked to equivalent

types. Sharing is crucial when a component imports from two different components, and

needs to use the functionality of one in conjunction with the other. A fully general

treatment of translucent types allows sharing to be expressed without the introduction

of further concepts or constructs [Harper and Lillibridge 1994; Leroy 1994; Leroy 1996].

Existing typed programming languages typically include module systems that support

some variant of internal linking. For example, in Java [Gosling et al. 2000], a program

comprises a set of classes, organized into packages. Code inside of one class uses a dot

notation to directly link to either a class C (which is compile-time information in Java)

inside of a package P or to a (static) variable v inside of the class: P .C and P .C .v,



15

respectively.1 Links between classes can be cyclic, which means that a minimal unit of

separate compilation can be a set of classes. Haskell’s module system [Jones 2003] is

similar to Java’s. All type and value definitions occur inside of a module, and modules

are directly linked by import statements which make one module’s values and types

available in another. Module linkages can be cyclic (put another way, module definitions

can be mutually recursive), so a set of modules can require simultaneous compilation.

Neither Haskell nor Java has a component system that supports external linkages. The

Jiazzi [McDirmid et al. 2001] component system extension to Java is based on units that

import and export classes. Jiazzi’s design conforms to the principles laid out in Chapter 1;

a signature in Jiazzi includes the types of the methods and fields of an imported or

exported class. The differences between Java and typed functional languages give Jiazzi’s

units a different flavor from a component system suitable for an ML-like language. In

particular, Java’s type system is nominal—type equality and subtyping are based only

on explicit declarations—and ML’s type system is structural—type equality is based on

a type’s shape. Jiazzi uses Java’s object-oriented nominal subtyping (with interfaces)

to perform the kinds of information hiding/exposure offered by opaque and translucent

types in the structural setting.

The ML [Milner et al. 1997; Leroy 2004] family of languages has a module system

that supports internal and external linking with two related constructs: structures and

functors. A structure comprises type and value definitions that can be referenced with

dot notation from other structures. Unlike Haskell’s modules, structures cannot have

cyclic references between them, and furthermore, structures support an operation called

sealing. A structure is sealed by attaching a signature that specifies the type and value

definitions that are accessible from outside of the module. In the case of type definitions,

only the information about a type that is given in the signature is visible outside of the

structure. The ability to hide type information differentiates sealing from module systems

(e.g., Haskell’s) that forbid external references to nonexported names without hiding the

types of exported values. For example, if a structure is sealed with the signature S1 then,

outside of the structure, nothing is known about the type of v.

signature S1 = sig type t; val v:t end

signature S2 = sig type t = int; val v:t end

1An “import P” statement is a shorthand that allows the omission of P in the paths.



16

If signature S2 is used, then it is known that v has type int. The type specification for

t in S1 is an example of an opaque type, and its specification in S2 is an example of a

translucent type.2

A functor is a module-system level function that consumes and produces structures.

Its input structure is described by a signature; any structure matching that signature can

be used as the argument to the functor in a functor application. Since functor application

produces a structure, multiple functors cannot be directly composed. Instead, each is

applied to the result of a previously applied functor. Thus, functors and structures

are tied closely together by the functor application linking mechanism. Because ML

structures do not support cyclic linkages, ML functor linking patterns must be acyclic as

well. Each structure produced by a functor application is accessible to other structures

through internal links, which means that its contents must be fully specified, even if the

structure is only intended to be an intermediate step in a sequence of applications.

Various extensions to ML have proposed facilities for recursive structures and func-

tors [Crary et al. 1999; Russo 2001; Dreyer 2005b]. This chapter can be viewed as

a different approach to the same problem of satisfying the above feature list. Instead

of adding recursion features to ML’s module system, I add translucent types and direct

linking to the already recursive system of typed units [Flatt and Felleisen 1998] (although

the formal definition of my type system uses the notation and many of the techniques of

ML module system formalizations instead of those from Flatt’s and Felleisen’s formalism).

Similar to ML, there is one construct for internal linking and one for external linking:

module and unit, respectively. The coupling between modules and units is looser than

between structures and functors; external linkages between units can be resolved incre-

mentally without producing intervening modules. Loose coupling is crucial in allowing

units to naturally support compositions that contain cyclic linkages. It also permits the

module system to manage separate compilation (not independent compilation) without

complicating the component system.

This chapter explains the module/unit separation and relates its expressive power to

that of the SML module system. In particular, I offer an alternate semantics for the SML

module system with a translation into module and unit. For SML programmers, this

alternate view may offer insights into enabling mutual recursion among SML functors.

2Sealing is performed in Standard ML with the :> syntax. The : syntax does not perform
sealing; it fully exposes the types of the structure’s values.



17

For non-SML programmers, the alternate semantics complements the existing semantics

of SML and of units to foster a deeper understanding of key module and component

system technologies.

Section 2.1 introduces units and modules and shows how they complement each other.

Section 2.2 contains several examples of the expressiveness of units. Section 2.3 relates

units and modules to functors and structures, and gives a translation from a model of

generative structures and functors into modules and units. Section 2.4 discusses the

extensions to my model that are necessary for practical programming.

2.1 Modules and Units

Figure 2.1 presents the syntax of the language of modules and units over a simply-

typed core language that includes sum and product types, value definitions, and type

definitions. The module system comprises the module and path constructs, and the

unit system comprises the unit and compound expressions and the invoke definition.

The language requires that each value-binding identifier (xi) be annotated with its

type (Ty), so that it does not require type inference. The expressions (E) of the language

are typical of a simply-typed λ-calculus, with the addition of the unit system. The

language has the standard types for integers, sums, products, and functions. Units are

supported as first class values, following Flatt and Felleisen’s system,3 so the language

also includes a type for units; this type fully contains the type and value bindings (but

not value definitions) of the unit’s interface to ensure a phase distinction between type

checking and execution. A type can also contain a path (Pt) to a type definition.

2.1.1 Modules

A program (Prog) is a sequence of modules (M), each of which contains a sequence

(Ds) of definitions (D). Each definition’s scope extends from the immediately following

definition to the end of the module (i.e., a module’s definitions are not recursively scoped).

Definitions are accessed from outside of the module with a path to either a value (Px) or

to a type (Pt). For example, the path m1.n.t refers to the definition of type t inside of

module n which is itself defined inside of m1, a module defined in the scope where the

path appears.

3With first-class units, the code that links units is expressed in the programming language
itself, instead of in a dedicated linking language.



18

Names, identifiers, and paths:
m, t, x = module, type, and value names
n = m | t | x names
ns = ε | n ns name sequences
i, j = N stamps
id = mi | ti | xi identifiers
ids = ε | id ids identifier sequences
Pm = mi | Pm.m | Pm.m̂ paths to modules
Px = xi | Pm.x | Pm.x̂ paths to values
Pt = ti | Pm.t | Pm.̂t paths to types
P = Pm | Pt | Px paths

Types:
Ty = int | Ty + Ty | Ty× Ty | Ty→ Ty base, sum, product, and function types

| Pt type references
| unitTM (ns→ ns) types for units

B = xi:Ty value bindings
| mi:M (ns) module bindings (with provided names)
| ti | ti=Ty opaque and translucent type bindings

M = ε | B,M module, import/export descriptions
Γ = ε | Γ,B typing contexts

Terms:
Prog = M . . .M programs
M = module mi provide ns = Ds module definitions

| module mi:M provide ns = Ds sealed module definitions
Ds = ε | D Ds definition sequences
D = xi:Ty=E | ti=Ty | M value, type, and module definitions

| invoke E as mi:M unit invocation
E = Z integer constants

| Px value references
| injl E | injr E | case E of E + E sum expressions (use λ for binding)
| (E,E) | π1E | π2E product expressions
| λxi:Ty.E | E E function expressions
| let Ds in E let expressions
| unit importM exportM. Ds atomic unit expressions
| compound importM exportM

link U . . .U where L . . .L compound unit expression
U = E:importM exportM interface annotation
L = id← id linking expression

Figure 2.1. Syntax of typed modules and units



19

Following Leroy’s manifest types approach, identifiers (id) are used for references

within the module, and names (n) are used for references into the module from outside.

The α-relation can modify only the stamp on the name of a module-level definition; it

cannot change the name itself. This restriction prevents α-renaming from interfering with

the use of names for external access into a module, while preserving its ability to freely

and locally rename identifiers inside of a module.

A path can contain both names and hatted names (x̂, t̂, m̂). A name-based reference

into a module is valid only when that name is listed in the module’s provide clause,

but a hatted-name reference ignores the provide clause to allow access to unprovided

module bindings. Hatted names are prohibited in source programs because they can

violate abstraction boundaries; however, the path grammar and type system support

them because the type system can require access to unprovided type definitions during

type checking (see Section 3.1.1). This access is needed when a module defines and

provides a value whose type refers to an unprovided type definition.

A module definition can optionally give an explicit module description (M4) that seals

the module, similar to how a structure is sealed in ML. The difference between sealing

and providing is that each type occurring in the description M must be defined in M

(or in an enclosing scope), and such definitions may be defined translucently or opaquely.

In contrast the provide clause merely restricts the ability to mention a type or value by

name from outside of the module; it does not permit the creation of opaque types, or

restrict the types of provided values.

As the form for managing internal linking, modules have two roles. First, module

definitions can be nested for fine-grained management of name grouping and lexical

scoping. Second, top-level modules naturally form the boundaries of separate compilation,

because every dependency on another top-level module is explicit in the body of the

module. By restricting a program’s top-level to module definitions only, and by requiring

an acyclic dependency relation, a single module forms the minimal unit of separate

compilation. Units, as first-class program entities alongside functions, products, etc.,

fit naturally into the management of modules.

4I occasionally treat members of Γ as members of M and members of M as members of Γ
when conventient, since they are both just lists of Bs.



20

2.1.2 Units

A unit expression creates an atomic unit with explicitly described imports and exports

(M). The unit’s body must define each exported binding (B), and its body can refer to

any imported binding. Each imported or exported binding can specify a value, opaque

type, translucent type, or module. Module bindings support the grouping of imported

and exported values, types, and modules. The type of a unit includes a single context

that contains the unit’s imported and exported bindings, and it also includes a listing

of which of these bindings are imports and which are exports. The single context can

interleave imported and exported bindings, allowing the types of imported values to refer

to types exported from the unit. This feature helps avoid the “double-vision” problem

(see Section 2.3.3). However, neither the unit’s body, nor its interface is recursively

scoped.

Following modules, the definitions in a unit’s body are correlated internally (including

in the correspondence of the definitions and uses in a unit’s body with the unit’s export

and import contexts) using identifiers, so the α-relation cannot change their names, only

their stamps. This restriction means that a unit’s imported and exported names form a

concrete and unchangeable part of its interface. External linking expressions rely upon

the consequential ability to unambiguously refer to particular imports and exports from

a unit with no knowledge of the unit itself.

A compound expression links units together to form a new unit. Each linked unit

(U) specifies an expression along with the imports and exports expected of the expression.

The linkages (L) specify which type, value, and module exports from the linked units are

used to satisfy each of the linked units’ imports. Each identifier on the left side of a

linkage must be listed in one of the import contexts accompanying the linked units, and

each identifier on the right of a linkage must be listed in one of the export contexts, or

in the compound unit’s imports. The compound’s export clause specifies which of the

linked units’ exports are themselves exported from the compound unit.

An invoke definition evaluates the definitions inside of a unit that has no imports,

and it places the exported values and types in the enclosing scope, accessible through the

given module identifier. The semantics of invoke enforce the phase distinction. Because

the type of its argument expression is known before run-time, and because that type

contains all of the visible type information about the unit’s exports, the types that the

invoke expression places into the module result are completely known before run-time.



21

At run-time, the evaluation of an invoke definition causes the evaluation of the definitions

contained in the argument unit.

The unit and compound forms are value expressions (E) to support units as first-

class values. However, the invocation of a unit does not produce a value; it instead

produces definitions that bind names to values, types, and modules. Thus, the invoke

form is not a value expression, but a definition form (D) that defines a module that

groups the produces definitions in a single place.

A subtype relation <: arises naturally from unit values. Roughly speaking, a unit

with fewer imports or more exports can be used in place of a unit with more imports and

less exports. Section 3.1.2 discusses subtyping in further detail.5

2.1.3 Other Expressions

The expressions for constants, products, functions are typical. The constructor ex-

pressions for sums are also typical; however, the case expression does not directly bind

the contents of the sum value it deconstructs (to avoid the treatment of case as a binding

construct). Instead case passes the sum’s contents to one of the function expressions it

is given: injl contents to the expression immediately before the plus and injr contents

to the one after.

In this language, the let expression is not just a macro over functions, because

functions can only bind values as parameters. However, let’s binding is an arbitrary

definition form, including module and invoke definitions, allowing the language to

support locally-scoped unit invocations (e.g., invoking a unit in a function body).

2.1.4 Example

Figure 2.2 presents the skeleton of a set library, and its use, based on Objective Caml’s

set library which parameterizes the set over the type of items in the set. The example

combines opaque and translucent types to hide the type of the set while exposing the

type of elements in the set. Figure 2.2 uses an ML-style syntax to illustrate the basics

of unit programming; Figure 2.3 contains the same example written in the syntax of the

formal system.

The order module provides the signature for ordered types. The ordered int module

provides a unit oi unit whose exports conform to order sig, enriched with the informa-

5The complications of subtyping in the core language can be avoided by taking units out of
the core and placing them in a module level, as is typically done in ML-style functor systems.



22

module order provide order_sig
signature order_sig = sig
type t;
val compare:t->t->int

end

module ordered_int provide oi_unit =
val oi_unit =
unit import () export order.oi_sig where t = int .
type t=int
val compare:int->int->int = ...

module set provide set_unit =
signature set_sig = sig
type t;
type elt;
val add:elt->t->t;

end
set_unit =
unit import I=order.order_sig

export set_sig where elt = It .
type elt = It
type t = ... elt ...
val add:elt->t->t = ... Icompare ...

module main provide set s =
val int_set_unit =
compound import () export set.set_sig where elt = int
link O=ordered_int.oi_unit

S=set.set_unit
where (SIcompare <- Ocompare) (SIt <- Ot)

invoke int_set_unit as set
val s = set.add 12 ...

Figure 2.2. Set example: ML-style syntax



23

module ordered int0 provide oi unit =
oi unit0:unitT [t0=int, compare:t0→t0→int] ( → t compare) =

unit import [] export [t0=int, compare:t0→t0→int].
t0=int
compare0:int→int→int = . . .

module set0 provide set unit =
set unit0:unitT [It0, elt0=It0, t0, Icompare0:It0→It0→int, add0:elt0→t0→t0]

(It Icompare → t elt add) =
unit import [It0, Icompare0:It0→It0→int]

export [t0, elt0=It0, add :elt0→t0→t0].
elt0 = It0

t0 = . . . elt0 . . .
add0:elt0→t0→t0 = . . . Icompare0 . . .

module main0 provide set s =
int set unit0:unitT [t0, elt0=int, add0:elt0→t0→t0] ( → elt t add) =

compound import [] export [t0, elt0=int, add0:elt0→t0→t0]
link ordered int0.oi unit : import [] export [t1=int, compare1:t1→t1→int]

set.set unit0 : import [It2, Icompare2:It2→It2→int]
export [t2, elt2=It2, add :elt2→t2→t2]

where (Icompare2 ← compare1) (It2 ← t1)
invoke int set unit0 as set0:[t3, elt3=int, add3:elt3→t3→t3]
s0:set0.t = set0.add 12 . . .

Figure 2.3. Set example: Figure 2.1 syntax



24

tion that the type of ordered elements t is, in this case, int. The set module provides

the signature of sets, which includes the type of a set t, the type of elements in the set

elt, and the operations on the set (represented by add). It also provides set unit which

imports an implementation of ordering, and exports a set based on that ordering. The I

prefix is used to disambiguate between the two different types t in set unit’s interface.

Because the type of ordered elements t is imported opaquely, the only operation that the

set implementation can perform on a value of type t is the imported comparison (which

the add function uses).

Although the implementation of the add function in set unit is elided, it could include

internal references to standard library functions managed by the module system. If the

programmer wishes to support multiple implementations of these library functions, the

references would become unit imports instead.

The main module links oi unit and set unit into int set unit, using internal,

module system links to concretely identify the two units to link. The compound unit

int set unit exports the set type t opaquely, but exports the type elt translucently,

so that the add function can add integers to the set while the set’s implementation type

is hidden. The invoke statement runs int set unit and groups its exports under the

module name set. The S and O prefixes support disambiguation when multiple units

share imports or exports, such as the t type export from set unit and oi unit.

Figure 2.3 adds in the explicit type annotations and the identifier marking super-

scripts; because unit expressions have explicit import and export clauses, the unitT

annotations can be directly taken from those clauses. It also removes the signature

notation by copying the signatures into the unit interfaces directly; the where equations

have been inlined into the interfaces as translucent types, and the unit import prefixing

notation (I) has been resolved by adding the prefix into the names.

The import and export clauses listed with the expressions in the link clause serve the

same purpose as the O and S prefixes. Each of these is matched against the corresponding

unit by name, so that Icompare1 and Icompare2 match. The where clause treats the

imports and exports as binding by identifier, and can thus refer to either t1 or t2 without

ambiguity. (Since linking can be recursive, the where clause is allowed to connect any

export into any import, of a compatible type, which means that the ordering of the link

clause cannot be used to resolve where linkages.)



25

2.2 Expressiveness

Units can express several basic language constructs, including parametric polymor-

phism, recursive functions, and recursive datatypes. Along with the set example (Fig-

ures 2.2 and 2.3), the expressiveness examples of this section illustrate the basic methods

that units use to support recursive linking and type abstraction. (This section freely

omits type annotations and identifier superscripts where they are uninteresting).

A polymorphic function can be encoded as a unit that imports the relevant type vari-

ables and exports the function. Figure 2.4 contains such a definition of the polymorphic

function composition combinator, o. The unit o unit defines the function, and the units

types unit and c instantiate it to particular types (types unit is necessary because the

formal syntax only permits identifiers on the right side of where equations, and not

general type expressions). Because o unit can be independently compiled, the code for o

is not duplicated when the compound unit c is created or invoked, and because o unit is

a first-class value, it represents o as a first-class polymorphic function.

To implement a recursive function, a unit imports the function to be used for recursive

calls, and links with itself. Figure 2.5 defines a factorial function with this technique. The

unit fact unit defines and exports the function fact, which relies on the imported facti

function for recursive calls. Linking the unit by itself, providing the exported fact function

for the imported facti, creates the function.

The same technique works at the type level to support recursive datatype definitions,

such as lists of integers (Figure 2.6). The unit defines type list in terms of an opaquely

imported type listi, and defines the standard constructors and destructors for lists with

reference to list and listi as needed. The compound unit supplies list for the listi import,

causing each of the exported function’s type references to listi to become references to

list. Further, it supplies u, which equals int for the list unit ’s type import. Since list

is exported opaquely, the fact that list depends on listi is not known at the site of the

compound.

Recursive module extensions to ML can typically support one additional example,

polymorphic recursion over non-uniform datatypes [Leroy 2003; Dreyer 2005b].6 ML itself

supports non-uniform datatypes, but not polymorphic recursion. Recursive modules add

6Polymorphic recursion refers to the recursive call of a polymorphic function at a different
type, and a non-uniform datatype is a polymorphic datatype where the specification contains a
self-reference at a different type.



26

module o mod provide o unit =
o unit =

unit import [t, u, v ] export [o:(u→v)→(t→u)→t→v ].
o = λ f . λ g. λ x . f (g x)

module t mod provide types unit =
types unit =

unit import [] export [t=int×int, u=int, v=int→int].
t=int×int
u=int
v=int→int

module c mod provide c unit =
c =

compound import []
export [t1=int×int, u1=int, v1=int→int,

o0:(u1→v1)→(t1→u1)→t1→v1]
link o mod .o unit : import [t0, u0, v0] export [o0:. . .]

t mod .types unit : import [] export [t1, u1, v1]
where (t0 ← t1) (u0 ← u1) (v0 ← v1)

module math provide add add tuple =
add :int→int→int = . . .
add tuple:int×int→int = . . .

module ex provide ex6 =
invoke c mod .c as o
ex6 = (o.o math.add math.add tuple) (1 , 2 ) 3

Figure 2.4. Polymorphic function example: function composition

module m provide f4 =
fact unit =

unit import [facti :int→int] export [fact:int→int].
fact = λ i .

if0 i then 1 else i × facti (i - 1 )

fact compound =
compound import [] export [fact:int→int]

link fact unit:import . . . export . . .
where facti ← fact

invoke fact compound as F
f4 = F .fact 4

Figure 2.5. Recursive function example: factorial



27

module m provide ex l =
list unit =

unit import [t, listi ] export [list, cons:t→listi→list, nil :list, hd :list→t, tl :list→listi ].
list=int+(t×listi)
cons = λ x :t. λ l :listi . injr (x , l)
nil :list = injl 0
hd = λ l :list. case l of (λ n. . . .) + (λ c. π1 c)
tl = λ l :list. case l of (λ n. . . .) + (λ c. π2 c)

int u = unit import [] export [u=int]. u=int

list compound =
compound import [] export [list, cons:int→list→list, . . .]

link list u:import . . . export . . .
int unit:import . . . export . . .

where (listi ← list) (t ← u)
invoke list unit as l
ex = l .hd (l .cons 1 l .nil)

Figure 2.6. Recursive datatype example: list

polymorphic recursion by dispatching the recursive call through the module’s signature,

which gives the function a fully polymorphic type. In contrast, the type of the direct

recursive call is already instantiated to a particular type. The encodings above could

be extended to support polymorphic recursion using the same technique, if a unit could

export the defined function polymorphically. However, because the formalism does not

directly support polymorphic functions or type constructors, these features must be

encoded using opaque unit imports.

Figure 2.7 sketches a recursively defined unit that encodes a non-uniform, recursive,

polymorphic type constructor seq alongside a polymorphic recursive function size. (The

recursive definition could be encoded as in the above examples with a unit that imports

and exports the unit v.) Although type correct, v diverges when invoked; invocation leads

to a recursive invocation of the same unit, although at a different type. The uniform

list datatype example did not rely upon self-invocation because the list and listi types

could be directly linked. The need here to keep seq and size polymorphic requires that

they stay in a unit with a type parameter, which must be invoked to render size and seq

accessible. If the example only needed to define size, the invocation could be delayed until

the recursive call was needed, under a λ-abstraction, which would remedy the divergence

problem. This is, however, not an option when defining seq as well.



28

v =
unit import [a0] export [seq0, size0:seq0→int] .

c =
compound import [] export [seq1, size1:seq1→int]

link v : import [a1] export [seq1, size1:seq1→int]
where (a1 ← a0 × a0)

invoke c as m
seq0 = int+(a0×m.seq)
size0 = λ s. case s of (λ n. 0 ) + (λ s. 1 + 2∗m.size(π2 s))

Figure 2.7. Polymorphic recursion example: sequences [Okasaki 1998] (diverges)

2.3 Structures and Functors

Units and modules together have a close counterpart in Standard ML’s system of

structures and functors. However, there are significant differences in how the two sys-

tems express similar functionality. In particular, sealing in ML is tied exclusively to

the structure construct, whereas it is tied directly to units in my system. Functors,

which consume and produce structures, create abstract types by using sealing on those

structures. Units, however, support sealing directly because their imports and exports

need not be wrapped in modules, and because using sealing to enforce abstraction is

a fundamental part of component-oriented programming. Although functor and units

both support external linking, there is a significant difference in how. Functors link with

application which not only uses the argument structure to satisfy the functor’s imports,

but it also immediately produces the result structure. The unit system’s separation

between linking and invocation (i.e., unit linking produces another externally linkable

unit, and unit invocation produces an internally linkable module) is a crucial difference

between units and functors.

To make the observations of the previous paragraph more precise, Figure 2.8, Ta-

ble 2.1, and Figure 2.9 define a language based on the same core as the language of

Figure 2.1, but with structures and functors rather than modules and units. Section 2.3.2

then shows how to translate programs in the structure and functor language into module

and unit programs. The type system for this language is based on Leroy’s [1994] formalism

of manifest types and on the type system for the language of modules and units (see

Chapter 3). The translation needs to know the types of certain variables, so the structure

and functor type system also inserts type annotations into the source structure and

functor program.



29

Names, identifiers, and paths:
m = structure and functor names
x, t = value and type names
P′

m = mi | Pm.m paths to structures and functors
P′

x = xi | Pm.x paths to values
P′

t = ti | Pm.t paths to types
P′ = P′

m | P′
t | P′

x

Types:
Ty′ = int | Ty′ + Ty′ | Ty′ × Ty′ | Ty′ → Ty′ base, sum, product, function types

| P′
t type references

B′ = xi:Ty′ value bindings
| ti | ti=Ty′ opaque and translucent type bindings
| mi:M′ | mi:F′ structure and functor bindings

M′ = ε | B′,M′ structure types
F′ = mi:M′ →M′ functor types
Γ′ = ε | Γ′,B′ typing contexts

Terms:
D′ = xi:Ty′=E′ | ti=Ty′ value and type definitions

| structure mi=S′ structure definition
| structure mi:>M′=S′ structure definition with annotation
| functor mi:F′=Ds′ functor definition

S′ = Ds′:>M′ structure body with sealing
| P′

m(P′
m) functor application

| P′
m:F′(P′

m:M′):>M′ functor application with annotations
Ds′ = ε | D′ Ds′ definition sequences
E′ = Z integer constants

| P′
x value references

| injl E′ | injr E′ | case E′ of E′ + E′ sum expressions
| (E′,E′) | π1E

′ | π2E
′ product expressions

| λxi:Ty′.E′ | E′E′ function expressions
| let Ds′ in E′ let expressions

Figure 2.8. Syntax of structures and functors



30

Table 2.1. Glossary for the structure and functor type system
Relation Meaning
distinctM′ no names are multiply defined in a structure type
Γ′ ` P′ 7→ B′ lookup of a path in a typing context
Γ′ ` Ty′ well-formed types
Γ′ ` B′ well-formed bindings
Γ′ ` M′ well-formed structure types
Γ′ ` F′ well-formed functor types
Γ′ ` B′ <: B′ subtyping for bindings
Γ′ ` M′ <:M′ subtyping for structure types
Γ′ ` F′ <: F′ subtyping for functor types
Γ′ ` Ty′ ≡ Ty′ type equality
Γ′ ` Ty′ δp Ty′ type equality that only expands a top-level path
Γ′ ` D′ : B′  D′ typing for definitions, adds annotations
Γ′ ` S′ :M′  S′ typing for structures, adds annotations
Γ′ ` Ds′ :M′  Ds′ typing for sequences of definitions, adds annotation
Γ′ ` E′ : Ty′  E′ typing for expressions, adds annotations
Γ′ `p E′ : Ty′  E′ as above, expands types that are paths
Function Meaning
σ : B′ → id gets the identifier of a binding
σn : B′ → n gets the name of a binding
dom : Γ′ → ids gets all of the identifiers bound by a typing context
dom :M′ → ids gets all of the identifiers bound by a structure type
domN :M′ → ns gets all of the names bound by a structure type
·{· ← ·} :M′ × id× P′ →M′ substitutes a path for an ident. in a structure type



31

Γ′ ` P′ 7→ B′

σ(B) = id

Γ1,B,Γ2 ` id 7→ B
(look1′)

Γ ` P 7→ mi:(M1,B,M2) σn(B) = n1

Γ ` P.n1 7→ B{nj
2 ← P.n2|nj

2 ∈ dom(M1)}
(look2′)

Γ′ ` Ty′

Γ ` int
(Tint′)

Γ ` Ty1 Γ ` Ty2

Γ ` Ty1 → Ty2

(Tfun′)
Γ ` Ty1 Γ ` Ty2

Γ ` Ty1 + Ty2

(Tsum′)

Γ ` Ty1 Γ ` Ty2

Γ ` Ty1 × Ty2

(Tprod′)
(Γ ` P 7→ ti) ∨ (Γ ` P 7→ ti=Ty)

Γ ` P
(Tpath′)

Γ′ ` B′

Γ ` Ty

Γ ` xi:Ty
(Bval′)

Γ ` ti (Btype1′)
Γ ` Ty

Γ ` ti=Ty
(Btype2′)

Γ ` M distinctM
Γ ` mi:M

(Bstr′)
Γ ` F

Γ ` mi:F
(Bftor′)

Γ′ ` M′

Γ ` ε
(Mε′)

Γ ` B Γ,B ` M σ(B) 6∈ dom(Γ)
Γ ` B,M

(M′)

Γ′ ` F′

mi 6∈ dom(Γ) m 6∈ domN(M2)
Γ ` M1 distinctM1 Γ,(mi:M1) ` M2 distinctM2

Γ ` mi:M1 →M2

(F′)

Figure 2.9. Type system for structures and functors



32

Γ′ ` B′ <: B′

Γ ` Ty1 ≡ Ty2

Γ ` xi:Ty1 <: xi:Ty2

(subB1′)
Γ ` ti <: ti (subB2′)

Γ ` ti=Ty <: ti (subB3′)
Γ ` Ty1 ≡ Ty2

Γ ` ti=Ty1 <: ti=Ty2

(subB4′)

Γ ` M1 <:M2

Γ ` mi:M1 <: mi:M2

(subB5′)
Γ ` F1 <: F2

Γ ` mi:F1 <: mi:F2

(subB6′)

Γ′ ` M′ <:M′

Γ ` ε <: ε
(subStr1′)

Γ,B ` M1 <:M2

Γ ` B,M1 <:M2
(subStr2′)

Γ ` B1 <: B2 Γ,B1 ` M1 <:M2

Γ ` B1,M1 <: B2,M2
(subStr3′)

Γ′ ` F′ <: F′

Γ ` M3 <:M1 Γ,(mi:M3) ` M2 <:M4

Γ ` mi:M1 →M2 <: mi:M3 →M4

(subF′)

Γ′ ` Ty′ ≡ Ty′

Γ ` P 7→ (ti=Ty)
Γ ` P ≡ Ty

(eqpath′)
Γ ` Ty ≡ Ty

(eqrefl′)
Γ ` Ty2 ≡ Ty1

Γ ` Ty1 ≡ Ty2

(eqsym′)

Γ ` Ty1 ≡ Ty3 Γ ` Ty3 ≡ Ty2

Γ ` Ty1 ≡ Ty2

(eqtrans′)

Γ ` Ty1 ≡ Ty3 Γ ` Ty2 ≡ Ty4

Γ ` Ty1 → Ty2 ≡ Ty3 → Ty4

(eqfun′)

Γ ` Ty1 ≡ Ty3 Γ ` Ty2 ≡ Ty4

Γ ` Ty1 + Ty2 ≡ Ty3 + Ty4

(eqprod′)

Γ ` Ty1 ≡ Ty3 Γ ` Ty2 ≡ Ty4

Γ ` Ty1 + Ty2 ≡ Ty3 + Ty4

(eqsum′)

Figure 2.9. continued



33

Γ′ ` D′ : B′  D′

Γ ` Ty1 Γ ` E1 : Ty2  E2 Γ ` Ty2 ≡ Ty1

Γ ` (xi:Ty1=E1) : (xi:Ty1) (xi:Ty1=E2)
(Dval′)

Γ ` Ty

Γ ` (ti=Ty) : (ti=Ty) (ti=Ty)
(Dtype′)

Γ ` S1 :M S2

Γ`(structure mi=S1) : (mi:M) (structure mi:>M=S2)
(Dstr′)

mi
2 6∈ dom(Γ) m2 6∈ domN(M2)

Γ ` M1 distinctM1 Γ,(mi
2:M1) ` M2 distinctM2

Γ,(mi
2:M1) ` Ds1 :M3  Ds2 Γ,(mi

2:M1) ` M3 <:M2

Γ ` (functor mi
1:(m

i
2:M1 →M2)=Ds1) : (mi

1:(m
i
2:M1 →M2)) 

(functor mi
1:(m

i
2:M1 →M2)=Ds2)

(Dftor′)

Γ′ ` S′ :M′  S′

Γ ` Ds1 :M2  Ds2 Γ ` M1 distinctM2 Γ ` M2 <:M1

Γ ` (Ds1:>M1) :M1  (Ds2:>M1)
(Sbody′)

Γ ` P1 7→ mi
1:F Γ ` P2 7→ mi

2:M1

F = mi
3:M2 →M3 Γ ` M1 <:M2 M4 =M3{mi

3 ← P2}
Γ ` (P1(P2)) :M4  (P1:F(P2:M1):>M4)

(Sapp′)

Γ′ ` Ds′ :M′  Ds′

Γ ` ε : ε ε
(Dsε′)

Γ ` D1 : B D2 Γ,B ` Ds :M Ds2 σ(B) 6∈ dom(Γ)
Γ ` (D1 Ds1) : (B,M) (D2 Ds2)

(Ds′)

Figure 2.9. continued



34

Γ′ ` E′ : Ty′  E′

z ∈ Z
Γ ` z : int z

(Eint′)
Γ ` P 7→ xi:Ty

Γ ` P : Ty P
(Epath′)

Γ ` E1 : Ty1  E2 Γ ` Ty2

Γ ` injl E1 : Ty1 + Ty2  injl E2
(Einjl′)

Γ ` E1 : Ty2  E2 Γ ` Ty1

Γ ` injr E1 : Ty1 + Ty2  injr E2
(Einjr′)

Γ `p E1 : Ty1 + Ty2  E4

Γ `p E2 : Ty3 → Ty4  E5 Γ `p E3 : Ty5 → Ty6  E6

Γ ` Ty1 ≡ Ty3 Γ ` Ty2 ≡ Ty5 Γ ` Ty4 ≡ Ty6

Γ ` case E1 of E2 + E3 : Ty4  case E4 of E5 + E6
(Ecase′)

Γ ` E1 : Ty1  E3 Γ ` E2 : Ty2  E4

Γ ` (E1, E2) : Ty1 × Ty2  (E3, E4)
(Eprod′)

Γ `p E1 : Ty1 × Ty2  E2

Γ ` π1E1 : Ty1  π1E2
(Epj1′)

Γ `p E1 : Ty1 × Ty2  E2

Γ ` π2E1 : Ty2  π2E2
(Epj2′)

xi 6∈ dom(Γ) Γ ` Ty1 Γ,xi:Ty1 ` E1 : Ty2  E2

Γ ` (λxi:Ty1.E1) : (Ty1 → Ty2) (λxi:Ty1.E2)
(Efun′)

Γ `p E1 : Ty1 → Ty2  E3 Γ ` E2 : Ty3  E4 Γ ` Ty1 ≡ Ty3

Γ ` E1 E2 : Ty2  E3 E4
(Eapp′)

Γ ` Ds1 :M Ds2
Γ,M ` E1 : Ty1  E2 Γ,M ` Ty1 ≡ Ty2 Γ ` Ty2

Γ ` (let Ds1 in E1) : Ty2  (let D2 in E2)
(Elet′)

Γ′ `p E′ : Ty′  E′

Γ ` E1 : Ty1  E2 Γ ` Ty1 δpTy2 Ty2 is not a path (P)
Γ `p E1 : Ty2  E2

Figure 2.9. continued



35

The structure and functor language has only generative functors, which Standard ML

uses, and not applicative functors [Leroy 1995], which OCaml uses. In a generative functor

system, the opaque types produced from any two functor applications are different; in

other words, each functor application generates new types. Units are similarly generative;

two invocations, even of the same unit, create two incompatible types for each opaque

type export. In an applicative functor system, every application of a functor to equivalent

arguments yields opaque types that are known to be equal. I do not address applicative

functors in this work.

The language of Figure 2.8 departs from SML’s generative first-order functors in the

following ways.

• Structure and functor definitions can be freely nested. Although my structure and

functor language does not directly support higher-order functors (i.e., functors as

the parameter to and result of another functor), the same effect can be achieved

by importing and exporting structures that contain functor definitions. Thus,

Section 2.3.2’s translation gives a suitable account of higher-order functors.

• Each structure definition must be given an explicit structure type, whereas in SML,

most general signatures are inferred for a structure that lacks an explicitly given

type.

• There are no where or sharing clauses for structure types, and the argument

expression in a functor application must be a path (as opposed to an arbitrary

structure expression). Leroy [1996] shows that these limitations do not impact

expressiveness.

• The functor expression in a functor application must be a path.

• Structures cannot be renamed (e.g., structure x = y in SML). Support for this

feature requires a mechanism to redirect all opaque type definitions in x to their

origination in y; this mechanism is known as strengthening or selfification.

2.3.1 Diamond Imports

An example of the well-known diamond import pattern in both systems serves to

illustrate their correspondence prior to the presentation of the formal translation. Dia-

mond import refers to a linking pattern where two functors are instantiated with the same

argument, and their results are subsequently linked together. In the final linking step, the

initial argument should be known to be the same for both modules being linked. In SML,



36

sharing constraints are used to solve diamond import problems; however, translucent

types are also sufficient to solve the problem. The lack of translucent types prevented

diamond imports from being expressible in Flatt and Felleisen’s unit system.

A typical example of a diamond import is a parser, set up as in Figure 2.10 (using

multiple argument functors to simplify the example). The front end functor imports the

types t and u; however, P .u is declared equal to L.t, allowing front end ’s body to rely on

this equality, but requiring the functor’s arguments to satisfy it. The key to this example

is that the type symbols.t is written down at a single place, and the rest of the example

systematically refers to it using type equations.

The same techniques apply to a corresponding unit-based program (Figure 2.11,

some type annotations and identifier stamps are omitted). Without translucent type

exports, symbols unit would have to export t opaquely, leading l and p to export t

and u opaquely, which would prevent them from linking with front end. Flatt and

Felleisen’s unit system worked around this deficiency by linking lexer, parser, front end

and symbols unit together all in a single compound expression, so that the opaquely

exported type t from symbols unit is directly imported into each of the other units

(including front end). All of the symbol types t are known to be the same since they

arise from the same place. Translucency allows the information about the equality of the

opaque types to be kept and propagated, which enables the incremental style of linking

of Figure 2.11.

2.3.2 Translating Structures and Functors

Table 2.2 and Figure 2.12 present a translation from the language of structures and

functors to the language of modules and units (the translation relations omitted from

Figure 2.12 are all straightforward structural traversals). A structure definition translates

structure symbols :> [t] = (t=. . . ) . . .
functor lexer : (S :[t]→[t=S .t,get tok :. . . t . . . ]) =. . .
functor parser : (S :[u]→[u=S .u,do parse:. . . u. . . ]) =. . .
functor front end : (L:[t,get tok :. . . t . . . ],

P :[u=L.t,do parse:. . . u. . . ]→. . . ) =. . .
structure l :>[t=symbols.t,get tok :. . . t . . . ]=lexer(symbols)
structure p:>[u=symbols.t,do parse:. . . u. . . ]=parser(symbols)
structure . . . = front end(l ,p)

Figure 2.10. Diamond import example: structures and functors



37

invoke (unit import [] export [t]. t = . . .) as symbols:. . .
symbols unit = unit import [] export [t=symbols.t]. t=symbols.t
lexer = unit import [St] export [t=St, get tok :. . .t . . .]. . . .
parser = unit import [Su] export [u=Su, do parse:. . .u. . .]. . . .
front end = unit import [Lt, get tok :. . .Lt . . ., Pu=Lt, do parse:. . .Pu. . .]

export [. . .]. . . .
l = compound import [] export [t2=symbols.t, get tok :. . .t2. . .]

link lexer :import [St] export [t2=St, get tok :. . .t2. . .]
symbols unit:import [] export [t1=symbols.t]

where St←t1

p = compound import [] export [u=symbols.t, do parse:. . .u. . .]
link parser :import [Su] export [u=Su, do parse:. . .u. . .]

symbols unit:import [] export [t=symbols.t]
where Su←t

invoke (compound import [] export [. . .]
link l :import [] export [t=symbols.t, get tok1:. . .t . . .]

p:import [] export [u=symbols.t, do parse1:. . .u. . .]
front end :import [Lt, get tok2:. . .Lt . . ., Pu=Lt, do parse2:. . .Pu. . .]

export . . .
where (Lt←t) (get tok2←get tok1)

(Pu←u) (do parse2←do parse1)) as . . .

Figure 2.11. Diamond import example: modules and units



38

Table 2.2. Glossary for the structure and functor to module and unit translation
Relation Meaning
P′ =⇒ P translates s.f. paths to m.u. paths
Ty′ =⇒ Ty translates types
B′ =⇒M translates s.f. bindings to sequences of m.u. bindings
M′ =⇒M translates structure types to module descriptions
F′ =⇒ Ty translates functor types to of m.u. types
Γ′ =⇒ Γ translates typing contexts
D′ =⇒ Ds translates s.f. definitions to sequences of m.u. def’ns
S′ =⇒ E translates structures to unit expressions
Ds′ =⇒ Ds translates definition sequences
E′ =⇒ E translates expressions
Function Meaning
domN :M→ n . . .n gets all of the names bound by a module description
strengthen : Pm ×M→M redirects any opaque types to the path
strengthen : Pm × B→ B redirects any opaque types to the path
structUnit : mi ×M→ D builds a unit that exports the module description,

uses the types in mi

MtoDs : Pm ×M→ Ds builds definitions that have the given module descr.,
use the definitions in the path

BtoD : Pm × B→ D builds a definition that has the given binding,
uses the definitions in the path



39

B′ =⇒M

Ty′ =⇒ Ty

xi:Ty′ =⇒ [xi:Ty] ti =⇒ [ti]

Ty′ =⇒ Ty

ti=Ty′ =⇒ [ti=Ty]

M′ =⇒M1 B1 = mi:M1 (domN(M1))
M2 = strengthen(mi,M1) B2 = exp modj:M2 (domN(M2))

mi:M′ =⇒ [B1,(m uniti:unitT [B2] (ε→ exp mod))]

F′ =⇒ Ty

mi:F′ =⇒ m uniti:Ty

F′ =⇒ Ty

M′
1 =⇒M1 M′

2 =⇒M2 ns = domN(M2) B = mi:M1 (domN(M1))

mi:M′
1 →M′

2 =⇒ unitT (B,M2) (m→ ns)

D′ =⇒ Ds

E′ =⇒ E Ty′ =⇒ Ty

xi:Ty′=E′ =⇒ xi:Ty=E
(transD1)

Ty′ =⇒ Ty

ti=Ty′ =⇒ ti=Ty
(transD2)

M′ =⇒M S′ =⇒ E D = structUnit(mi,M)

structure mi:>M′=S′ =⇒ (invoke E as mi:(M)) D
(transD3)

F′ = (mj
2:M

′
1 →M′

2) F′ =⇒ Ty M′
1 =⇒M1

M′
2 =⇒M2 Ds′ =⇒ Ds B = mj

2:M1 (domN(M1))

functor mi
1:F

′=Ds′ =⇒ m1 uniti:Ty=unit import B exportM2. Ds
(transD4)

S′ =⇒ E

Ds′ =⇒ Ds M′ =⇒M E = unit import ε exportM. Ds

Ds′:>M′ =⇒ E
(transS1)

F′ = (mi
1:M′

3 →M′
4)

M′
1 =⇒M1 M′

2 =⇒M2 M′
3 =⇒M3 M′

4 =⇒M4

B1 = mi:M3 (domN(M3)) IE1 = import [B1] exportM4

B2 = exp modj:M1 (domN(M1)) IE2 = import ε export [B2]
E = compound import ε exportM2 link P2 unit:IE2 P1 unit:IE1

where mi ← exp modj

P1:F′(P2:M′
1):>M′

2 =⇒ E
(transS2)

Figure 2.12. Translation from structures and functors to modules and units



40

MtoDs : Pm ×M→ Ds

MtoDs(P, ε) = ε

MtoDs(P, (B,M)) = BtoD(P,B)MtoDs(P,M)

BtoD : Pm × B→ D

BtoDs(P, xi:Ty) = xi:Ty=P.x

BtoDs(P, ti) = ti=P.t

BtoDs(P, ti=Ty) = ti=Ty

BtoDs(P,mi:M (ns)) = module mi provide ns =MtoDs(P.m̂,M)

strengthen : Pm ×M→M

strengthen(P, ε) = ε

strengthen(P, (B,M)) = strengthen(P,B),strengthen(P,M)

strengthen : Pm × B→ B

strengthen(P, xi:Ty) = xi:Ty

strengthen(P, ti) = ti=P.t

strengthen(P, ti=Ty) = ti=Ty

strengthen(P,mi:M (ns)) = mi:strengthen(P.m̂,M) (ns)

structUnit : mi ×M→ D

Ds =MtoDs(mi,M1)
M2 = strengthen(mi,M1) B = exp modj:M2 (domN(M2))

M = module exp modj provide domN(M1) = Ds Ty = unitT B (→ exp mod)

structUnit(mi,M1) = m uniti:Ty=unit import ε export B. M

Figure 2.12. continued



41

into two definitions, a module definition and a unit definition. The module is created by

invoking a unit whose exports are the same as the structure’s. By going through a unit,

the structure’s body is appropriately sealed. However, this unit cannot be used as the

argument in a functor application; the semantics of a structure definition require that

the structure’s body is evaluated once, and that opaque type exports are generated once.

Using the unit more than once will create multiple types and run the body multiple times.

To ensure single instantiation of a structure-representing unit, a separate unit is built

specifically for use in functor applications (the unit suffix is appended to the name to

distinguish between the module and the unit). This unit has the same imports and exports

as the invoked unit, but each definition in its body simply redirects to the definition

provided by the invoked unit. Furthermore, the functor-argument unit replaces all of the

opaque exports in its signature with translucent ones that refer to the invoked unit. This

operation is similar to the “strengthening” or “selfification” used to support structure

renaming. The structUnit function builds the functor-argument unit using the ΓtoDs

function to construct the body from the old export context, and using the strengthen

function to construct the new export context from the old one.

The following example demonstrates the translation from a structure to a module and

unit.

structure m :> [t, x :t] =
(t=int
x :t=1):>[t, x :t]

=⇒
invoke (unit import [] export [t, x :t].

t=int
x :t=1 )

as m:([t, x :t])
m unit:. . .=

unit import [] export [(exp mod :[t=m.t, x :t] (x t))].
module exp mod provide x t =

t=m.t
x :t=m.x

A functor definition translates into the definition of a unit whose imports and exports

correspond to the functor’s imports and exports. Because a functor imports a single

structure that groups all of its imported values and types, the unit imports a single

module that performs the same grouping. A functor application becomes a compound

unit that links the argument structure’s unit to the functor’s import. The structure’s



42

unit exports its bindings under the single module named exp mod to facilitate functor

application and because functors produce structures as well as consuming them.

functor f :(i :[t, x :t]→[t=i .t, y:t]) =
t=i .t
y:t=x

structure s :> [t=m.t, y:t] = f :. . . (m:. . . )
=⇒
f :. . . =

unit import [(i :[t, x :t] (x t))] export [t=i .t, y:t].
t=i .t
y:t=x

invoke (compound import [] export [y:t, t=m.t]
link f :import . . . export . . .

m unit:import . . . export . . .
where i←exp mod) as s:(. . .)

s unit:. . .= . . .

The functor application construct requires that the paths to the functor and structure

are annotated with their types. These annotations are used to create the unit types in

the link section of the compound unit, and the functor’s parameter is further used in the

link clause, since unit linking is by name.

The transformation can produce programs whose size is quadratic in the size of the

input. This is due to the strengthen function. Consider a module description that

contains a nesting of modules n levels deep where the innermost module contains n opaque

type specifications. The strengthened version contains n translucent type definitions,

each of which contains a path of length n. The same considerations apply to theMtoDs

function used in structUnit, but for value as well as type definitions. For programs

with a constant bound on module nesting depth, the translation is linear because each

unit constructed by structUnit has the same number of definitions as the original

structure, and the size of each definition is bounded by the module nesting depth; the

other component of the translation’s results are essentially rearrangements of the input.

Theorem 2.1 states that if a structure and functor program has a type, then the result

of the translation =⇒ has a type that is related to the original type by the translation.7 I

assume that source programs do not contain identifiers ending in unit to avoid collisions

between names in the original program and the generated names that end in unit.

7These lemmas, theorems and proof sketches rely on the formal semantics of the module and
unit language developed in Chapter 3.



43

Lemma 2.1 (Strengthen). If Γ is well-formed (there existsM such that ε ` M : Γ) then

1. Γ ` P 7→ mi:M (ns) implies Γ ` strengthen(P,M)

2. Γ ` P 7→ B implies Γ ` strengthen(P,B)

3. Γ; ε ` P 7→ mi:M (ns) implies Γ ` MtoDs(mi,M) : strengthen(P,M)

4. Γ; ε ` P 7→ B implies Γ ` BtoDs(mi,B) : strengthen(P,B).

Proof. By structural induction on B andM.

Lemma 2.2 (Context translation). If Γ′ is well-formed and Γ′ =⇒ Γ then

1. Γ′ ` Ty′ and Ty′ =⇒ Ty implies Γ ` Ty

2. Γ′ ` M′ andM′ =⇒M implies Γ ` M

3. Γ′ ` F′ and F′ =⇒ Ty implies Γ ` Ty

4. Γ′ ` B′ and B′ =⇒M implies Γ ` M.

Proof. By induction on the translation relations, using Lemma 2.1.

Lemma 2.3 (Translation subtyping). If Γ′ is well-formed and Γ′ =⇒ Γ then

1. Γ′ ` Ty′1 ≡ Ty′2 and Ty′1 =⇒ Ty1 and Ty′2 =⇒ Ty2 implies Γ1 ` Ty1 <: Ty2

2. Γ′ ` M′
1 <:M′

2 andM′
1 =⇒M1 andM′

2 =⇒M2 implies Γ ` M1 <:M2

3. Γ′ ` F′
1 <: F′

2 and F′
1 =⇒ Ty1 and F′

2 =⇒ Ty2 implies Γ1 ` Ty1 <: Ty2

4. Γ′ ` B′
1 <: B′

2 and B′
1 =⇒M1 and B′

2 =⇒M2 implies Γ1 ` M1 <:M2.

Lemma 2.4 (Translation lookup). If Γ′ is well-formed and Γ′ =⇒ Γ then

1. Γ′ ` P 7→ mi:M′ andM′ =⇒M and

M2 = [exp modj:(strengthen(mi,M) (domN(M)))] implies

Γ ` P unit 7→ m uniti:unitTM2 (ε→ exp mod)

2. Γ′ ` P 7→ mi:F′ and F′ =⇒ Ty and implies Γ ` P unit 7→ m uniti:Ty.

Proof sketch. By structural induction on P, with a structural induction on Γ′ in the base

case (when P is an identifier).

Theorem 2.1. If Γ′ is well-formed (for some M′, ε ` M′ : Γ′) and Γ′ =⇒ Γ then

1. D′
1 =⇒ Ds and Γ′ ` D′

2 : B′  D′
1 and B′ =⇒M implies Γ; ε ` Ds :M

2. S′1 =⇒ E and Γ′ ` S′2 :M′  S′1 andM′ =⇒M implies

Γ ` E : unitTM (ε→ domN(M))

3. Ds′1 =⇒ Ds1 and Γ′ ` Ds′2 :M′  Ds′1 andM′ =⇒M implies Γ; ε ` Ds1 :M

4. E′
1 =⇒ E1 and Γ′ ` E′

2 : Ty′  E′
1 and Ty′ =⇒ Ty implies Γ ` E1 : Ty.

Proof sketch. The proof proceeds by rule induction on the translation relation for D′
1, S′

1,

Ds′1, and E′
1.

case (transD1): By lemmas 2.2 and 2.3.

case (transD2): By lemma 2.2.



44

case (transD3): By lemma 2.1.

case (transD4): By lemma 2.3.

case (transS1): By lemmas 2.2 and 2.3.

case (transS2): By lemmas 2.2 and 2.4.

2.3.3 Cyclic Linking Dependencies

Although SML’s generative functors did not originally support cyclic linking de-

pendencies (recursive linking), there are several proposals for and implementations of

recursive functor extensions [Crary et al. 1999; Russo 2001; Dreyer 2005b]. Units avoid

three significant problems faced by these extensions.

2.3.3.1 Avoiding double vision. In his thesis, Dreyer describes a potentially

serious problem for recursive functors that he dubs the double vision problem [Dreyer

2005b]; he also notices that units avoid the problem. When a functor imports a function

whose type contains an abstract type that is defined by the functor itself, the type system

needs to match up the defined type with the import’s type. The inability to do so, i.e.,

the double-vision problem, is illustrated by the following simple example (which does not

typecheck).

dv unit=
unit import [t=int, x :t] export [u, y:u, f :int→u]

u=int
y:u=1
f :int→u=λ z :int. x+z

dv cmpd=
compound import [] export [u, f :int→u]

link dv unit:import [t=int, x :t] export [u, y:u, f :int→u]
where (t←u) (x←y)

The intent is that the exported type u should be opaque to the outside, and that the

imported type t should be known as an int inside of the module. However, at the

compound, u is opaque, and not known to be an int. Changing t=int into an opaque

export, t, would allow the compound unit to check, but results in an ill-typed body of

u. Using t=u as the import instead of t=int makes both the unit and compound unit

well-typed. An import referring to an export this way is not supported by functors.



45

2.3.3.2 Bootstrapped heap. Okasaki [1998] describes a bootstrapped heap data

structure with excellent worst-case execution times.8 The key property of bootstrapped

heaps is that the type of an element of a heap is defined in terms of the type of heaps

themselves as follows:

datatype ’a Heap = E | H of ’a * (’a Heap) PrimH.T

where PrimH is a structure that defines a primitive, nonbootstrapped heap. The defini-

tions of functions on the Heap type have corresponding references to functions from the

PrimH structure.

Okasaki shows how to parameterize the bootstrapped heap over the primitive heap

using a recursive structure definition and a functor MakeH that makes primitive heaps

(a functor that makes a primitive heap, given an element type, is used because the

bootstrapped heap needs to instantiate the type of elements in the primitive heap).

structure rec BootstrappedElem =
struct
datatype T = E | H of Elem.T * PrimH.Heap
fun compare = ... Elem.compare ...

end
and PrimH = MakeH(BootstrappedElem)

This idiom is difficult to support with recursive generative functors (although recursive

applicative functors can support them naturally). The bootstrapped heap example is a

standard test of recursive modules for ML, and it is described by Russo [2001], Leroy

[2003], and Dreyer [2005a].

Figure 2.13 shows how bootstrapped heaps can be defined with units. The Belem unit

corresponds to the BootstrappedElem structure where the elemPT import corresponds

to Elem.T, the compareP import to Elem.compare, and the heapT import to PrimH.Heap.

The compound expression in the definition of Bootstrap combines a unit MakeH that

builds primitive heaps with the Belem unit to create the core of the bootstrapped heap.

The surrounding unit encapsulates the bootstrapped heap with the interface of a heap-

making unit. It imports an element and exports a bootstrapped heap of those elements.

The function abstracts this unit over the primitive heap-making unit to be used in the

construction of the bootstrapped heap.

8Bootstrapped heaps support constant time findMin, merge, and insert operations, and
a logarithmic deleteMin operation. In keeping with the theme of Okasaki’s book, they are a
persistent (i.e., purely functional) data structure.



46

τ = unitT [elemT , compare:elemT→elemT→int, heapT ,
insert:elemT→heapT→heapT ]
(elemT Compare → heapT insert)

Belem =
unit import [elemPT , compareP :elemPT→elemPT→int, heapT ]

export [elemT=int+(elemPT×heapT), compare:elemT→elemT→int].
elemT=int + (elemPT × heapT)
compare:elemT→elemT→int = λ e:elemT . λ e:elemT . . . .compareP . . .

Bootstrap : τ→τ =
λ MakeH : τ .

unit import [elemT 0, compare0:elemT 0→elemT 0→int]
export [heapT 0, insert:elemT 0→heapT 0→heapT 0].

invoke
(compound import []

export [heapT 1, elemT 2=int+(elemT 0×heapT 1),
insert:elemT 2→heapT 1→heapT 1]

link MakeH :import [elemT 1, compare1:elemT 1→elemT 1→int]
export [heapT 1, insert1:elemT 1→heapT 1→heapT 1]

Belem:import [elemPT 2, compareP2:elemPT 2→elemPT 2→int,
heapT 2]

export [elemT 2=int+(elemPT 2×heapT 2),
compare2:elemT 2→elemT 2→int]

where (elemT 1←elemT 2) (compare1←compare2)
(elemPT 2←elemT 0) (compareP2←compare0) (heapT 2←heapT 1)

) as PrimH :. . .
heapT = PrimH .heapT
insert:PrimH .elemT→PrimH .heapT→PrimH .heapT = . . .PrimH .insert . . .

Figure 2.13. Recursive linking example: bootstrapped heap



47

2.3.3.3 Independent compilation The ML-based bootstrapped heap example

above is made challenging by the requirement that the contents of MakeH are not known

when attempting to compile the recursive structure statement. If they were known, the

compiler could merge the bodies of the two structures (BootstrappedElem and PrimH)

and account for recursive dependencies directly with ML’s facilities for recursive type and

value definitions. However, such a restriction would destroy independent compilation

because the application of functors such as MakeH would rely entirely on the functor’s

implementation, instead of just its interface.

The following recursive structure definition typifies a more difficult situation where

both parts of a recursive structure definition are placed in separate components.

structure rec S = Sfun(T)
and T = Tfun(S)

The Sfun functor consumes a T structure and produces an S structure and Tfun consumes

an S to produce a T.

Although the recursive structure can be type checked and compiled, a run-time error

occurs because the T structure is used before its definition is executed. The error arises

even if the functor bodies consist entirely of syntactic values, because it arises from an

ill-founded recursion at the structure-level. Russo [2001] solves the problem by using eta-

expanded structure definitions as the functors’ parameters. Essentially, the production

of a structure from a functor requires evaluation of the functor’s body which refers to the

as-of-yet undefined argument; the eta expanded argument structure protects all references

to the original argument structure with lambda bindings, thereby delaying references to

the argument until after the entire recursive structure is built (in fact until the function

is actually invoked). In contrast, unit compounding does not execute the bodies of any

units, and so there is so there is no need to delay the reference to an import.

2.4 Toward a Practical Language

The model of modules and units presented thus far forms the basis of an ML-like

component-oriented programming language. The following additions to the model would

make it a practical language. Chapters 4 and 5 discuss many of these concerns in the

setting of an untyped language.

Signatures: Signature definitions enable reuse of import and export specifications for

units and compound units. An ML-like signature facility would work with little



48

modification, as long as a where clause for an import signature can refer to bindings

in the export signatures, and vice versa (e.g., recursive dependent signatures [Crary

et al. 1999]).

Type annotations: The type annotations on value definitions and function parameters

should be optional and supplied by type inference. The context annotation on

invoke and the import/export annotation on each subpart of a compound unit (that

is, in the U production) could be relaxed to simple lists of imported and exported

identifiers, or they could be supplied as signatures. However, these annotations

should not be omitted entirely since they specify which names are introduced by

the invoke, and which names are available as linkages in a compound.

Because component-oriented programming requires full documentation of compo-

nent interfaces, there should be no attempt to infer the imports and exports (and

hence types) of unit values. Thus, the main difficulty in performing type inference

is the addition of subtyping to the core language. This difficulty could be easily

avoided by making units second-class, and hence completely trackable at compile

time.

Linking: Specifying a linkage for each import in a compound is tedious in all but the

smallest systems. Linkages should be specified between signatures, which would

denote linkages of all of their components.

Renaming: Our model uses stamps to differentiate between internal and external names.

A practical system should provide mechanisms for explicitly managing the mapping

between internal and external names on unit imports and exports.

Compilation management: Compilation management in this setting entails searching

the pool of top-level modules to find and compile each of a module’s dependencies

before compiling the module itself. To make the search unambiguous, each module

in the pool must have a unique name, although in a practical setting uniqueness

might instead be required at the level of file paths or URIs. This is most similar to

Objective Caml’s [Leroy 2004] compilation management, which makes all definitions

(excepting in the interactive environment) appear in a top-level structure whose

name corresponds with the name of the file containing it. (Top-level structures can

be sealed with signatures and used as functor arguments, just like other structures.)



49

Haskell’s and PLT Scheme’s compilation management are also based on top-level

modules; however, dependencies are stated explicitly by importing entire modules,

instead of implicitly as the heads of paths.

Top-level components: Often, when writing highly componentized programs, top-level

modules contain only the definition of a single unit. Direct support for this idiom

with a top-level component construct that combines unit and module features could

be implemented with a combination of our modules and units.

2.5 Related Work

Dreyer et al. [2003] provide a definitive model of ML module systems, but they do

not include support for cyclic dependencies. Type-theoretic work on cyclic dependencies

for ML has yielded the notion of recursive dependent signatures [Crary et al. 1999] and

an account of recursive type generativity that resembles the backpatching semantics of

Scheme recursion [Dreyer 2005a]. Russo adapts the former to a practical extension of

SML with recursive structures [Russo 2001]; since functor linking remains tied to functor

invocation in this system, mutually-recursive functions across functor boundaries work

only with an eta expansion, as discussed in Section 2.3.3.

Dreyer’s dissertation [Dreyer 2005b] provides a critique of units in comparison to ML

modules and approaches to recursive functors. His comparison notes the problems with

units that we address here with the first-order module construct and translucent types,

and he also notes that units naturally avoid the “double-vision” problem. His dissertation

also contains a recursive module system that solves these problems, but does not support

separate compilation.

Harper and Lillibridge [1994] introduced translucent sums at the same time as Leroy’s

manifest types [Leroy 1994]. These systems introduced the kind of translucency added

to units in this paper, but neither system supports recursive linking. Harper’s system

supports first-class functors that obey a phase distinction allowing type checking to fully

precede evaluation. Units are first-class values in the same way as these functors.

2.6 Conclusion

The model of units and modules presented in this chapter is unique in supporting

the following criteria: translucent and opaque type imports and exports, independent

unit compilation, and recursive unit linking that avoids ill-founded recursive module



50

definitions without requiring manual intervention (although recursive value definitions

can be ill-founded).

The model accounts for internal linking and external linking as orthogonal concepts.

Although external linking offers the greatest flexibility for code reuse, programming

without any internal linking is infeasible. For example, the fully functorized style of

ML programming, which requires external linkages that are performed by functor appli-

cation, enforces a high overhead on the programmer in cases where parameterization is

unnecessary. Furthermore, the system that manages the externally linked entities must

support direct references and internal linking, so that the programmer can refer to the

particular components that he wishes to externally link.



CHAPTER 3

THE FORMAL SEMANTICS OF TYPED

UNITS

The language of modules and units (Figure 2.1) is formally specified with a type

system and small-step operational semantics. A type soundness proof in the style of

Wright and Felleisen [1994] characterizes the correspondence between the type system

and operational semantics (Section 3.3).

The type system (Section 3.1) is based on the manifest type system for higher-order

functors [Leroy 1994; Leroy 1996] and is similar to the structure and functor type system

of Figure 2.9. Notable extensions of these systems (besides the units themselves) include

support for subtyping in the base language due to first-class unit values, and support for

modules that can restrict name visibility without providing sealing.

The operational semantics (Section 3.2) is specified as an evaluation-context-based

term rewriting system. Such systems typically rely on substitution, but this system

instead keeps all definitions in place to avoid duplicating any generative type defini-

tions. Such duplication would render the standard proof techniques for type soundness

inapplicable, since intermediate steps in a program’s evaluation could become ill-typed.

Additionally, the operational semantics requires a language construct (rec) for arbitrary

recursive definitions to express the reduction of recursively linked compound units.

3.1 Type System

Table 3.1 summarizes the functions and relations that make up the type system for

the language of modules and units. Figure 3.1 contains the type system.

The relations that define well-formed module descriptions (M), bindings (B), and

types (Ty) ensure that no identifier shadows another, that each type path refers to

a defined type, and that module bindings and unit types are well-formed. The first

restriction is for the type system’s convenience; any otherwise well-formed type can meet



52

Table 3.1. Glossary for the module and unit type system
Relation Meaning
distinctM no names are multiply defined
distinctIM no identifiers are multiply defined
M permM one module description permutes the other
ids perm ids one identifier sequence permutes the other
M;M interleaveM the left descriptions interleave to form the right one
B ∈ Γ ∪M the binding is in the context or description
Γ ` P 7→ B lookup of a path in a typing context
Γ ` M well-formed module descriptions
Γ ` B well-formed bindings
Γ ` Ty well-formed types
Γ ` M <:M subtyping for module descriptions
Γ ` B <: B subtyping for bindings
Γ ` Ty <: Ty subtyping
Γ;M ` Ds :M typing for sequences of definitions
Γ ` D : B typing for definitions
Γ ` E : Ty typing for expressions
Γ `p E : Ty as above, expands types that are paths
Γ ` importM exportM : Ty typing for unit interfaces
Γ ` U . . .U :M;M typing for interface annotated unit expressions
Γ;M;M;L . . .L ` L well-formed unit linkages
` M <:M subtyping for module descrs. (no type expansion)
` B <: B subtyping for bindings (no type expansion)
` Ty <: Ty subtyping (no type expansion)
Γ ` M δ M type expansion for module descriptions
Γ ` B δ B type expansion for bindings
Γ ` Ty δ Ty type expansion
Γ ` Ty δP Ty type expansion for top-level variables only
Function Meaning
dom : Γ ∪M∪ B→ ids gets the identifiers bound by the given bindings
domN : Γ ∪M∪ B→ ns gets the names bound the given bindings
Lleft : L . . .L→ ids gets the left side of a linkage
P̂ : P puts hats on the names in the path



53

Γ ` M

Γ ` ε
(Mε)

Γ ` B Γ,B ` M dom(B) ∩ dom(Γ) = ∅
Γ ` B,M

(M)

Γ ` B

Γ ` Ty

Γ ` xi:Ty
(Bval)

Γ ` ti (Btype1)
Γ ` Ty

Γ ` ti=Ty
(Btype2)

Γ ` M ns ⊆ domN(M) distinct(M)

Γ ` mi:M (ns)
(Bmod)

Γ ` Ty

Γ ` int
(Tint)

Γ ` Ty1 Γ ` Ty2

Γ ` Ty1 → Ty2

(Tfun)
Γ ` Ty1 Γ ` Ty2

Γ ` Ty1 + Ty2

(Tsum)

Γ ` Ty1 Γ ` Ty2

Γ ` Ty1 × Ty2

(Tprod)
(Γ ` P 7→ ti) ∨ (Γ ` P 7→ ti=Ty)

Γ ` P
(Tpath)

Γ ` M ns1 ∪ ns2 = domN(M) ns1 ∩ ns2 = ∅ distinct(M)
Γ ` unitTM (ns1 → ns2)

(Tunit)

Figure 3.1. Type system for modules and units



54

Γ;M ` Ds :M

Γ; ε ` ε : ε
(Dsε)

Γ ` D : B (Γ,B);M1 ` Ds :M2 dom(B) ∩ dom(Γ) = ∅
Γ;M1 ` (D Ds) : (B,M2)

(Ds1)

Γ ` B (Γ,B);M1 ` Ds :M2 dom(B) ∩ dom(Γ) = ∅
Γ; (B,M1) ` Ds : (B,M2)

(Ds2)

Γ ` D : B

Γ ` Ty1 Γ ` E : Ty2 Γ ` Ty2 <: Ty1

Γ ` (xi:Ty1=E) : (xi:Ty1)
(Dval)

Γ ` Ty

Γ ` (ti=Ty) : (ti=Ty)
(Dtype)

Γ ` E : Ty1

Ty2 = unitTM (ε→ domN(M)) Γ ` Ty2 Γ ` Ty1 <: Ty2

Γ ` (invoke E as mi:M) : (mi:M (domN(M)))
(Dinv)

Γ; ε ` Ds :M ns ⊆ domN(M) distinct(M)

Γ ` (module mi provide ns=Ds) : (mi:M (ns))
(Dmod1)

Γ ` M1

distinct(M1) ns ⊆ domN(M1) Γ; ε ` Ds :M2 Γ ` M2 <:M1

Γ ` (module mi:M1 provide ns=Ds) : (mi:M1 (ns))
(Dmod2)

Figure 3.1. continued



55

Γ ` E : Ty

z ∈ Z
Γ ` z : int

(Eint)
Γ ` Px 7→ xi:Ty

Γ ` Px : Ty
(Epath)

Γ ` E : Ty1 Γ ` Ty2

Γ ` injl E : Ty1 + Ty2

(Einjl)
Γ ` E : Ty2 Γ ` Ty1

Γ ` injr E : Ty1 + Ty2

(Einjr)

Γ `p E1 : Ty1 + Ty2

Γ `p E2 : Ty3 → Ty4 Γ `p E3 : Ty5 → Ty6 Γ ` Ty1 <: Ty3

Γ ` Ty2 <: Ty5 Γ ` Ty4 <: Ty7 Γ ` Ty6 <: Ty7 Γ ` Ty7

Γ ` case E1 of E2 + E3 : Ty7

(Ecase)

Γ ` E1 : Ty1 Γ ` E2 : Ty2

Γ ` (E1, E2) : Ty1 × Ty2

(Eprod)

Γ `p E : Ty1 × Ty2

Γ ` π1E : Ty1

(Epj1)
Γ `p E : Ty1 × Ty2

Γ ` π2E : Ty2

(Epj2)

xi 6∈ dom(Γ) Γ ` Ty1

Γ,(xi:Ty1) ` E : Ty2

Γ ` (λxi:Ty1.E) : (Ty1 → Ty2)
(Efun)

Γ `p E1 : Ty1 → Ty2

Γ ` E2 : Ty3 Γ ` Ty3 <: Ty1

Γ ` E1 E2 : Ty2

(Eapp)

Γ ` Ds :M Γ,M ` E : Ty2 Γ,M ` Ty2 <: Ty1 Γ ` Ty1

Γ ` let Ds in E : Ty1

(Elet)

Γ ` importM1 exportM2 : Ty
Ty = unitTM4 (ns1 → ns2) Γ;M1 ` Ds :M3 Γ ` M3 <:M4

Γ ` unit importM1 exportM2. Ds : Ty
(Eunit)

Γ ` importM1 exportM2 : Ty
Ty = unitTM7 (ns1 → ns2) Γ ` U1 . . .Um :M3;M4

distinctI (M1,M3,M4) perm (Lleft(L1 . . .Ln)) (dom(M3))
M5 =M4{id1 ← id2 | ∃i.Li = (id1 ← id2)} perm (M1,M5)M6

Γ ` M6 ∀i ≤ n. Γ;M3;M6; (L1 . . .Ln) ` Li Γ ` M6 <:M7

Γ ` compound importM1 exportM2 link U1 . . .Um where L1 . . .Ln :
Ty

(Ecmpd)

Figure 3.1. continued



56

Γ ` importM exportM : Ty

M1;M2 interleaveM3

Ty = unitTM3 (domN(M1)→ domN(M2)) Γ ` Ty

Γ ` importM1 exportM2 : Ty
(IE)

Γ ` U . . .U :M;M

Γ ` ε : ε; ε
(Uε)

Γ ` E : Ty1 Γ ` importM1 exportM2 : Ty2

Γ ` Ty1 <: Ty2 Γ ` U2 . . .Um :M3;M4

Γ ` (E:importM1 exportM2) U2 . . .Um :M1,M3;M2,M4
(U)

Γ;M;M;L . . .L ` L

B1 ∈M1 dom(B1) = id1 B2 ∈M2 dom(B2) = id2

B3 = B1{id1 ← id2 | ∃i. Li = (id1 ← id2)} Γ,M2 ` B2 <: B3

Γ;M1;M2;L1 . . .Lm ` id1 ← id2
(L)

Γ `p E : Ty

Γ ` E : Ty1 Γ ` Ty1 δp Ty2 Ty2 is not a path (P)
Γ `p E : Ty2

Figure 3.1. continued



57

these restrictions with α-renaming of the stamps on identifiers. The rule for module

bindings (Bmod) ensures that each provided name is bound by the module, and that no

name is multiply bound in a module’s description. The rule for units (Tunit) establishes

that the lists of imported and exported names exactly partition the unit’s import/export

description into imported and exported bindings. The import description is not separated

from the export description because an import can refer to an exported type and vice

versa.

The type rules for definitions produce bindings, and the type rules for definition

sequences produce descriptions. The definition sequence rules build the description and

ensure that no identifier shadows another. They have an additional context argument

that the Ds2 rule uses as a source for bindings; it is ε except when type checking the

body of a unit, as discussed with units below. The Dval and Dtype rules produce

the specified type, and ensure that the resulting binding is well-formed. The Dinv rule

checks that its subexpression has a unit type with no imports. The expression’s type

must be a subtype of the specified context, suitably placed into a unit type. The Dmod1

and Dmod2 rules ensure that the provided names are defined, and that no externally

visible names are multiply defined. Additionally, Dmod2 ensures that the body of a

sealed module is consistent with the sealing description. The body of a sealed module

can define a name multiple times; since only the names in the explicitly given description

are visible from outside the module, no ambiguity can arise.

The type system for expressions is typical of typed λ-calculi, but with the addition of

the Eunit and Ecmpd rules. The IE rule builds a unit’s type from its declared imports

and exports, and it uses the Tunit rule to ensure that the resulting type is well-formed;

in particular, the same name cannot be both imported and exported. Interleaving allows

imports to depend upon types declared in the export portion by placing the imported

type after the exported one. The Eunit rule checks the body of the unit, using the unit’s

declared imports as the second argument to the declaration rule. The Ds2 rule then

intersperses the imports as needed while checking the unit’s body.

The following example demonstrates typechecking for units.

module unit example provide u ex =
u ex : unitT [t, v :t, w :t] (v → w t) =

unit import [v :t] export [t, w :t→t].
t = int
w :t→t = λ x :t. x + v



58

The type of import v refers to the exported type t. When typechecking the body of the

unit, the binding for v must be inserted after checking the definition of t, but before the

definition of w. In general, each imported binding should be inserted at the earliest point

where it is well-defined to do so.1

The Ecmpd rule also uses IE to build the result type. However, the process for

creating the description for the compound unit’s “body”, M6, is more involved than for

noncompound units. The U check ensures that the type of each subunit expression is

compatible with the corresponding import and export descriptions. The distinctI check

ensures that there is no ambiguity in what each linkage refers to, and the check involving

Limports ensures that each subunit import is linked to exactly once.

The substitution applies the linkages to the subunits’ exports, redirecting type and

module references from a subunit’s import to the exported definition that satisfies the

import. The L rule ensures that the type of a linkage’s export is a subtype of its import.

Since the type of an import can refer to types and modules defined in other imports

(of the same subunit), the L rule performs linkage substitution on the import before

comparing it to the corresponding export (for the subtyping check to possibly succeed,

the substitution must rename the identifier of B1).

The following example (which includes the identifier stamps), demonstrates typecheck-

ing for compound units.

module compound example provide =
u1 : unitT [t2, w1:int→t2] (t → w) =

unit import [t2] export [w1:int→t2]. . . .
u2 : unitT [u4=int] ( → u) =

unit import [] export [u4=int]. . . .
u3 : unitT [w1:int→int] ( → w) =

compound import [] export [w1:int→int].
link u2 : import [] export [u4=int]

u1 : import [t2] export [w1:int→t2]
where t2 ← u4

The intermediate context M4 is [u4=int, w1:int → t2], so that the context after substi-

tution is M5 = [u4=int, w1:int→ u4].

1Modules provide a convenient mechanism for grouping imports and exports. However, they
have limited flexibility for recursive dependencies, because the entire module binding must appear
atomically, which limits interleaving. In the example, if t and w were grouped in a module, v
could not be interspersed. This restriction could be relaxed by letting the unit rule split the
module body’s context throughout its enclosing context, or by using a signature mechanism as
mentioned in Section 2.4 (instead of modules) to group imports and exports.



59

The permutation of M1,M5 allows the subunits to have mutual type dependencies

while stopping short of supporting a true recursive type environment, and equi-recursive

types. In the following interpreter-inspired example, suppose that the types of the two

run functions refer to the dec and exp types, and that these two types depend on each

other. Then in M6, the bindings for exp2 and dec1 must both precede the bindings for

runD and runE.

exp u:. . . = unit import [dec,runD:. . .] export [exp,runE :. . .]. . . .
dec u:. . . = unit import [exp,runE :. . .] export [dec,runD:. . .]. . . .
run u:. . . =

compound import [] export [dec2, exp1, runE 1:. . ., runD2:. . .]
link exp u:import [dec1, runD1:. . .] export [exp1, runE 1:. . .]

dec u:import [exp2,runE 2:. . .] export [dec2,runD2:. . .]
where (dec1←dec2) (runD1←runD2)

(exp2←exp1) (runE 2←runE 1)

If the exp and dec types were exported translucently, exposing the mutual reference,

no ordering would allow run to typecheck, since exp would need to precede dec and

simultaneously, exp would need to precede dec.

3.1.1 Path Lookup

When looking up a path in a context (Figure 3.2), any types in the returned binding

are lifted out of their scope. Paths that are contained within the type itself, and that

reference bindings in their enclosing module, would then become free references, or get

captured by an intervening binding. The substitution prevents this by changing these

identifiers into paths to their original binding. The substitution must use hatted names

in the path, so the reference can succeed even if the name is not provided.

For example, with the following module definition the path m1.n.v has type m1.̂t →

m1.n̂.û, which is equal to int→ int.

module m1 provide n =
t2 = int
module n3 provide v =

u4 = int
v5:t2→u4 = . . .

Without the hatted identifiers, the result type would be m1.t → m1.n.u which refers

to names that are not provided by the module, and are hence inaccessible through the

look2 rule.



60

P̂m = Pm

m̂i = mi

P̂m.m = P̂m.m̂

P̂m.m̂ = P̂m.m̂

Γ ` P 7→ B

B ∈ Γ dom(B) = id

Γ ` id 7→ B
(look1)

Γ ` P 7→ mi:M (ns) B ∈M domN(B) = n1 n1 ∈ ns

Γ ` P.n1 7→ B{nj
2 ← P̂.n2 | nj

2 ∈ dom(M)}
(look2)

Γ ` P 7→ mi:M (ns) B ∈M domN(B) = n1

Γ ` P.n̂1 7→ B{nj
2 ← P̂.n2 | nj

2 ∈ dom(M)}
(look3)

Figure 3.2. Path lookup



61

3.1.2 Subtyping

Subtyping is based on a simple structural subtyping relation (Figure 3.3). A descrip-

tion M1 is a subtype of M2 if each identifier bound in M2 appears in M1, bound to a

subbinding. Binding subtypes make a transparent type binding a subtype of an opaque

type binding; however two transparent type bindings must have equal types. This is

because references to the transparent type could occur in both co- and contra-variant

positions. Subtyping for unit types is similar to context subtyping, but based on the

defined names instead of identifiers. Unit subtyping is contra-variant in the imports and

co-variant in the exports.

Type paths (Pt) are structural subtypes only if they are equal, but the general

Ty <: Ty

int <: int
(subTy1)

P̂t1 = P̂t2

Pt1 <: Pt2
(subTy2)

Ty3 <: Ty1 Ty2 <: Ty4

Ty1 → Ty2 <: Ty3 → Ty4

(subTy3)

Ty1 <: Ty3 Ty2 <: Ty4

Ty1 + Ty2 <: Ty3 + Ty4

(subTy4)
Ty1 <: Ty3 Ty2 <: Ty4

Ty1 × Ty2 <: Ty3 × Ty4

(subTy5)

ns4 ⊆ ns2 ∀B2 ∈M2. (domN(B2) ⊆ ns4)⇒ ∃B1 ∈M1. B1 <: B2

ns1 ⊆ ns3 ∀B1 ∈M1. (domN(B1) ⊆ ns1)⇒ ∃B2 ∈M2. B2 <: B1

unitTM1 (ns1 → ns2) <: unitTM2 (ns3 → ns4)
(subTy6)

M <:M

∀B2 ∈M2. ∃B1 ∈M1. B1 <: B2

M1 <:M2
(subM)

B <: B

Ty1 <: Ty2

xi:Ty1 <: xi:Ty2

(subB1)
ti <: ti (subB2)

ti=Ty <: ti (subB3)

ti=Ty <: ti=Ty
(subB4)

ns2 ⊆ ns1 M1 <:M2

mi:M1 (ns1) <: mi:M2 (ns2)
(subB5)

Figure 3.3. Structural subtyping



62

subtyping relations first allow type paths to be replaced with their definitions, and then

they check structural subtyping (Figures 3.4 and 3.5).

3.1.3 Type Checking

The typing relations defined in Figure 3.1 can be interpreted as a syntax-directed

type checking algorithm that, given a context Γ, computes the type of an expression,

definition, or definition sequence. There are only three exceptions to the syntax-directed

nature of the rules: the choice of applying rule Ds1 or rule Ds2, the choice of the result

type of the Ecase rule, and the choice ofM6 in the Ecmpd rule. Furthermore, for type

checking to be decidable, the subtyping relation must be decidable. None of these issues

prevent algorithmic type checking.

An algorithm can choose between Ds1 and Ds2 by preferring Ds2 as soon as the free

variables of the binding in question are defined in the context. Similarly, M6 can be

constructed using a topological sort to ensure that every free variable in M6’s bindings

is preceded by its definition. If there is a cycle such that no such ordering is possible,

then no permutation of M6 is well-formed, so the compound expression has no type.

Subtyping is decidable by first expanding all type definitions, and then by syntax-directed

application of the structural subtyping rules. Similarly, the result type of a case can be

determined by fully expanding the types and computing the least upper bound for the

Γ ` Ty <: Ty

Γ ` Ty1 δ Ty3 Γ ` Ty2 δ Ty4 Ty3 <: Ty4

Γ ` Ty1 <: Ty2

Γ ` B <: B

Γ ` B1 δ B3 Γ ` B2 δ B4 B3 <: B4

Γ ` B1 <: B2

Γ ` M <:M

Γ ` M1 δ M3 Γ ` M2 δ M4 M3 <:M4

Γ ` M1 <:M2

Figure 3.4. Subtyping



63

Γ ` M δ M

Γ ` ε δ ε
(expMε)

Γ ` B1 δ B2 Γ,B1 ` M1 δ M2

Γ ` B1,M1 δ B2,M2
(expM)

Γ ` B δ B

Γ ` Ty1 δ Ty2

Γ ` xi:Ty1 δ xi:Ty2

(expB1)
Γ ` ti δ ti (expB2)

Γ ` Ty1 δ Ty2

Γ ` ti=Ty1 δ ti=Ty2

(expB3)
Γ ` M1 δ M2

Γ ` mi:M1 (ns) δ mi:M2 (ns)
(expB4)

Γ ` Ty δ Ty

Γ ` int δ int
(expTy1)

Γ ` Pt δ Pt
(expTy2)

Γ ` Pt 7→ ti=Ty1 Γ ` Ty1 δ Ty2

Γ ` Pt δ Ty2

(expTy3)

Γ ` Ty1 δ Ty3 Γ ` Ty2 δ Ty4

Γ ` Ty1 → Ty2 δ Ty3 → Ty4

(expTy4)

Γ ` Ty1 δ Ty3 Γ ` Ty2 δ Ty4

Γ ` Ty1 + Ty2 δ Ty3 + Ty4

(expTy5)

Γ ` Ty1 δ Ty3 Γ ` Ty2 δ Ty4

Γ ` Ty1 × Ty2 δ Ty3 × Ty4

(expTy6)

Γ ` M1 δ M2

Γ ` unitTM1 (ns1 → ns2) δ unitTM2 (ns1 → ns2)
(expTy7)

Γ ` Ty δp Ty

Γ ` Ty δpTy

Γ ` Pt 7→ Ty1 Γ ` Ty1 δp Ty2

Γ ` Pt δpTy2

Figure 3.5. Type definition expansion



64

structural subtyping rules.2

3.1.4 Type System Properties

The lemmas in this section states basic properties of the type system.

Lemma 3.1 (Subtyping).

1. The relation Γ ` · δ · is reflexive and transitive.

2. The relation Γ ` · δp · is reflexive and transitive. Furthermore, if Ty1 is not a

path and Γ ` Ty1 δp Ty2, then Ty1 = Ty2.

3. The <: relation is reflexive and transitive.

4. The Γ ` · <: · relation is reflexive and transitive.

Definition 3.1. Typing context Γ is well-formed if ε ` Γ.

Lemma 3.2 (Weakening). Suppose that for all P such that Γ ` P 7→ B, Γ′ ` P 7→ B.

1. Γ;M1 ` Ds :M2 implies Γ′;M1 ` Ds :M2

2. Γ ` D : B implies Γ′ ` D : B

3. Γ ` E : Ty implies Γ′ ` E : Ty.

Proof. By induction on the typing derivation. The rules inspect Γ in two ways: to look

up paths, and to prevent identifier clashes. The hypothesis on Γ′ covers the first case. In

each instance of the second case, the term can be α-renamed to avoid conflicts.

Lemma 3.3 (Narrowing). If Γ ` M1 <:M2 then

1. (Γ,M2); ε ` Ds :M3 implies (Γ,M1); ε ` Ds :M3.

2. Γ,M2 ` D : B implies Γ,M1 ` D : B.

3. Γ,M2 ` E : Ty1 implies Γ,M1 ` E : Ty2 and Γ,M1 ` Ty2 <: Ty1.

Lemma 3.4 (Well-formed types). If Γ is well-formed then

1. Γ;M1 ` Ds :M2 implies Γ ` M2

2. Γ ` D : B implies Γ ` B

3. Γ ` E : Ty implies Γ ` Ty.

2The first-class modules of Harper and Lillibridge [1994] have an undecidable subtyping
relation. My subtyping relation does not encounter the decidability problems that theirs does
because it is less flexible. In particular, I separate type definition replacement from the structural
subtyping relation, and I only allow definition expansion, not contraction. Increasing my subtyping
relation’s flexibility would make it undecidable, just as theirs is. A practical implementation of
units would have to choose between using my weaker notion of subtyping, forgoing first-class
units, or forgoing decidable type checking.



65

3.2 Operational Semantics

I specify the operational semantics of units as a small-step reduction relation with call-

by-value evaluation (Table 3.2). Figure 3.6 contains the definition of values and evaluation

contexts, and it also extends the language with the rec construct for creating recursive

types and values. Figures 3.7 and 3.8 present the single-step reduction relation  . The

rules for projections, function application, and case expressions are straightforward. Unit

invocation places the unit’s body into a module, and unit compounding concatenates

the bodies of the linked units into a single unit body. Because unit linking can be

recursive, the resulting unit can contain recursive value, type, and module definitions;

thus, the reduction of a compound unit uses the rec construct. The values and evaluation

contexts for programs (PV, PC), modules (MV, MC), definition sequences (SV, SC),

definitions (DC, DV ), expressions (V, EC), and the subexpressions of compound (UC,

UV ) accumulate evaluated modules and definitions as the program is reduced.

Since the operational semantics does not substitute definitions into expressions, the

Rlet rules lift let-bound definitions up into the nearest enclosing sequence of definitions

(e.g., a module body).

The operational semantics relies on several auxiliary functions. The flat functions

(Figure 3.9) flatten an evaluation context into the sequence of definitions that are in

scope at the position of the hole. The Rpath, Rerr1, and Rerr2 rules look up the

values of paths in the flattened version of the evaluation context. The second argument

to the flat functions is the expression or definition used to fill the hole; it is necessary

when the hole is in a rec construct since there the definition in the hole is in scope inside

itself. The ctxt function (Figure 3.10) converts a definition sequence into a type context;

Table 3.2. Glossary for the module and unit operational semantics
Relation Meaning
D ∈ Ds the definition is in the sequence
Prog Prog single-step reduction
Prog→→ Prog multistep reduction
Function Meaning
flat : PC× (D ∪ E)→ Ds computes the bindings in scope at the hole
flat : SC× (D ∪ E)→ Ds computes the bindings in scope at the hole
flat : DC× (D ∪ E)→ Ds computes the bindings in scope at the hole
ctxt : D→ B computes the binding that corresponds to a definition
ctxt : Ds→M computes the module context for a definition sequence
ctxt : PC× (D ∪ E)→ Γ computes the typing context in scope at the hole



66

Types extended for recursion:
B = rec (B, . . . ,B) | . . .

Terms extended for recursion:
D = rec (D . . .D) | . . .

Values:
PV = MV . . .MV
MV = module mi provide ns = SV

| module mi:M provide ns = SV
SV = ε | DV SV
DV = xi:Ty=V | ti=Ty | MV | rec (DV . . .DV)
V = Z | injl V | injr V | (V,V) | λxi:Ty.E

| unit importM exportM. Ds
UV = V:importM exportM

Evaluation Contexts:
PC = MV . . .MV MC M . . .M
MC = module mi provide ns = SC

| module mi:M provide ns = SC
SC = DC Ds | DV SC
DC = [] | xi:Ty=EC | invoke EC as mi:M | MC | rec (DV . . .DV DC D . . .D)
EC = [] | injl EC | injr EC

| case EC of E + E | case V of EC + E | case V of V + EC
| (EC, E) | (V, EC) | π1 EC | π2 EC | EC E | V EC | let SC in E
| compound importM exportM

link UV . . .UV UC U . . .U where L . . .L
UC = EC:importM exportM

SC′ = DC′ Ds | DV SC′

DC′ = [] | rec (DV . . .DV DC′ D . . .D)

Figure 3.6. Values and evaluation contexts



67

Prog Prog

dom(M2) ⊆ dom(M1)

PC[invoke (unit import ε exportM1. Ds) as mi:M2] 
PC[module mi:M2 provide domN(M2) = Ds]

(Rinv)

flat(PC,Px) ` Px 7→ xi:Ty=E E ∈ V

PC[Px] PC[E]
(Rpath)

flat(PC,Px) ` Px 7→ xi:Ty=E E 6∈ V

PC[Px] error
(Rerr1)

flat(PC,Px) ` Px 7→ error

PC[Px] error
(Rerr2)

PC[π1(V1, V2)] PC[V1] (Rpj1) PC[π2(V1, V2)] PC[V2] (Rpj2)

PC[case injl V1 of V2 + V3] PC[V2 V1] (Rcase1)

PC[case injr V1 of V2 + V3] PC[V3 V1] (Rcase2)

PC[(λxi:Ty.E) V] PC[E{xi ← V}] (Rapp)

UVs = (E1:importM1,3 exportM1,4) · · · (En:importMn,3 exportMn,4)
∀j.0 < j ≤ n⇒ (Ej = unit importMj,1 exportMj,2. Dsj)

∀j.0 < j ≤ n⇒ (dom(Mj,1) ⊆ dom(Mj,3) ∧ dom(Mj,4) ⊆ dom(Mj,2))
Ds′ = Ds1 · · ·Dsn

distinctI(M0,1,ctxt(Ds′)) Ds′′ = Ds′{id1 ← id2 | (id1 ← id2) ∈ Ls}
PC[compound importM0,1 exportM0,2 link UVs where Ls] 

PC[unit importM0,1 exportM0,2. rec Ds′′]

(Rcpd)

Figure 3.7. One-step reduction



68

PC = PC2[module mi provide ns=SC′]
domN(SV) ∩ domN(SC′[xi:Ty=E]) = ∅

PC[xi:Ty=(let SV in E)] PC[SV (xi:Ty=E)]
(Rlet1)

PC = PC2[module mi:M provide ns=SC′]
dom(SV) ∩ dom(SC′[xi:Ty=E]) = ∅

PC[xi:Ty=(let SV in E)] PC[SV (xi:Ty=E)]
(Rlet2)

PC = PC2[let SC′ in E2] dom(SV) ∩ dom(SC′[xi:Ty=E]) = ∅
PC[xi:Ty=(let SV in E)] PC[SV (xi:Ty=E)]

(Rlet3)

PC = PC2[module mi provide ns=SC′]
domN(SV) ∩ domN(SC′[invoke E as mi:M]) = ∅

dom(SV) ∩ dom(M) = ∅
PC[invoke (let SV in E) as mi:M] PC[SV (invoke E as mi:M)]

(Rlet4)

PC = PC2[module mi:M provide ns=SC′]
dom(SV) ∩ dom(SC′[invoke E as mi:M]) = ∅ dom(SV) ∩ dom(M) = ∅

PC[invoke (let SV in E) as mi:M] PC[SV (invoke E as mi:M)]
(Rlet5)

PC = PC2[let SC′ in E2]
dom(SV) ∩ dom(SC′[invoke E as mi:M]) = ∅ dom(SV) ∩ dom(M) = ∅

PC[invoke (let SV in E) as mi:M] PC[SV (invoke E as mi:M)]
(Rlet6)

Figure 3.8. One-step reduction for let



69

PC[injl (let SV in E)] PC[let SV in injl E] (Rlet7)

PC[injr (let SV in E)] PC[let SV in injr E] (Rlet8)

PC[case (let SV in E1) of E2 + E3] PC[let SV in case E1 of E2 + E3]] (Rlet9)

PC[case V of (let SV in E1) + E2] PC[let SV in case V of E1 + E2] (Rlet10)

PC[case V1 of V2 + (let SV in E)] PC[let SV in case V1 of V2 + E] (Rlet11)

PC[(let SV in E1, E2)] PC[let SV in (E1, E2)] (Rlet12)

PC[(V, let SV in E)] PC[let SV in (V, E)] (Rlet13)

PC[π1 (let SV in E)] PC[let SV in π1 E] (Rlet14)

PC[π2 (let SV in E)] PC[let SV in π2 E] (Rlet15)

PC[(let SV in E1) E2] PC[let SV in (E1 E2)] (Rlet16)

PC[V (let SV in E)] PC[let SV in (V E)] (Rlet17)

L = L1 . . .Lo U = UV1 . . .UVm U1 . . .Un

U1 = (let SV in E):importM3 exportM4

U ′ = UV1 . . .UVm U′
1 . . .Un U′

1 = E:importM3 exportM4

PC[compound importM1 exportM2 link U where L] 
PC[let SV in compound importM1 exportM2 link U ′ where L]

(Rlet18)

Figure 3.8. continued



70

flat : PC× (D ∪ E)→ DS

flat(MV1 . . .MVm MC M1 . . .Mn, redex) = MV1 . . .MVm flat(MC, redex)

flat : SC× (D ∪ E)→ DS

flat([], redex) = ε

flat(DC Ds, redex) = flat(DC, redex)
flat(DV SC, redex) = DV flat(SC, redex)

flat : DC× (D ∪ E)→ DS

flat([], redex) = ε

flat(xi:Ty=EC, redex) = flat(EC, redex)
flat(invoke EC as mi:M, redex) = flat(EC, redex)

flat(module mi provide ns = SC, redex) = flat(SC, redex)
flat(module mi:M provide ns = SC, redex) = flat(SC, redex)

flat(rec (DV1 . . .DVm DC D1 Dn)) = (rec (DV1 . . .DVm DC[redex] D1 Dn))
flat(DC, redex)

Figure 3.9. Flattening evaluation contexts

ctxt : D→ B

ctxt(xi:Ty=E) = xi:Ty

ctxt(ti=Ty) = ti=Ty

ctxt(invoke E as mi:M) = mi:M provide domN(M)
ctxt(module mi provide ns = Ds) = mi:ctxt(Ds) provide ns

ctxt(module mi:M provide ns = Ds) = mi:M provide ns

ctxt(rec (D1 . . .Dn)) = rec (ctxt(D1), . . . ,ctxt(Dn))

ctxt : Ds→M

ctxt(ε) = ε

ctxt(D Ds) = ctxt(D),ctxt(Ds)

ctxt : PC× (DS ∪ E)→M

ctxt(PC, redex) = ctxt(flat(PC, redex))

Figure 3.10. Extracting type contexts from evaluation contexts



71

all of the necessary information is syntactically available. The definition lookup relation

(Figure 3.11) looks up a path in a definition sequence. The path lookup can encounter a

module defined by an invoke definition instead of a module definition; in this case the

remainder of the path is unavailable, and the lookup returns error.

The type system of Section 3.1 does not support recursive definitions (rec), so I extend

it in Figure 3.12 thereby allowing the results of Rcmpd to be well-typed. Any well-typed

program in the system of Section 3.1 is also well-typed in the extension, since the extension

just adds new rules for the new construct. Thus, type soundness for the extended system

implies soundness for the original system in the sense that a well-typed program will

not become stuck. However, the final result of evaluation might not be well-typed in

the original system, since it can contain rec statements introduced by Rcmpd.3 The

path lookup function adds prefixes to the values it lifts out of modules, just like the type

system’s path lookup of Section 3.1.1. If evaluation encounters a nonvalue expression, it

signals a run-time error (Rerr1 and Rerr2). There are many proposals to catch such

ill-founded recursion errors at compile-time without restricting definitions to syntactic

values [Hirschowitz et al. 2003; Boudol 2004; Dreyer 2004; Hirschowitz and Leroy 2005;

Syme 2006]. Adapting these proposals to component programming with units is future

work.

Taking a closer look at the Rcmpd rule, it requires that the unit values’ imported and

exported identifiers match up with the ones specified in the import and export annota-

tions, which themselves correspond to the identifiers used in the linkages. Furthermore,

the definitions inside the units must all have distinct identifiers. These conditions can be

met through α-renaming.

3.2.1 Operational Semantics Properties

The lemmas in this section state basic properties of the operational semantics.

Definition 3.2 (Redex). A redex is an expression or definition that can appear in the

hole on the left side of  in Figure 3.7 or Figure 3.8.

Lemma 3.5 (Decomposition).

3I chose the system of Section 3.1 to demonstrate that units can be type checked without
special support for either value or type recursion, other than what the units provide themselves.
In particular, units can be type checked without encountering any of the difficulties presented
by equi-recursive types. The dynamic semantics must support evaluation of definition sequences
that contain rec constructs, but the type checking of intermediate steps in program execution is
only needed for the inductive preservation and progress proofs.



72

Ds ` P 7→ D ∪ {error}

D ∈ Ds dom(D) = id

Ds ` id 7→ D
(Dlook1)

Ds1 ` P 7→module mi provide ns = Ds2
n ∈ ns D ∈ Ds2 domN(D) = n

Ds1 ` P.n 7→ D{nj
2 ← P̂.n2 | nj

2 ∈ dom(Ds2)}
(Dlook2)

Ds1 ` P 7→module mi:M provide ns = Ds2
n ∈ ns D ∈ Ds2 domN(D) = n dom(D) ⊆ dom(M)

Ds1 ` P.n 7→ D{nj
2 ← P̂.n2 | nj

2 ∈ dom(Ds2)}
(Dlook3)

Ds ` P 7→ invoke E as mi:M n ∈ domN(M)
Ds ` P.n 7→ error

(Dlook4)

Ds ` P 7→ error

Ds ` P.n 7→ error
(Dlook5)

Figure 3.11. Path lookup in definition sequences



73

Γ ` B

distinctI(B1, . . . ,Bn) ∀i ≤ n. Γ,rec (B1, . . . ,Bn) ` Bi

Γ ` rec (B1, . . . ,Bn)
(Brec)

Γ;M ` Ds :M

M3 =M1,ctxt(D1), . . . ,ctxt(Dn)
dom(M3) ∩ dom(Γ) = ∅ distinctI(M3)

∀i ≤ n. Γ,recM3 ` Di : ctxt(Di) (Γ,recM3);M2 ` Ds :M4

Γ; (M1,M2) ` rec (D1 . . .Dn) Ds : (recM3),M4
(Dsrec)

B <: B

∀i ≤ n. ∃j ≤ m. Bj <: B′
i

rec (B1, . . . ,Bm) <: rec (B′
1, . . . ,B

′
n)

(subB6)

Γ ` B δ B

∀i ≤ n. Γ,rec (B1, . . . ,Bn) ` Bi δ B′
i

Γ ` rec (B1, . . . ,Bn) δ rec (B′
1, . . . ,B

′
n)

(expBrec)

Figure 3.12. Type system extension



74

1. If Ds ∈ SV, then there exists no SC and redex such that Ds = SC[redex]. If

Ds 6∈ SV, then there exists a unique SC and redex such that Ds = SC[redex].

2. If D ∈ DV, then there exists no DC and redex such that D = DC[redex]. If

D 6∈ DV, then there exists a unique DC and redex such that D = DC[redex].

3. If E ∈ V, then there exists no EC and redex such that E = EC[redex]. If E 6∈ V,

then there exists a unique EC and redex such that E = EC[redex].

Proof. Statements 1–3 are proved simultaneously by induction on the structure of Ds, D,

and E.

3.3 Type Soundness

The type soundness theorem states that a well-typed will eventually reduce to a value,

infinite loop, or reduce to the run-time error error. The proof technique uses preservation

(aka subject reduction) and progress lemmas which combine with an induction on the

number of reduction steps to yield the soundness theorem [Wright and Felleisen 1994].

Theorem 3.1 (Type Soundness). If ε; ε ` Prog1 : M, and Prog1 →→ Prog2 then either

Prog2 = error, or ε; ε ` Prog2 :M and either

1. Prog2 ∈ PV, or

2. Prog2  error, or

3. there exists a Prog3 such that Prog2  Prog3.

Proof. See Section 3.3.5.

Definition 3.3. A recursive evaluation context has the hole under a rec construct. In

other words, it is of the form PC[rec (DV1 . . .DVm [] D1 . . .Dn)].

3.3.1 Context Function Lemmas

Lemma 3.6 (ctxt substitution). If B = ctxt(D), then B{mi ← P̂.m | mi ∈ idents} =

ctxt(D{mi ← P̂.m | mi ∈ idents}).

Proof. Along with the analogous statement about Γ and Ds by structural induction on

D and Ds.

Lemma 3.7 (Type ctxt).

1. If Γ ` D : B, then ctxt(D) = B.

2. If Γ; ε ` Ds :M, then ctxt(Ds) =M.

Proof. By induction on the typing derivation.



75

3.3.2 Lookup Lemmas

Lemma 3.8 (Path lookup). If Γ = ctxt(Ds), and Γ ` P 7→ B then either

• There exists an D such that B = ctxt(D) and Ds ` P 7→ D, or

• Ds ` P 7→ error.

If Γ is well-formed, the D is unique.

Proof. By rule induction on the lookup.

case look1: By structural induction on Ds.

case look2: The rules gives that Γ ` P 7→ mi:M (ns). Let D′ be the definition

that P maps to according to the induction hypothesis. If D′ is an error or invoke,

the entire lookup returns error. Therefore, assume w.l.o.g. that D′ is a module

definition. By structural induction on D′’s body, there is a definition D′′ that

corresponds to the B inM. The final result follows by Lemma 3.6.

case look3: Same as the above case.

Uniqueness follows from the fact that a well-formed context has no duplicate identifiers

in a scope, and has no unsealed module bodies with duplicate names. Although sealed

module bodies can have duplicate names, their sealing description M cannot, and the

Dlook3 rule can only return definitions whose identifier is in that M.

Lemma 3.9 (Well-typed lookup). If ε; ε ` Ds : M and Ds ` P 7→ D then ctxt(Ds) `

D : ctxt(D).

Proof. By rule induction on the lookup.

case Dlook1: By structural induction on Ds, using Lemma 3.2 to restore the

context that follows the definition of D.

case Dlook2: In this case P = P′.n and Ds ` P 7→ module mi provide ns=Ds′.

By the induction hypothesis, the Dmod1 rule, and Lemma 3.7, ctxt(Ds); ε `

Ds′ : ctxt(Ds′). Since D′ ∈ Ds′, ctxt(Ds Ds′) ` D′ : ctxt(D′) by the same

reasoning as the above case (induction on Ds′ and Lemma 3.2). To show ctxt(Ds) `

D′{nj
2 ← P̂.n2 | nj

2 ∈ dom(Ds′)} : ctxt(D′{nj
2 ← P̂.n2 | nj

2 ∈ dom(Ds′)}) induct

on the derivation of D′’s type and notice that any referenced identifier not found in

ctxt(Ds) must be in ctxt(Ds′), and that each of those references is replaced with

a reference to Ds′ through P.

case Dlook3: Same as the above case.



76

3.3.3 Progress Lemma

Lemma 3.10 (Type expansion). Suppose that either Γ ` Ty2 <: Ty1 or Γ ` Ty1 <: Ty2.

1. If Γ ` Ty1 = int, then Γ ` Ty2 δp int.

2. If Γ ` Ty1 = Ty′1 + Ty′′1, then Γ ` Ty2 δp Ty′2 + Ty′′2.

3. If Γ ` Ty1 = Ty′1 × Ty′′1, then Γ ` Ty2 δp Ty′2 × Ty′′2,.

4. If Γ ` Ty1 = Ty′1 → Ty′′1, then Γ ` Ty2 δp Ty′2 → Ty′′2.

5. If Γ ` Ty1 = unitTM1 (ns1 → ns2) then Γ ` Ty2 δp unitTM2 (ns3 → ns4).

Lemma 3.11 (Canonical values). Suppose that Γ ` V : Ty.

1. Γ ` Ty <: int implies V ∈ Z.

2. Γ ` Ty <: Ty′ × Ty′′ implies V = (V1, V2).

3. Γ ` Ty <: Ty′ + Ty′′ implies either V = injl V1, or V = injr V2.

4. Γ ` Ty <: Ty′ → Ty′′ implies V = λxi:Ty′′′.E.

5. Γ ` Ty <: unitTM1 (ns1 → ns2) implies

V = unit import M2 export M3.Ds. Furthermore, domN(M2) ⊆ ns1 and

ns2 ⊆ domN(M3).

Lemma 3.12 (Progress).

1. If Γ; ε ` Ds1 :M1, and Γ = ctxt(PC,Ds1), and PC is not recursive, then either

Ds1 ∈ SV, or there exists prog such that PC[Ds1] prog, or PC[Ds1] error.

2. If Γ ` D1 : B, and Γ = ctxt(PC,D1) then either D1 ∈ DV, or there exists prog

such that PC[D1] prog, or PC[D1] error.

3. If Γ ` E1 : Ty, and Γ = ctxt(PC,E1) then either E1 ∈ V, or there exists prog

such that PC[E1] prog, or PC[E1] error.

Proof. Statements 1–3 are proved simultaneously by induction on the derivation that

Ds1, D1, and E1 are well-typed. (Only nonvalue cases are listed below.)

If E1 has a nonvalue immediate subexpression E′
1, then I extend the program context

PC to a context, PC′, that directs evaluation to the subexpression. In these cases

PC[E1] = PC′[E′
1], and I apply the induction hypothesis with PC′ and E′

1. This re-

quires checking that the subexpression has a type in the context ctxt(PC′[E′
1]) =

ctxt(PC[E1]),ctxt(. . .). If PC′[E′
1]  error, then PC[E1]  error. Thus, PC′[E′

1]  

prog and so does the equivalent PC[E1].

case Ds1: Let Ds1 = D′
1 Ds′1. The type rule’s hypothesis ensures that, for some

B′
1, Γ ` D′

1 : B′
1 and Γ,B′

1 ` Ds′1 : M′
1 where M1 = B′

1,M′
1. Suppose that

D′
1 6∈ DV and let PC′ = PC[[] Ds′1]. Applying the induction hypothesis according



77

to the above discussion finished this case. If instead D′
1 ∈ DV, let PC′ = PC[D′

1 []].

ctxt(PC′,Ds′1) = ctxt(PC,Ds1),ctxt(D′
1) = ctxt(PC,Ds1),B′

1 (by Lemma 3.7

and the assumption that PC is not a recursive context). Again, the induction

hypothesis finishes the case.

case Dsrec: Let Ds1 = rec (D′
1 . . .D′

n) Ds′′1. If, for all i ≤ n, D′
i ∈ DV, the proof fol-

lows the corresponding part of the Ds1 case. Otherwise let i be the smallest number

such that D′
i 6∈ DV. The type rule ensures that Γ,rec (ctxt(D′

1), . . . ,ctxt(D′
n)) `

D′
i : ctxt(D′

i). Let PC′ = PC[rec (D′
1 . . .D′

i−1 [] D′
i+1 . . .D′

n) Ds′′1] which ensures

the following.

ctxt(PC′,D′
i) = ctxt(PC,Ds1),rec (ctxt(D′

1), . . . ,ctxt(D′
n))

The induction hypothesis finishes the case since this is precisely the context that

Di is checked in.

case Dval: Let D1 = xi:Ty=E′
1. By the rule’s hypotheses, Γ ` E′

1 : Ty′1. Let

PC′ = PC[xi:Ty=[]].

case Dinv: Let D1 = invoke E′
1 as mi:M2. If E′

1 6∈ V, the conclusion follows by

induction using the same argument as in the Dval case. Now assume E′
1 ∈ V. By

the rule’s hypotheses, Γ ` E′
1 : Ty′1 and Γ ` Ty′1 <: unitTM2 (ε→ domN(M2)).

Lemma 3.11 ensures that E′
1 is of the form unit import ε export M1. Ds with

domN(M2) ⊆ domN(M1), so the Rinv rule applies as long as the side condition

dom(M2) ⊆ dom(M1) is met. The unit can be α-renamed to ensure that this

condition holds for identifiers, since it hold for names.

case Dmod1: By the same argument as the Dval case, using Ds in place of E.

case Dmod2: By the same argument as the Dval case, using Ds in place of E.

case Epath: Let E1 = Px. The type rule ensures that, for some xi and Ty, Γ ` Px 7→

xi:Ty. If flat(PC,Px) ` Px 7→ error, then by reduction Rerr2, PC[Px] error.

Otherwise, by Lemma 3.8, there exists E′ such that flat(PC,Px) ` Px 7→ xi:Ty=E′.

Either rule Rpath or rule Rerr1 applies.

case Epj1: Let E1 = π1E
′
1. By the type rule’s hypothesis Γ ` E′

1 : Ty′1, and

Γ ` Ty′1 δp Ty×Ty′′1. If E′
1 ∈ V, Lemma 3.11 ensures that E′

1 has the form (V, V),

and so Rpj1 applies. If E′
1 6∈ V, let PC′ = PC[π1[]].

case Epj2: Similar to the Epj1 case.

case Einjl: Similar to the Epj1 case, except that if E′
1 ∈ V then E1 ∈ V and no

reduction is needed.



78

case Einjr: Similar to the Einjl case.

case Eprod: Let E1 = (E′
1, E′′

1). By the reasoning of the Einjl case applied to E′
1

if it is not a value, and applied to E′
2 if E′ is a value.

case Ecase: Let E1 = case E′
1 of E′′

1 + E′′′
1 . Similar to the Eprod case, unless E′

1,

E′′
1, and E′′′

1 are all values. If they are, the type of E′
1 and Lemma 3.11 ensures that

either rule Rcase1 or rule Rcase2 applies.

case Eapp: Let E1 = E′
1 E′′

1. Similar to Eprod if E′
1 or E′′

1 is not a value. If they

are both values, the type of E′
1 and Lemma 3.11 ensures that rule Rapp applies.

case Elet: Let E1 = let Ds′1 in E′
1:Ty. If Ds′1 6∈ SV, then the proof follows the

similar part of the Ds1 case.

If Ds′1 ∈ SV then it remains to show that one of the Rlet rules applies. I

proceed by case analysis on the subcontext of PC that immediately surrounds the

hole (there must be one since PC cannot be equal to []). For any of the EC contexts,

one of the rules Rlet7–Rlet18 applies—except for the case of let [] in E; however,

placing another let expression directly into that hole leads to an ungrammatical

program, so the possibility is ignored. The same condition applies to module, rec,

and SC contexts, so only value definition and unit invocation contexts remain. In

the former case one of the rules Rlet1–Rlet3 applies, depending on whether the

sequence of definitions that the value definition is part of is inside of a module, or

sealed module definition, or inside of a another let expression (the PC grammar

admits such sequences in no other places). The precondition on domains can be met

with α-renaming, noticing that for the Rlet1 rule for unsigned modules, the actual

name of let bindings might be changed. This is acceptable because they cannot

be referenced from outside of the let expression. The case for unit invocation and

Rlet4–Rlet6 is similar.

case Ecmpd: Let E1 = compound importM1 exportM2 link Us where Ls.

Let U1 = E′: . . . be the first element of Us that is not in UV (supposing for

now that there is one). Thus Us = UV1 . . .UVm U1 U2 . . .Un. Choose PC′ =

PC[compound importM1 exportM2 link UV1 . . .UVm [] U2 . . .Un where Ls].

The Us rule ensures that Γ ` E′ : Ty′ so that the induction hypothesis applies.

If all of the Us are in UV then E1 has the correct shape for rule Rcmpd

by Lemma 3.11 and rule Us, so it remains to show that its side conditions are

met. Lemma 3.11 and rule Us give the necessary inclusion conditions on the unit’s



79

imported and exported names. The unit values in Us can therefore be α-renamed

to ensure the corresponding inclusions on imported and exported identifiers. Fur-

thermore, because the Ecmpd rule ensures distinctness among the identifiers in the

unit type annotation, and all other identifiers can freely vary, the units bodies can

be α-renamed to avoid any duplicate identifiers.

Corollary 3.1 (Whole program progress). If ε; ε ` prog1 : M then either prog1 ∈ PV,

prog1  error, or there exists a program prog2 such that prog1  prog2.

3.3.4 Preservation Lemma

Lemma 3.13. Suppose Γ ` Ty2 <: Ty1.

1. If Γ ` Ty1 δp Ty′1 + Ty′′1, then Γ ` Ty2 δp Ty′2 + Ty′′2, and Γ ` Ty′2 <: Ty′1, and

Γ ` Ty′′2 <: Ty′′1.

2. If Γ ` Ty1 δp Ty′1 × Ty′′1, then Γ ` Ty2 δp Ty′2 × Ty′′2, and Γ ` Ty′2 <: Ty′1, and

Γ ` Ty′′2 <: Ty′′1.

3. If Γ ` Ty1 δp Ty′1 → Ty′′1, then Γ ` Ty2 δp Ty′2 → Ty′′2, and Γ ` Ty′1 <: Ty′2, and

Γ ` Ty′′2 <: Ty′′1.

Lemma 3.14 (Unit type subtype).

Γ ` unitT M1 (ε → domN(M1)) <: unitT M2 (ε → domN(M2)) implies that

Γ ` M1 <:M2.

Lemma 3.15 (Substitution). If Γ,xi:Ty ` E1 : Ty1, and Γ ` E2 : Ty2, and Γ ` Ty2 <:

Ty, then Γ ` E1{xi ← E2} : Ty3 and Γ ` Ty3 <: Ty1.

Lemma 3.16 (Unit subtype). If

1. Γ ` unit importM1 exportM2. Ds : Ty1,

2. Γ ` importM3 exportM4 : Ty2,

3. Γ ` Ty1 <: Ty2, and

4. dom(M3) ∩ dom(Ds) = ∅

hold, then Γ ` unit importM3 exportM4. Ds : Ty2.

Lemma 3.17 (Linking). If

1. Γ ` id1 7→ B1

2. Γ ` id2 7→ B2

3. Γ ` B2 <: B1

4. Γ ` D : B



80

hold, then Γ ` D{id1 ← id2} : B{id1 ← id2}.

Lemma 3.18 (Preservation).

1. Γ; ε ` Ds1 : M1, and PC is not recursive, and ε; ε ` flat(PC,Ds1) : Γ, and

PC[Ds1] PC[Ds2] implies Γ; ε ` Ds2 :M2, and Γ ` M2 <:M1.

2. Γ ` D1 : B1, and ε; ε ` flat(PC,D1) : Γ, and PC[D1] PC[D2] implies Γ ` D2 :

B2 and Γ ` B2 <: B1.

3. Γ ` E1 : Ty1, and ε; ε ` flat(PC,E1) : Γ, and PC[E1] PC[E2] implies Γ ` E2 :

Ty2, and Γ ` Ty2 <: Ty1.

Proof. Statements 1–3 are proved simultaneously by induction on the derivation that Ds1,

D1, and E1 are well-typed. In each case below, the expression (Ds1, D1, E1) is either a

redex, in which case a rule from Figure 3.7 or Figure 3.8 applies, or it is not, in which case

one of its subexpressions is reduced. In these cases, I extend the evaluation context PC

to an evaluation context PC′ that wraps the subexpression. Thus, if the subexpression is

E′
1, then it will be the case that PC[E1] = PC′[E′

1]. Furthermore, PC′[E′
1] PC′[E′

2] for

the E′
2 that gives PC[E2] = PC′[E′

2] (in other words, E2 is just E1 with E′
1 replaced with

E′
2). I then verify that E′

1 is well-typed in the context associated with PC′, and that PC′

is well-formed, and apply the induction hypothesis to get the type of E′
2.

By Lemma 3.4, Γ is well-formed, and Γ = ctxt(PC,E1) (or D1 or Ds1 depending on

the case).

Lemma 3.5 ensures that a value cannot be decomposed into a context and redex, so

I omit cases for values in the following list.

case Ds1: Let Ds1 = D′
1 Ds′1. The type rule ensures the following.

Γ ` D′
1 : B′

1

Γ,B′
1; ε ` Ds′1 :M′

1

∅ = dom(B′
1) ∩ dom(Γ)

M1 = B′
1,M′

1

Ds1 cannot be a redex. Suppose that D′
1 is reduced, with PC′ = PC[[] Ds′1]. The

inductive hypothesis gives Γ ` D′
2 : B′

2 and Γ ` B′
2 <: B′

1, which, along with the

definition of subtyping, finishes this case.

Suppose that Ds′1 is reduced, with PC′ = PC[D′
1 []]; thus, flat(PC′,Ds′1) =

flat(PC,Ds1) D′
1. Let Γ′ = ctxt(PC′,Ds′1) = Γ,B′

1 (Lemma 3.7). The induction

hypothesis requires that ε; ε ` flat(PC′,Ds′1) : Γ′, which holds by induction on the



81

length of the definition sequence flat(PC,Ds1). The inductive hypothesis gives

Γ,B′
1; ε ` Ds′2 : M′

2 and Γ ` M′
2 <: M′

1, which, along with the definition of

subtyping and Lemma 3.3 finishes this case.

case Dsrec: Let Ds1 = rec (D′
1 . . .D′

n) Ds′′1. The type rule ensures the following.

M′
1 = ctxt(D′

1), . . . ,ctxt(Dn)

∅ = dom(Γ) ∩ dom(M′
1)

distinctI(M′
1)

∀i ≤ n. Γ,recM′
1 ` Di : ctxt(Di)

(Γ,recM′
1); ε ` Ds′′1 :M′′

1

M1 = (recM′
1),M′′

1

If Ds′′1 is reduced, the proof follows the corresponding part of the Ds1 case. Oth-

erwise, there is an i such that D′
i is reduced to D′′

i . Choose PC′ as follows, so that

flat(PC′,D′
i) = flat(PC,Ds1) rec (D′

1 . . .D′
n).

PC′ = PC[rec (D′
1 . . .D′

i−1 [] D′
i+1 . . .D′

n) Ds′′1]

Let Γ′ = ctxt(PC′,Ds′1) = Γ,rec M′
1 (Lemma 3.7). The induction hypothesis

requires that ε; ε ` flat(PC′,D′
i) : Γ′, which holds by induction on n. The inductive

hypothesis gives Γ,recM′
1 ` D′′

i : B′
2 and Γ,recM′

1 ` B′
2 <: ctxt(D′

i). Thus, the

definition of subtyping and Lemma 3.3 finish the case.

case Dval: Let D1 = xi:Ty1=E
′
1. By the type rule, Γ ` E′

1 : Ty′1, and Γ ` Ty′1 <:

Ty1, and B1 = xi:Ty1. Suppose that D1 is not a redex, so that E′
1 is reduced with

PC′ = PC[xi:Ty1=[]]. By the induction hypothesis, Γ ` E′
2 : Ty′2, and Γ ` Ty′2 <:

Ty′1. Thus, Γ ` Ty′2 <: Ty1 (Lemma 3.1), so D2 also has type B1.

If D1 is a redex, then one of Rlet1–Rlet3 applies, and E′
1 = let SV in E′′

1.

The type rules ensure the following.

Γ ` Ty1

Γ; ε ` SV :M

Γ,M ` E′′
1 : Ty′′1

Γ,M ` Ty′′1 <: Ty′1

Γ ` Ty′1



82

In each case, the definitions in SV are added into a sequence of definitions SC′, and

the types of the bindings in the resulting sequence are unchanged. The definitions

in SC′ before SV have a type by the assumption (nothing has changed for them).

The sequence SV also has the same type by the assumptions also because it appears

in the same type context, as does the actual value definition. The definitions

that follow it have the same type by Lemma 3.2 which allows the addition of the

definitions in SV to the typing assumptions. The domain conditions ensure that the

conditions on the sequences in their entirety are met. Thus, the resulting context

is a subtype of the one prior to reduction, since it has more bindings.

case Dinv: Let D1 = invoke E′
1 as mi:M′

1, and let ns′1 = domN(M′
1). The type

rule (along with the Tunit rule) ensures the following.

B1 = mi:M′
1 (ns′1)

Γ ` E′
1 : Ty′1

Γ ` Ty′1 <: unitTM′
1 (ε→ ns′1)

Γ ` M′
1

distinct(M′
1)

Suppose that D1 is a redex for Rinv, so that E′
1 = unit import ε exportM′′

1.Ds′1,

and D2 = module mi:M′
1 provide ns′1=Ds′1. The Eunit type rule (along with the

IE rule) ensures the following, where ns′′1 = domN(M′′
1).

Ty′1 = unitTM′′
1 (ε→ ns′′1)

Γ ` M′′
1

distinct(M′′
1)

Γ; ε ` Ds′1 :M2

Γ ` M2 <:M′′
1

The Dmod2 rule requires the following additional property for D2 to have type B1:

Γ ` M2 <:M′
1. Lemmas 3.14 and 3.1 ensure this.

The other possible rules that D1 can be a redex for are Rlet4–Rlet6. The

proof here follows the Dval case; the extra domain condition ensures that M′
1

remains well-formed in the scope of the additional definitions.

If D1 is not a redex, the proof follows the Dval case.



83

case Dmod1: Let D1 = module mi provide ns=Ds′1. The type rule ensures the

following.

Γ; ε ` Ds′1 :M′
1

ns ⊆ domN(M′
1)

distinct(M′
1)

D1 cannot be a redex, and so Ds′1 is reduced with PC′ = PC[module mi . . . = []].

The induction hypothesis ensures Γ ` Ds′2 :M′
2, and Γ ` M′

2 <:M′
1 which finished

this case. This is sufficient as long as M′
2 has no duplicate names. The only rules

which can add new definitions into a sequence, and thereby create duplicate names

are Rlet1 and Rlet4. Both of these rules ensure that the names that add do not

duplicate any existing names.

case Dmod2: As the Dmod1 case.

case Epath: Let E1 = Px. E1 is a redex for (only) rule Rpath. By the Epath rule,

Γ ` Px 7→ xi:Ty1, and by the Rpath rule, flat(PC,Px) ` Px 7→ xi:Ty=V. By

Lemma 3.8, Ty = Ty1, and by Lemma 3.9 and rule Dval flat(PC,Px) ` V : Ty2

and flat(PC,Px) ` Ty2 <: Ty.

case Epj1: Let E1 = π1E
′
1. The type rule ensures that Γ ` E′

1 : Ty′1 and Γ `

Ty′1 δp Ty1 × Ty′′1 for some Ty′ and Ty′′1.

Suppose that E1 can is a redex of the Rpj1 rule, so that E′
1 = (V, V′), and

V = E2. The only type rule that matches E′
1 is Eprod, and so Γ ` E′

1 : Ty2×Ty′′2,

where Ty2 is V ’s type, and Ty2×Ty′′2 = Ty′1. Thus, Ty2 = Ty1, and so Γ ` Ty2 <:

Ty1.

The other potential reduction is Rlet14, in which case E′
1 = let SV in E′′

1 and

the type rules ensure the following.

Γ; ε ` SV :M

Γ,M ` E′′
1 : Ty′′′1

Γ,M ` Ty′′′1 <: Ty′1

Γ ` Ty′1

To finish this case, the following additional statements need to hold.



84

Γ,M ` Ty′′′1 δp Ty3 × Ty4

Γ ` Ty3 <: Ty1

Γ ` Ty1

Lemmas 3.13 and 3.4 ensure that they do.

Suppose that E1 is not a redex, and let PC′ = PC[π1[]]. By the induction

hypothesis, Γ ` E′
2 : Ty′2, and Γ ` Ty′2 <: Ty′1. By Lemma 3.13, Γ ` Ty′2 δp Ty2 ×

Ty′′2 and Γ ` Ty2 <: Ty1.

case Epj2: As the Epj1 case.

case Eprod: Let E1 = (E′
1, E′′

1). By the rule Γ ` E′
1 : Ty′1, Γ ` E′′

1 : Ty′′1, and

Ty1 = Ty′1 × Ty′′1.

Suppose that the E′
1 subterm is reduced, and let PC′ = PC[([], E′′

1)]. By the

induction hypothesis, Γ ` E′
2 : Ty′2, and Γ ` Ty′2 <: Ty′1. By the Eprod rule,

Ty2 = Ty′2 × Ty′′1.

The case where the E′′
1 subterm is reduced is similar to the above case.

If the Rlet12 rule applies, then E′
1 = let SV in E′′′

1 and the type rules ensure

the following.

Γ; ε ` SV :M

Γ,M ` E′′′
1 : Ty′′′1

Γ,M ` Ty′′′1 <: Ty′1

Γ,M ` Ty′1

To finish this case, the following additional statement needs to hold.

Γ,M ` Ty′′′1 × Ty′′1 <: Ty′1 × Ty′′1

Γ ` Ty1

The first follows from the definition of subtyping, and the second follows from

Lemma 3.4. The Rlet13 case is similar.

case Einjl: Similar to the Eprod case.

case Einjr: Similar to the Eprod case.

case Ecase: Suppose E1 is a redex of Rcase1, and let E1 = case injl V′
3 of V′

4+V′
5

and E2 = V′
4 V′

3. By the Ecase and Einjl type rules, the following hold:



85

Γ ` V′
3 : Ty′3

Γ ` V′
4 : Ty′4

Γ ` Ty′4 δp Ty′′4 → Ty′′′4

Γ ` Ty′3 <: Ty′′4

Γ ` Ty′′′4 <: Ty1

By the Eapp rule, Γ ` E2 : Ty′′′4 . The case for injr is similar.

The Rlet9–Rlet11, cases are similar to the other let cases.

If E1 is not a redex, then one of the subexpressions of the case expression

evaluates, and the reasoning is similar to the other inductive cases.

case Eapp: Let E1 = E′
1 E′′

1. The type rule ensures the following properties.

Γ ` E′
1 : Ty′1

Γ ` Ty′1 δp Ty′′′1 → Ty1

Γ ` E′′
1 : Ty′′1

Γ ` Ty′′1 <: Ty′′′1

Suppose that E1 is a redex of Rapp, and let E′
1 = λxi:Ty.E3, so that E2 =

E3{xi ← E′′
1}. The Efun type rule ensures the following properties.

Γ,xi:Ty ` E3 : Ty3

Γ ` Ty

xi 6∈ dom(Γ)

Ty′1 = Ty→ Ty3

Thus, Ty = Ty′′′1 and Ty3 = Ty1 and Lemma 3.15 finishes the case.

If E1 is a redex of Rlet16 or Rlet17, the proof follows the other let cases.

If E1 is not a redex, let E1 = E′
1 E′′

1. Suppose that E′
1 is reduced and let

PC′ = PC[[] E′′
1]. By the induction hypothesis, Γ ` E′

2 : Ty′2, and Γ ` Ty′2 <: Ty′1.

By Lemma 3.13, Ty′2 δp Ty′′′2 → Ty2, and Γ ` Ty′′′1 <: Ty′′′2 , and Γ ` Ty2 <: Ty1.

Γ ` Ty′′1 <: Ty′′′2 shows that E2 has type Ty2 and finishes this case.

Suppose that E′′ is reduced and let PC′ = PC[E′
1 []]. By the induction hypoth-

esis, Γ ` E′′
2 : Ty′′2, and Γ ` Ty′′2 <: Ty′′1, which by the Eapp rule, finishes this

case.



86

case Elet: Let E1 = let Ds′1 in E′
1. E1 cannot be a redex, and only Ds′1 can be

reduced. Let PC′ = PC[let [] in E′
1]. By induction hypothesis Γ; ε ` Ds′2 :M′

2 and

Γ ` M′
2 <:M′

1. Lemma 3.3 finishes this case.

case Ecmpd: Let E1 = compound importM0,1 exportM0,2 link Us where Ls.

If E1 is not a redex, then one of the expressions in one of the Us is reduced.

By induction hypothesis, the reduced expression has a type that is a subtype

of the original expression (the compound expression does not extend the type

environment for its subexpressions). The Us rule ensures that the original type is

a subtype of the explicitly specified type, and the resulting compound expression

satisfies this condition through subtyping transitivity.

If E1 is a redex for Rlet18 the proof follows the other let cases.

Suppose that E1 is a redex for Rcpd and that M0,1, M0,2, Ds′, and Ds′′ are

as in that rule, that Us = UV1 . . .UVn. Expand the definitions as follows (where j

ranges between 1 and n, inclusive).

Ds′ = D1 . . .Dm

Ds′′ = D′
1 . . .D′

m

UVj = (unit importMj,1 exportMj,2. Dsj):importMj,3 exportMj,4

Assume enough α-renaming on Ds′ so that no defined identifier is also defined in

theMj,3s. Thus D′
i = Di{Ls} where {Ls} denotes the substitution indicated by the

linkages.

The following conditions will show that the unit resulting from evaluation has the

same type as the original compound, where M = M0,1,ctxt(D1), . . . ,ctxt(Dm)

andM′ =M0,1,ctxt(D′
1), . . . ,ctxt(D′

m) andM′′ is the module description from

Ty1.

Γ ` importM0,1 exportM0,2 : Ty1

∅ = dom(M′) ∩ dom(Γ)

distinctI(M′)

Γ ` (recM′) <:M′′

Γ,recM′ ` D′
i : ctxt(D′

i)

The first is immediate in the Ecmpd rule. The second by the IE type rule which

ensures that the compounds type is well-formed (and hence thatM0,1 does not clash



87

with Γ) and by the Eunit type rule which ensures that each Di has an identifier

not in Γ, since each Di originates in a well-typed subunit. The Rcpd rule ensures

the third condition.

Before proceeding to the last two statements, I consider the following unit

definitions.

E′
j = unit importMj,3 exportMj,4. Dsj

This E′
j unit is simply the original Ej unit, with its imports and exports replaced

with the declared imports and exports from UV′
j . By Lemma 3.16 and the U rule,

Γ ` E′
j : Ty′ where Γ ` import Mj,3 export Mj,4 : Ty′j . Now I turn to the

following unit definition, which collects all of the E′
js into one unit.

E′ = unit importM1,3, . . . ,Mn,3 exportM1,4, . . . ,Mn,4. D1 . . .Dm

Because of potentially duplicated names, E′ might not be well-typed; however, the

other conditions on E′ having a type do hold based on the fact that each constituent

unit has a type. Thus, for some modules N1 and N2, the following statements are

true. (The distinctness and inclusion conditions in the type and reduction rule are

sufficient to avoid identifier clashes.)

(M1,3, . . . ,Mn,3); (M1,4, . . . ,Mn,4) interleave N1

Γ ` N1

Γ; (M1,3, . . . ,Mn,3) ` D1 . . .Dm : N2

Γ ` N2 <: N1

Adding rec around the definitions D1 . . .Dm does not affect the typing as rec

only increases the number of bindings in scope and the typing rules already ensure

no potentials for conflicts in the increased scope. Thus, by the Dsrec rule, the

following two statements hold.

N2 =M1,3, . . . ,Mn,3,ctxt(D1), . . . ,ctxt(Dm)

Γ,rec N2 ` Di : ctxt(Di)

Furthermore, by Lemma 3.2, adding M0,1 is harmless.

Γ,rec (M0,1,N2) ` Di : ctxt(Di)

Γ ` rec (M0,1,N2) <: rec (M0,1,N1)

The proof proceeds in five steps.



88

1. Assume that no binding in the Mj,3s is (or contains, in the case of modules)

a translucent type definition. If one is, simply replace all references to it

with its definition, then remove it along with its corresponding linkage. Any

prereplacement typing or subtyping derivation holds after the replacement,

because either the type path was compared using equality, or expanded first,

and there can only be one expansion. The converse holds because any time the

typing or subtyping derivation encounters a type path, it could have expanded

out its definition. Furthermore, this process is guaranteed to succeed because

the Mj,3s all appear in the original program which forbids rec constructs.

2. Γ ` rec (M0,1,N2){Ls} <: rec (M0,1,N1){Ls}. The Ecmpd rule ensures

that the linkages substitute for identifiers that are bound to Mj,3s. Let B

correspond to one of these. If B is a value description, then the substitution

has no effect, since value identifiers (xi) do not appear in contexts. By the

previous step, it is not a translucent type definition. If it is an opaque type

definition then the subtyping derivation for rec (M0,1,N2) does not expand it

out, and so some derivation will succeed without expanding the replacement

identifier. If B is a module, then the above considerations apply to each of its

component pieces.

Since no Mj,3 is referenced after the substitution, they can all be dropped to

conclude the following.

Γ ` rec (M0,1,ctxt(D1), . . . ,ctxt(Dm)){Ls} <:

rec (M0,1,M1,4, . . . ,Mn,4){Ls}

The substitution can be pushed in, and since no substituted value is referenced

inM0,1 (a consequence of Ecmpd), the following holds.

Γ ` recM′ <:

rec (M0,1,ctxt(D1{Ls}), . . . ,ctxt(Dm{Ls})) <:

rec (M0,1,M1,4{Ls}, . . . ,Mn,4{Ls}) <:

M6

This dispenses with the fourth overall goal of this case.



89

3. Let Γ′ = Γ,rec (M0,1,N2){Ls}. If (id1 ← id2) ∈ Ls then there exist B1 and

B2 such that Γ′ ` id1 7→ B1 and Γ′ ` id2 7→ B2. Furthermore, Γ′ ` B2 <: B1.

This follows directly from the L rule, the previous step, and Lemma 3.3.

4. Γ′ ` Di : ctxt(Di). Following the reasoning of step 2, any type reference

replaced in the environment could not have been expanded in the derivation

of Γ,rec (M0,1,N2) ` Di : ctxt(Di), and so it does not matter what it is

replaced with here.

5. Γ,rec M′ ` Di{Ls} : ctxt(Di{Ls}). Repeated application of Lemma 3.17

and steps 3 and 4 ensure that Γ′ ` Di{Ls} : ctxt(Di{Ls}). The unreferenced

Mj,3 bindings in Γ′ can be thrown out to yield the goal.

Corollary 3.2 (Whole program preservation). If ε; ε ` Prog1 :M and Prog1  Prog2,

then ε; ε ` Prog2 :M.

3.3.5 Proof of Theorem 3.1

Proof. By induction on the number of evaluation steps in the multistep reduction →→.

If no steps are taken, then Prog1 = Prog2, and the result is immediate by Corol-

lary 3.1. Suppose that Prog1 →→ Prog′  Prog2, and that Prog2 6= error. By induction,

ε; ε ` Prog′ : M. By Corollary 3.2, ε; ε ` Prog2 : M and the result is immediate by

Corollary 3.1.



CHAPTER 4

UNITS AND MODULES IN AN

EXTENSIBLE LANGUAGE

Many of the module system requirements from the first of Chapter 2 do not mention

static types; therefore any module system, including one for an untyped language, should

satisfy them. The type-related criteria of Chapter 2 ensure that the types of the base

language are fully integrated into the module system; in particular, the interface of a

typed unit can contain types and type definitions. In general, a specification language

for component interfaces necessarily parallels the programming language in which the

component are implemented. When a programming language construct has a counterpart

in the interface specification language, the compile-time and run-time aspects of the

construct can cross component boundaries.

An extensible programming language does not have a fixed set of constructs; new fea-

tures can be added to the language with external extensions to its compiler (such as with

macros in Lisp and Scheme). In this setting, the interface specification language should

be correspondingly extensible, allowing extension authors to maintain the correspondence

between language constructs and interface constructs.

This chapter presents the design of units for the PLT Scheme [Flatt 2006] dialect

of the Scheme programming language [Kelsey et al. 1998]. Extensions to Scheme are

implemented with macros that define a new syntactic form by specifying how the form

is translated into Scheme. The language of unit signatures supports macros that specify

how new signature forms are translated into the core signature language.

4.1 Modules and Macros

PLT Scheme’s macro system is based on the syntax case macro system [Dybvig et al.

1992], and its module system is designed to support separate compilation in the presence

of these macros [Flatt 2002]. In this section, I describe these systems and present the



91

design of an automatic compilation management system for modules. The compilation

manager relies on the properties of the module system that prevent it from being a

component system. This motivates the importance of having both modules and units.

Figure 4.1 presents a simplified grammar for a subset of PLT Scheme. (In the grammar,

I write x∗ to indicate a sequence of 0 or more elements of x.)

4.1.1 Macros

A programmer adds a new construct to the Scheme language by defining a macro

with define-syntax. For example, to define a two-argument, short-circuit or form, the

programmer would write (define-syntax or expr) where the expression evaluates to a

function that transforms (or expr1 expr2) into (let ((x expr1)) (if x x expr2)). When

the compiler encounters an occurrence of or, it invokes the function, called a syntax

transformer, associated with or and then continues to process the resulting code. The

module-def = (module module-id module-path top-def∗)
module-path = string

| (lib string∗)
top-def = (require module-path∗)

| (provide id∗)
def = (define value-id expr)

| (define-syntax macro-id expr)
| expr
...

expr = #f
| id
| (expr expr∗)
| (macro-id s-expr∗)
| (lambda (value-id∗) def∗ expr∗)
| (if expr expr expr)
| (let (b∗) def∗ expr∗)
...

b = (value-id expr)
s-expr = Scheme symbols

| #f
| (s-expr∗)
...

id, module-id = Scheme symbols
macro-id, value-id = Scheme symbols

Figure 4.1. Basic grammar for PLT Scheme’s modules and macros



92

expression inside of a define-syntax definition is executed at compile time, and the

identifier (e.g., or) is bound to the syntax transformer in the compile-time environment.

Extension definitions via define-syntax follow the usual lexical scoping rules of

Scheme. A syntax definition can appear inside of a local scope (such as a syntax definition

inside of a lambda or let expression), and it is only visible in that scope. Furthermore,

the name of an extension can be shadowed in a scope with another syntax binding, or

a value binding. So, if a function has an or parameter, it hides the or extension in the

function’s body.

To assist in the construction of syntax transformers, the syntax-case form supports

pattern-based decomposition and construction of syntax. The or macro above can be

expressed as follows.

(define-syntax or
(lambda (stx )

(syntax-case stx ()
(( expr1 expr2)
(syntax (let ((x expr1)) (if x x expr2)))))))

The ( expr1 expr1) piece is a pattern that deconstructs the syntax stx , and the (syntax

———) piece is a template that constructs the result syntax.1

Syntax extensions can be defined recursively by having the new keyword appear in

the transformer’s output syntax. For example, an arbitrary-argument or can be defined

as follows.

(define-syntax or
(lambda (stx )

(syntax-case stx ()
(( ) (syntax #f))
(( expr1 expr . . . )
(syntax (let ((x expr1)) (if x x (or expr . . . ))))))))

In addition to being recursive, this example illustrates case dispatch in pattern matching—

or with no arguments versus or with one or more arguments. The ellipses in the pattern

and template indicate the preceding entity corresponds to a sequence of s-expressions.

Unlike macros in LISP or C, Scheme’s macros respect lexical scoping.2 This ensures

that the author of a macro does not need to know which variables might be in scope

where the macro is used, and the user of a macro does not need to know which variables

1I use ——— to indicate elided code because . . . can occur in patterns and templates.

2A lexically-scoped macro system is one that is both hygienic [Kohlbecker et al. 1986] and
referentially transparent [Clinger and Rees 1990].



93

the macro might introduce into its result. In the or example, the following call behaves

as expected because the if that results from the macro is lexically-scoped at the macro’s

definition site.

(let ((if 12))
(or (< 3 4)))

In a nonlexically-scoped macro system, the if in the expansion of or would refer to 12

instead of the built-in if conditional. The follow example produces 12 as expected because

the x used at the macro’s call site is bound to the lexically enclosing x instead of the x

binding introduced by the macro (which refers to #f).

(let ((x 12))
(or #f x ))

To track lexical scoping information, the code consumed and produced by transform-

ers is represented by annotated s-expressions called syntax objects. A transformer can

directly construct syntax objects, instead of using templates, to implement a macro that

intentionally violates lexical scoping. A common use is to create a binding that code at

macro use site can refer to.

The define-syntax definition form can bind values other than syntax transformers

in the compile-time environment; furthermore, a transformer can consult the value of

another define-syntax binding during transformation. These features can be used to

allow the definition of language extensions that cooperate between different macro usage

sites. Pattern matching over records is a simple example of this technique.

PLT Scheme supports generative records (called structures) via the define-struct

form [Flatt 2006] with full support for pattern matching [PLT 2006b]. This combination

of records and pattern matching mirrors the corresponding features in a typical typed

functional language. Each structure definition creates constructor, accessor, and predicate

functions that work only with that structure. Each pattern match expression that involves

the structure is compiled by the match macro into code that uses these functions to

perform predicate checking, destructuring, and variable binding. The bindings for the

structure’s associated functions are relayed to the match macro with a define-syntax

binding inserted by the structure’s definition.

The following simple example, inspired by an addition expression in an interpreter,

defines a structure add-exp with fields l and r .



94

(define-struct add-exp (l r))
———
(define (interp exp)

(match exp
((struct add-exp (v1 v2))
(+ (interp v1) (interp v2)))

———))

The define-struct form itself is a macro that expands, in this example, to the following.3

(define-values (make-add-exp add-exp? add-exp-l add-exp-r)
———)

(define-syntax add-exp
(list (quote-syntax make-add-exp)

(quote-syntax add-exp? )
(list (quote-syntax add-exp-l) (quote-syntax add-exp-r))))

The define-values definition binds the structure’s associated functions. The define-

syntax definition binds the structure’s name to a compile-time data structure that

contains identifiers that can be used to refer to the functions. The quote-syntax form

makes an identifier (the syntax object version of a symbol) that is bound in the scope

that contains the quote-syntax expression. Thus, the macro that implements match

can consult the definition of add-exp and use its constituent identifiers to generate the

following code.

(define (interp exp)
(if (add-exp? exp)

(let ((v1 (add-exp-l exp))
(v2 (add-exp-r exp)))

(+ (interp v1) (interp v2)))
———))

4.1.2 Modules

Modules in PLT Scheme are semantically similar to the modules from the typed model

of modules and units (Section 2.1): they are both internally-linked entities of program

organization. However, there are several important syntactic differences. PLT Scheme’s

modules do not use the dotted notation to reference the bindings from another module;

instead a module can contain a require statement that places all of the provided bindings

of the referenced module into the requiring module’s top-level scope. Furthermore, PLT

Scheme’s modules cannot be nested, but exist only as top-level entities.

3The define-values form supports the simultaneous definition of several variables.



95

Modules can provide run-time definitions created by define and compile-time defi-

nitions created by define-syntax. Thus, macros and other static information can be

provided for use in other modules. For example, the above add-exp example can be

partitioned as follows. (The second argument to the module form indicates the initial

import for the module. In this case, mzscheme provides the standard PLT Scheme

language.)

(module match mzscheme
(provide match)
(define-syntax match ———))

(module ast mzscheme
(provide add-exp make-add-exp add-exp? add-exp-l add-exp-r)
(define-struct add-exp (l r)))

(module interp mzscheme
(require "ast.ss" (lib "match.ss"))
(provide interp)
(define (interp exp)

(match exp
((struct add-exp (v1 v2))
———)

———)))

Each module is defined in a file of the same name, but with ".ss" appended to the end.

The (lib "match.ss") requirement is to the match module in the standard library, and

the "ast.ss" requirement is to the ast module in the same location as the interp module.

Thus, the file system is used to create a global namespace which supports unambiguous

references between modules.

The ast module must be present at the interp module’s run time because the interp

module uses add-exp? and other functions from the ast module. The ast module must

also be present at interp’s compile time because the transformer that compiles the match

expression relies on the value bound to add-exp. Hence, the compilation of a module can

depend on the modules that it requires. This observation forms the basis of a compilation

management strategy.

4.1.3 Compilation Management

Modules form the units of separate compilation4 in PLT Scheme because of two

properties: a module’s body can only reference definitions from directly required modules,

4“Unit of separate compilation” is a different concept from the “unit” component system.



96

and the inter-module requirement relation must be acyclic. The contents of each required

module, in particular their macro definitions, must be present and executable to compile

the module in question. Hence, if module m1 requires module m2, then module m2 can

and must be compiled before m1. Furthermore, if both are compiled, and m2 changes,

m1 must in general be recompiled after the recompilation of m2. This is because m1’s

compilation can depend on compile-time definitions in m2 that might have changed.

PLT Scheme’s compilation manager follows the algorithm of Figure 4.2. According to

this recursive algorithm, a module m will be recompiled if any module that is an ancestor

in the requirement DAG needs to be recompiled; thus, compilation dependencies are

transitive. The transitivity arises due to macros. In Figure 4.3, m1 uses a macro from

m2 which is in turn defined based on a macro defined in m3. The x in m1 is bound

to the constant 1. If m3 changed so that the 1 was 2, then x would be bound to the

constant 2, even without m2 changing. This example can be extended to m4, m5, etc.

with def-def-mac, def-def-def-mac, etc.

4.2 Units

Figure 4.4 presents the grammar for the basic constructs of the unit system for PLT

Scheme, and Figure 4.5 presents the set example from Figure 2.2 in this syntax. Unlike

the typed units of Section 2.1, the Scheme unit system is intended for practical usage;

it includes signatures (created with define-signature) and the rename and prefix

constructs for managing the names of the individual bindings imported into and exported

from units. The differences between the typed and Scheme module systems imply another

difference in the unit systems: a Scheme unit can only import and export bindings—not

modules, and when invoked (with define-values/invoke-unit) a Scheme unit does not

put the exported bindings into a module. It instead binds its exports in the enclosing

To compile module m

For each module n required by m, invoke the compilation manager for n
If one of the modules n was recompiled then
recompile m

else if m has changed since the last compilation
recompile m

else
do nothing

Figure 4.2. Module-based compilation management



97

(module m3 mzscheme
(provide def-mac)
(define-syntax def-mac

(lambda (stx )
(syntax-case stx ()

(( name)
(syntax (define-syntax name (lambda (stx ) (syntax 1)))))))))

(module m2 mzscheme
(require "m3.ss")
(provide mac)
(def-mac mac))

(module m1 mzscheme
(require "m2.ss")
(provide x )
(define x (mac)))

Figure 4.3. Modules with transitive compilation dependencies

unit-expr = (unit (import sig-expr∗) (export sig-expr∗) def∗)
| (compound-unit (import link-spec∗) (export link-id∗)

(link linkage∗)
sig-expr = sig-id

| (prefix symbol sig-id)
| (rename sig-id rename∗)

rename = (id id)
linkage = ((link-spec∗) expr link-id∗)

link-spec = (link-id : sig-id)

sig-def = (define-signature sig-id (spec∗))
| (define-signature sig-id extends sig-id (spec∗))

spec = value-id

def = (define-values/invoke-unit expr sig-expr∗)
| sig-def
...

expr = (invoke-unit expr)
| unit-expr
...

link-id, sig-id = Scheme identifiers

Figure 4.4. Basic unit system grammar



98

(module order mzscheme
(provide order-sig)
(define-signature order-sig (compare)))

(module ordered-int mzscheme
(require "order.ss")
(provide oi-unit)
(define oi-unit

(unit (import) (export order-sig)
(define compare ———))))

(module set mzscheme
(require "order.ss")
(provide set-unit set-sig)
(define-signature set-sig (insert))
(define set-unit

(unit (import order-sig) (export set-sig)
(define insert (——— compare ———)))))

(module main mzscheme
(require "order.ss" "ordered-int.ss" "set.ss")
(define int-set-unit

(compound-unit (import) (export S )
(link (((O : order-sig)) oi-unit)

(((S : set-sig)) set-unit O))))
(define-values/invoke-unit int-set-unit set-sig)
(define set (insert ———)))

Figure 4.5. Set example

scope.

The links between units in the compound-unit form are not satisfied variable-by-

variable, but signature-by-signature, and Scheme units take a nominal approach to unit

interfaces—each signature definition creates a unique signature. In contrast, units of

Chapter 2 take a structural approach. The structural approach is popular in typed,

functional languages (ML’s types and signatures are matched structurally), and the

nominal approach is most common in object-oriented languages such as Java. Section 4.3

discusses several reasons why nominal matching is important, and Chapter 5 revisits

structural matching in the Scheme system.

Each linkage in a compound unit’s link clause uses link-specs to specify the signatures

that must be exported from that linked unit, along with link-ids to name them. Following

the unit expression, the link-ids in a linkage specify the unit’s imports; they must refer



99

to link-ids defined in link-specs from any of the linkages or from the compound unit’s

import clause. The specified linkages in a compound unit are matched against the unit

value’s imports and exports by signature identity, so it does not matter which order the

link-specs or link-ids appear in.

Signatures support single-inheritence with extends to allow the definition of a more

specific version of an interface. Much like in the typed version of units, a unit with more

exports, or more specific exports (according to the declared signature extension relations),

can be used in a compounding or invocation expression that expects less of it. Similarly, a

unit with less imports, or less specific imports, can be used in an expression that expects

more of it.

Because Scheme is untyped, error checking is split between run time and compile

time. The compile-time checks are based on the signature annotations, and the run-time

checks ensure that the run-time values are consistent with the annotations. Table 4.1

describes the compile-time checks performed by the unit system. The run-time checks

for compound-unit and define-values/invoke-unit ensure that their subexpressions

have unit values that are compatible with the specified imports and exports.

4.3 Compile-time Values in Signatures

The unit system described in Figure 4.4 and Table 4.1 supports the export of run-time

value from a unit, but not the export of compile-time values. This restriction ensures that

units can be independently compiled; if one of these units could export a compile-time

value for a binding x , then the compilation of another unit that imports x would need

to know whether x is a compile-time or run-time value (and if it is a compile-time value,

what that value is). If a unit importing x was linked to two different units that export

different compile-time values for x , then it would have to be compiled twice, one for each

linkage.

Units in the typed language (Section 2.1) can import and export types (which are

compile-time values) by placing type definitions in the unit’s interface. The same idea

applies to compile-time values in Scheme by allowing signatures to specify definitions for

compile time values (Figure 4.6). However, there is no analogue to opaque type imports

and exports because there is no use for a compile-time binding that could have any value.

A signature that includes definitions (both compile-time and run-time) can express

more about an interface than can a signature that is simply a collection of names. For



100

Table 4.1. Compile-time error checking for units
define-signature
• No identifier is specified twice in a signature, including parent signatures.

unit
• Each exported binding is defined (with define) in the unit. This implies that no

imported binding is directly exported. Such a binding would not be created by this
unit, but merely passed through. If the binding was recursively linked with itself,
or another unit that also did not create the binding, the binding would not exist.
A definition in the unit’s body, along with renaming, can avoid this problem, as in
the following example.

(define-signature s (x ))
(unit (import (rename s (x im:x )))

(export s)
(define x im:x ))

• No binding is imported into the body more than once. Renaming and prefixing
can be used to avoid this conflict when multiple imported signatures contain a
specification for the same identifier.

• No imported binding is defined in the unit.
• No exported signature is the same as, or a subtype of, another exported signature.

This check prevents ambiguity when compounding with the unit. Otherwise, a unit
could export signatures s1 and s2 where s1 is a subtype of s2. When matching the
exports to the sig-ids in a link-spec, a sig-id of s2 would match both the s1 or s2

export.
compound-unit
• No link-id is specified in a link-spec more than once.
• Each link-id used in a linkage is specified in a link-spec.
• Each link-id used in the export clause is specified in a linkage’s link-spec.
• No sig-id in a linkage is subtype of another sig-id in the same linkage.
• No two link-ids on the right side of a linkage have associated sig-ids where one of

the sig-ids is a subtype of the other. This prevents two different link-ids from being
able to satisfy the same import.

define-values/invoke-unit
• The sig-expr cannot specify duplicate identifiers.



101

spec = value-id
| (define-syntax macro-id expr)
| (define value-id expr)

Figure 4.6. Definitions in signatures

example, an imported macro can codify an idiomatic usage of the imported functions.

Figure 4.7, which does not use the extension of Figure 4.6, contains a simple case of

such a macro taken from DrScheme’s turtle graphics library [PLT 2006a]. The splitfn

function clones the turtle, and performs its argument command on only one of the clones.

The split macro wraps the argument command inside of a no-argument function that it

passes to splitfn, thereby automatically implementing the necessary delayed execution of

the command.5

The split macro refers to the splitfn function; because macros are lexically scoped,

the definition of split must occur in the scope of the binding of splitfn. Hence, the macro

definition is inside of turtle-client . This technique is unacceptable because the split

macro must be defined inside of every unit that imports the turtle-graphics signature

(or the unit’s body will have to directly re-express the meaning of the split macro by

directly wrapping the arguments to each call to splitfn with lambda). The macro’s

definition is not specific to any one implementation of the turtle-graphics signature and

splitfn function. It expresses a general fact about splitfn, and should therefore be part

of the interface of units that import and export turtle-graphics. Moving split into the

signature (Figure 4.8) accomplishes this.

All of the variables mentioned in the signature are in the lexical scope of the signature’s

definition (along with the variables in scope around the define-signature definition

itself). Because macros follow lexical scoping, references to plain variables (that is, those

variables in a signature that are not the name of a definition) in an imported signature

always refer to the value imported into the unit by that variable. In the split example,

the splitfn reference in the expansion of split always refers to the function imported into

the unit as splitfn. Thus, although the value can differ among linkages with various units

that export the turtle-graphics signature, the splitfn binding is always to the import.

A define-syntax definition in a signature can define other kinds of compile-time

5Without delaying execution of the command, it would apply to the turtle before cloning,
because of the call-by-value semantics of Scheme.



102

(define-signature graphics-primitives (———))
(define-signature turtle-graphics

(move turn splitfn ———))

(define turtle-impl
(unit (import graphics-primitives) (export turtle-graphics)

(define move ———)
(define turn ———)
(define splitfn ———)
———))

(define turtle-client
(unit (import turtle-graphics) (export)

(define-syntax split
(lambda (x )

(syntax-case x ()
(( args . . . )
(syntax (splitfn (lambda () args . . . )))))))

———
(split (move ———) (turn ———))
———))

Figure 4.7. Turtle graphics: macro in unit

(define-signature turtle-graphics
(move turn splitfn ———
(define-syntax split

(lambda (x )
(syntax-case x ()

(( args . . . )
(syntax (splitfn (lambda () args . . . )))))))))

(define turtle-client
(unit (import turtle-graphics) (export)

———
(split (move ———) (turn ———))
———))

Figure 4.8. Turtle graphics: macro in signature



103

values besides transformers. The define-syntax definition in Section 4.1 that allowed the

pattern matcher to deconstruct add-exp structures can also appear in a unit’s signature.

Figure 4.9 contains a sketch of an interpreter that is partitioned across several units (one

for definitions, one for expressions, etc.), each of which imports the abstract syntax from

a unit.6 The match form inside of the units can consult the signature-based compile-time

descriptions of the structures that constitute the AST.

4.3.1 Nominal Matching

The presence of definitions in unit signatures makes nominal matching semantically de-

sirable, because it guarantees that the definitions are compatible when exported from one

unit into another. With structural matching, a general compatibility check is impossible,

since the contents of the definition can rely on any Scheme computation. In some cases

compatibility may be unimportant, such as the split macro which is completely irrelevant

to the exporting unit. Nominal matching also yields several other benefits [Pierce 2002]

and drawbacks. I revisit the drawbacks in Chapter 5.

4.4 The Extensible Signature Language

Writing a signature for a structure by directly listing its constructor, predicate, and

accessor functions along with properly encoded shape information (the define-syntax

part) is error-prone and repetitive. Just as the define-struct form abstracts the pattern

for creating the functions and shape information for structure creation, signatures should

support a form that allows the concise description of structures. In general, a macro-based

language extension can introduce its own form of compile-time information, which might

need to appear in a signature. I add macro-expansion functionality to the spec language of

signatures to allow extensions to specify how their information is expressed in signatures

(Figure 4.10).

A define-signature-form definition associates, in the compile-time environment, its

expression’s value with its identifier. When that identifier is used as the first element of

a spec, the value is applied, as a transformer, to the spec expression (which is a syntax

object). Unlike a usual macro, the associated transformer does not return a syntax

object representing a resulting definition or expression. Instead, it returns a list of syntax

6To motivate the implementation of the AST in a unit as opposed to a module, an alternate
AST implementation might provide “smart constructors” that perform local optimization on the
AST as it is constructed.



104

(define-signature ast
(make-add-exp add-exp? add-exp-l add-exp-r
(define-syntax add-exp

(list (quote-syntax make-add-exp)
(quote-syntax add-exp? )
(list (quote-syntax add-exp-l) (quote-syntax add-exp-r))))))

(define simple-ast
(unit (import) (export ast)

(define-struct add-exp (l r))))

(define interp-exp
(unit (import ast) (export ———)

(define (interp exp)
(match exp

((struct add-exp (v1 v2))
(+ (interp v1) (interp v2)))
———))))

(define interp-def
(unit (import ast) (export ———)

———))

Figure 4.9. Importing a structure



105

spec = (sig-form-id s-expr∗)
...

def = (define-signature-form sig-form-id expr)
...

sig-form-id = Scheme symbols

Figure 4.10. Macro extensible signature specifications

objects, each of which is a spec, to allow a signature form to specify multiple bindings.

(This is similar to a macro transformer that returns several definitions and expressions

by placing them into a (begin ———) expression.) Because the resulting specs are not

restricted to the basic forms (i.e., they can be applications of signature forms), a signature

form can be built from other signature forms (or recursively in terms of smaller instances

of itself).

In the case of structures, Figure 4.11 defines a signature form struct that expands

to the names of the structure’s functions, along with the compile-time information that

describes the structure’s shape. With the struct form, the AST’s signature can be written

as follows.

(define-signature ast
((struct add-exp (l r))))

(define-signature-form (struct stx )
(syntax-case stx ()

(( name (field . . . ))
(begin

(check-id (syntax name))
(for-each check-id (syntax->list (syntax (field . . . ))))
(with-syntax (((ctor-id pred-id acc-id . . . ) ———)

(cons (syntax
(define-syntax name

(list (quote-syntax ctor-id)
(quote-syntax pred-id)
(list (quote-syntax acc-id) . . . ))))

(syntax->list (syntax (ctor-id pred-id acc-id . . . ))))))))))

Figure 4.11. A signature form for structs



106

4.5 Examples

4.5.1 Views

A view [Wadler 1987] on a data structure is a way to manipulate it as though it

were simply an algebraic data type, or a record. A view is split into two parts; the in

part corresponds to destructuring and pattern matching, and the out part corresponds

to construction. One simple example is to view a language’s inbuilt numbers as Peano

numbers built inductively from a constant z and a unary constructor suc. The struct

form can be used to implement a unit that implements this view (Figure 4.12).

The set of ordered items from Figure 4.5 can be enriched with views (Figure 4.13).

Suppose that the ordered set defines get-min, which returns the minimum element of the

set, and remove-min, which returns a set that does not contain the minimum element.

(In this example, the set is a purely functional (or persistent) data structure [Okasaki

1998], so that the remove-min operation does not alter its argument). The min-set-sig

signature allows the set to be accessed with pattern matching as though it were a list

sorted in ascending; the max-set-sig signature allows it to be accessed as a list sorted in

descending order.

(module peano-numbers mzscheme
(require (lib "unit.ss"))
(provide z make-z suc make-suc)
(define-signature peano-sig

((struct z () -setters -type)
(struct suc (p-num) -setters -type)))

(define peano-view
(unit (import) (export peano-sig)

(define (make-z ) 0)
(define (z? n) (= n 0))
(define (make-suc n) (+ n 1))
(define (suc? n) (> n 0))
(define (suc-p-num n) (− n 1))))

(define-values/invoke-unit peano-view peano-sig))

(module example mzscheme
(require "peano-numbers.ss" (lib "plt-match.ss"))
(provide add)
(define (add m n)

(match m
((struct z ()) n)
((struct suc (msub)) (make-suc (add msub n))))))

Figure 4.12. Peano number view



107

(module set mzscheme
(require "order.ss")
(provide set-unit set-sig)
(define-signature set-sig (insert set? get-min remove-min get-max remove-max ))
(define set-unit

(unit (import order-sig) (export set-sig)
(define insert (——— compare ———))
———)))

(module set-views mzscheme
(require "set.ss")
(provide min-set-sig min-set max-set-sig max-set)
(define-signature min-set-sig

((struct min-set (min rest) -type -setters)))
(define min-set

(unit (import set) (export min-set)
(define make-min-set insert)
(define min-set? set? )
(define min-set-min get-min)
(define min-set-rest remove-min)))

(define-signature max-set-sig
((struct max-set (max rest) -type -setters)))

(define max-set ———))

(module main mzscheme
(require "order.ss" "ordered-int.ss" "set.ss" "set-views.ss")
(define int-set-unit

(compound-unit (import) (export S MinS MaxS )
(link (((O : order-sig)) oi-unit)

(((S : set-sig)) set-unit O)
(((MinS : min-set-sig)) min-set S )
(((MinS : min-set-sig)) min-set S ))))

(define-values/invoke-unit int-set-unit set-sig min-set-sig max-set-sig)
———)

Figure 4.13. Views on an ordered set

The int-set-unit compound unit links set-unit with oi-unit as before, and it also links

the export of set-unit (which is the primitive set interface) with the view units. Because

all three set interfaces are exported from the compound unit, the user of the integer set

unit can choose among, and mix, the three interfaces to the set. If the programmer who

is defining int-set-unit did not want to offer the choice (e.g., if the set-sig signature exists

only to afford support to multiple views and hence its interface might change), he could

choose to export only the MinS and MaxS links.



108

4.5.2 Parameterized Language Definitions

PLT Scheme’s module system supports the creation of new languages that are im-

plemented with macros. To accomplish this, all of the constructs of a new language are

defined with macros as extensions to an existing language, and a module l is created that

exports only those macros. When l is used as the language argument (second argument)

of the module form (instead of using mzscheme), the module’s body can only refer to the

constructs exported by l , which are exactly the constructs of the new language.

Occasionally, the expansions of the macros that define a new language must be

parameterized over a group of functions, so that the language works differently depending

on which functions are supplied. In this example, I present a language whose definition is

parameterized over the implementation of its garbage collector.7 The language definition

is split into three parts: core functions for accessing memory, the garbage collection (GC)

and allocation functions, and the macro that implements the language.

The language is a small subset of Scheme, and the macro-defined compilation produces

Scheme with inserted calls to the GC and allocation routines, as well as to the core

memory. Because the macro introduces calls to the GC and core memory, it must be

defined in the scope of the GC and memory routines. A fourth entity is a program

written in the language (called a mutator in GC terminology), which depends on the

language macros, and hence on the GC and memory routines as well. Figure 4.14 shows

the system architecture when it is implemented with modules and macros.

The memory-core module provides functions for dealing with the roots (locations that

GC starts from), and the allocator module provides functions for managing the heap and

allocating memory, including functions for constructing and inspecting primitive data

structures (e.g., cons cells). The gc-lang module provides primitive constructs (if, and,

define, etc.), it re-exports the data structure functions from the allocator module, and it

provides primitive functions (+, −, etc.) with GC wrapping (gc:alloc-flat and gc:deref ).8

It also supplies #%module-begin which is a special identifier that is wrapped around

the entire body of a module definition.

7The design and implementation of the macro- and module-based GC language are due to
Greg Cooper.

8The allocator uses names that start with gc: to avoid conflicts with Scheme’s built in functions.
The gc-lang module renames them on export to use the Scheme names so that programs using
the garbage collected language can refer to, for example, cons instead of gc:cons.



109

(module memory-core mzscheme
(provide static-roots get-root-set read-root set-root! ———)
———)

(module allocator mzscheme
(require "memory-core.ss")
(provide gc:set-heap-size! gc:alloc-flat gc:deref gc:cons gc:cons? gc:first ———)
———)

(module gc-lang mzscheme
(require "allocator.ss" "memory-core.ss")
(provide if and or cond let set! define ———

(rename gc:cons cons) (rename gc:cons? cons? ) (rename gc:first first)
(rename mem:+ +) (rename mem:- −) ———
(rename mem:module-begin #%module-begin))

(define (lift f ) (lambda args (alloc-flat (apply f (map deref args)))))
(define mem:+ (lift +))
(define mem:- (lift −))
(define-syntax mem:module-begin

(lambda (stx )
(define (annotate stx roots)

(syntax-case stx (if lambda set! ———)
———
((if cnd exp . . . )
(with-syntax (((ann-cnd (annotate (syntax cnd) roots))))

(syntax (if (gc:deref ann-cnd) ———))))
———))

(syntax-case stx (heap-size)
(( (heap-size n) body . . . )
———
(with-syntax (((body . . . )

(map (lambda (b)
(syntax-case b (require provide)

———
(expr (annotate (——— b) ’()))))

(syntax->list (syntax (body . . . ))))))
(syntax (#%module-begin

(gc:set-heap-size! n)
body . . . ))))))

(module mutator "gc-lang.ss"
(heap-size 100)
(define (map f lst)

(if (cons? lst)
(cons (f (first lst)) (map f (rest lst)))
empty)))

Figure 4.14. Garbage collected language: no parameterization



110

The mutator module uses "gc-lang.ss" as its base language (instead of mzscheme),

which means that its entire body is wrapped with gc-lang ’s #%module-begin, and

that its body can only refer to functions, macros, and primitive forms exported from

gc-lang . The #%module-begin expects the heap-size argument, and translates into a

call to the allocator’s gc:set-heap-size! function; it then calls annotate on the definitions

and expressions in the mutator. The annotate function translates syntax, such as if, into

primitive syntax with added calls to the allocator. For example, gc-lang ’s if is translated

into Scheme’s if with a call to gc:deref placed around the if’s conditional expression.

In the macro and module architecture, the gc-lang module refers to a particular

allocator implementation. The require statement in gc-lang must be altered to use

gc-lang with a different allocator module; in particular, two different garbage collected

languages cannot co-exist without copying the entire implementation of gc-lang .

With a unit-based architecture (Figure 4.15), a single implementation of the gc-lang

macros can be used with different allocators. In particular, the dependency of the gc-lang

module on the allocator module has been reversed. An allocator module implements a

unit whose export signature, gc-lang-sig , contains the gc-lang module’s functionality. The

mutator requires the allocator, and so it can directly select between different allocation

strategies without any changes to the gc-lang module.

The gc-lang-sig signature lists each function that the allocator is responsible for

implementing. This places these functions in the scope of the definitions in the remainder

of the signature. The lift function appears in the signature because it refers to deref and

alloc-flat which will come from the unit that exports the signature. The primitive function

definitions use lift , so they are also defined in the signature. Lastly, the body macro is

exactly the same as the mem:module-begin macro in Figure 4.14.

The mutator from Figure 4.15 has several differences from the previous version, besides

having to explicitly choose and invoke an allocator. It has to manually wrap its body

with body, and it uses the mzscheme language, instead of a specially constructed one.

This allows it to use any Scheme primitive bypassing the garbage collected heap.9 The

mutator-lang module (Figure 4.16) overcomes the problems with a custom #%module-

begin similar to the original gc-lang ’s.

9It is even worse. This example has an error from the define-values/invoke-unit trying to
redefine module level bindings from mzscheme, such as cons.



111

(module gc-lang mzscheme
(require "memory-core.ss")
(provide gc-lang-sig)
(define prim:+ +)
(define prim:- −)
———
(define-signature gc-lang-sig

(set-heap-size! alloc-flat deref cons cons? first ———
(define (lift f ) (lambda args (alloc-flat (apply f (map deref args)))))
(define-values (+ − ———)

(values (lift prim:+) (lift prim:-) ———))
(define-syntax body

(lambda (stx )
(define (annotate stx roots) ———)
———)))))

(module allocator mzscheme
(require "memory-core.ss"

"gc-lang.ss")
(provide allocator)
(define allocator

(unit (import) (export (prefix gc: gc-lang-sig))
(define gc:set-heap-size ———)
———)))

(module mutator mzscheme
(require "allocator.ss" "gc-lang.ss")
(define-values/invoke-unit allocator gc-lang-sig)
(body

(heap-size 100)
(define (map f lst)

(if (cons? lst)
(cons (f (first lst)) (map f (rest lst)))
empty))))

Figure 4.15. Garbage collected language: initial unit parameterization



112

(module mutator-lang mzscheme
(provide if and or cond let set! define ———

(rename module-begin #%module-begin))
(define-syntax module-begin

(lambda (stx )
(syntax-case stx (heap-size)

(( (alloc-path alloc-name) (heap-size n) x . . . )
(syntax (#%module-begin

(require "gc-lang.ss" alloc-path)
(define-values/invoke-unit alloc-name

(except (rename gc-lang-sig (local-body body))
alloc-flat lift ———))

(local-body
(heap-size n)
x . . . ))))))))

(module mutator "mutator-lang.ss"
("allocator.ss" allocator)
(heap-size 100)
(define (map f lst)

(if (cons? lst)
(cons (f (first lst)) (map f (rest lst)))
empty)))

Figure 4.16. Garbage collected language: mutator language

A program written in the mutator-lang language declares which allocator to use,

immediately preceding the heap-size declaration. The module-begin macro produces

the code that invokes the allocation unit and places the mutator’s body inside of a call

to body. The signature for invoking the allocator renames the body export to local-

body. Lexical scoping ensures that this local-body cannot be referenced by the mutator

program. Furthermore, the except clause hides allocation functions that should not be

visible in the mutator’s body.

4.5.3 Infix Notation

Even though Scheme’s syntax is fully parenthesized with prefix operators, it can be

extended with a macro-defined infix form that recognizes infix expressions written in a

typical mathematical-style notation (Figure 4.17). Following the example of SML and

Haskell, new infix operators can be defined with specified associativity and precedence.

Figure 4.18 contains the definition of a module mzscheme-infix that exports Scheme’s

mathematical and logical operators as infixes, along with a few other useful infix functions



113

expr = (infix s-expr∗)
...

def = (define/infix value-id (assoc prec) expr)
| (define-syntax/infix macro-id (assoc prec) expr)
...

assoc = left
| right

prec = real numbers

Figure 4.17. Infix extension

(module mzscheme-infix mzscheme
(require "infix.ss")
(provide (all-from "infix.ss")

(all-from-except mzscheme
∗ and ———)

(rename prec-∗ ∗)
(rename prec-and and)
o :: ———)

(define/infix prec-∗ (left 80)
∗)

(define/infix :: (right 60) cons)
(define/infix o (left 30)

(lambda (f ) (lambda (g) (lambda (x ) (f (g x ))))))
(define-syntax/infix prec-and (left 20)

(make-rename-transformer (syntax and)))
———)

Figure 4.18. Mzscheme infix

(function composition o, list construction ::, etc.).10 In the following example, x is bound

to ’(1 2 3).

(module infix-use "mzscheme-infix.ss"
(define x (infix 1 :: 1 + 1 :: 2 ∗ 2 − 1 :: ’())))

The infix macro processes the given infix expression using an operator precedence

parser [Aho et al. 1986], and it returns the corresponding fully parenthesized prefix

expression. The parser needs the declared precedence and associativity for each operator

it encounters; because infix parsing occurs at compile time, the information must be

10The function make-rename-transformer creates a macro transformer that returns the argu-
ment identifier to make-rename-transformer . In mzscheme-infix it causes each use of prec-and
to be replaced with and.



114

stored in the compile-time environment. The define/infix form uses define-syntax for

this purpose, similar to the compile-time definition of a structure’s shape in Section 4.1.

For example, the definition of :: expands to the following.

(define x cons)
(define-syntax ::

(create-infix-info (quote-syntax x ) ’left 80))

The create-infix-info function creates an instance of an infix-info structure that con-

tains the identifier x and the precedence information for the parser. When the parser

encounters an operator (e.g., ::), it consults the compile-time environment for that bind-

ing’s infix-info structure. If there is none, the parser assumes that the identifier is not an

infix operator. The parser uses the identifier in the structure for its output syntax object

(e.g., x ). If an infix operator is used outside of an infix expression (e.g., (:: 1 ’())) the

infix operator is directly expanded into the contained binding. This works because the

infix-info structure has an associated procedure that executes whenever the structure is

used as a function, and the procedure returns the structure’s contained binding.

Infix operators can be part of a unit’s interface. For example, units that implement

operations for abstract algebras would specify infix precedences for the algebras’ binary

operations. The sig/infix form (Figure 4.19) specifies an infix operator along with an

exported/imported function that the operator uses. The example in Figure 4.20 shows

how sig/infix is used in the interface to a matrix unit. In this example, Scheme’s rational

numbers are used as the matrices’ field, and n× n matrices are represented as functions

from indices to field elements.

spec = (sig/infix id (assoc prec) id)
...

(define-signature-form (sig/infix stx )
(syntax-case stx ()

(( infix-op (assoc prec) name)
(list (syntax name)

(syntax
(define-syntax infix-op

(create-infix-info (quote-syntax name) ’assoc ’prec)))))))

Figure 4.19. Infix declarations in signatures



115

(module abs-alg "mzscheme-infix.ss"
(require (lib "unit.ss"))

(define-signature F
(zero one add-inv mul-inv
(sig/infix ++ (left 70) add)
(sig/infix −− (left 70) sub)
(sig/infix ∗∗ (left 80) mul)
(sig/infix // (left 80) div)))

(define-signature MAT
(dim det zero one inv
(sig/infix m∗ (left 80) mat-mul)
(sig/infix c∗ (left 80) con-mul)))

(define ratF
(unit (import) (export F )

(define zero 0)
(define (add x y) (+ x y))
(define (mul x y) (∗ x y))
———))

(define (make-funMAT n)
(unit (import F ) (export (prefix m: MAT ))

(define m:dim n)
(define dim-list ’(1 ——— n))
(define (m:det M ) ———)
(define m:zero (lambda (x y) zero))
(define m:one (lambda (x y) (if (= x y) one zero)))
(define m:inv ———)
(define (m:mat-mul m1 m2 )

(lambda (x y)
(apply ++

(map
(lambda (j ) (infix m1 x j ∗∗ m2 j y))
dim-list))))

(define (m:con-mul c m)
(lambda (x y)

(infix c ∗∗ m x y))))))

Figure 4.20. A matrix unit



116

4.6 Contributions and Related Work

The unit system of this chapter is based on Flatt’s previous unit system for PLT

Scheme [Flatt and Felleisen 1998; PLT 2006b]. My system improves on the previous

one by adding general support for macro definitions to signatures (which I first proposed

with Culpepper and Flatt [2005]) and by supporting a general macro-expansion-based

mechanism for adding new kinds of compile-time information to signatures. The compi-

lation manager described in Section 4.1.3 is also a contribution of this chapter (the design

of the separately compilable module system is due to Flatt [2002], but the design and

implementation of the management algorithm for the system is novel).

Bawden [2000] proposes a system of lexically-scoped, “first-class” macros based on a

type system. The “first-class” macros are statically resolvable, which preserves compil-

ability, but the values for the bindings used in a macro’s expansion can be passed into

and returned from functions. A “first-class” macro is defined in a template that includes

macro definitions and a listing of variables that the macro is parameterized over, similar

to a unit’s signature. Bawden’s system uses types to statically track macro uses, whereas

macro bindings in the unit system are immediately apparent because macro definitions

are lexically embedded in signatures, which are statically attached to units.

Krishnamurthi’s [2001] unit/lang construct allows programmers to specify the pro-

gramming language of a component in addition to its external interface. A language

contains new macro-like extensions and run-time primitives. A unit/lang component

internally specifies which language it imports, similar to how our units specify their

signatures and similar to a module’s language position. However, the internally specified

language position does not coordinate with the externally linked component parameters,

so lexically-scoped macros cannot refer to these parameters. Our system also makes it

simpler to mix together orthogonal language extensions, since there is no need to manually

define a language that contains the desired combination of extensions.

Many component systems support a limited set of compile-time information in in-

terfaces. Module and component systems in nonextensible, typed languages typically

support the specification of types and algebraic datatypes in interfaces (see Chapter 2).

In Java-like object-oriented languages, interfaces contain information about the methods

of imported and exported classes [McDirmid et al. 2001].

The Scheme48 [Kelsey et al. 2005] module system provides some support for modules

with parameterized imports. However, the signatures for the imports only contain the



117

information that a binding is a macro, and the not macro itself. Consequently, parame-

terized modules that import macros cannot be independently compiled.



CHAPTER 5

A PRACTICAL UNIT SYSTEM

The unit system of Chapter 4 is designed for use in large software systems; however,

in several typical situations, its use is unacceptably verbose and difficult. In this chapter,

I describe three extensions that make units easier to use in these situations.

5.1 Initialization Dependencies

In Chapter 2’s operational semantics of units, a run-time error could arise due to a

reference to a variable whose value was not initialized. The same run-time error can occur

in the Scheme unit system of Chapter 4. In general, run-time errors are entirely acceptable

in untyped, safe programming languages (such as PLT Scheme), but this particular error

has serious implications for component abstractions.

Figure 5.1 presents a unit definition taken from the PLT Scheme GUI application

framework [Findler and Flatt 2006]. The framework is organized as a collection of 27

units; the preferences-unit unit implements user preference settings, and the main-unit

unit initializes the framework, including setting default preferences. The preferences-unit

encapsulates the state of the default values for preferences with the default hash table.

The main-unit unit uses the set-defaults function to initialize default preferences when

it is invoked. If the body of preferences-unit has not yet been evaluated, defaults will

be uninitialized and result in a run-time error. The bad-framework unit produces this

error when invoked because main-unit precedes preferences-unit ; the unit’s bodies are

evaluated in order when invoked. The framework unit does not produce the error because

the units are in a correct order.

In general, a unit can rely on its imports in code that executes immediately upon

invocation (as in the above example) as well as in code that does not execute until the

invocation is complete (for example, by calling an exported procedure whose body refers

to an import). In the first case, the units that define the bindings must have their bodies

initialized first. These initialization ordering constraints must be followed to successfully



119

(define-signature preferences-sig
(set-default ———))

(define preferences-unit
(unit (import ———) (export preferences-sig)

(define defaults (make-hash-table))
———
(define (set-defaults ———)

———
(hash-table-put! defaults ———))

———))

(define main-unit
(unit (import preferences-sig ———) (export ———)

———
(set-defaults ———)
———))

(define error-framework
(compound-unit (import ———) (export ———)

(link ((———) main-unit P ———)
(((P : preferences-sig) ———) preferences-unit ———)
———)))

(define framework
(compound-unit (import ———) (export ———)

(link (((P : preferences-sig) ———) preferences-unit ———)
((———) main-unit P ———)
———)))

Figure 5.1. Preferences for GUI applications

use the component, so they are inherently part of the unit’s interface. Figure 5.2 presents

the syntax of the extension to units that allows initialization dependencies to be explicitly

specified as part of a unit’s interface.

It is a compilation error for the init-depend clause to list a sig-id that is not imported

into the unit. To avoid ambiguity, it is also a compilation error for the import clause to

mention the same sig-id multiple times (even with enough prefixing and renaming to avoid

imported binding conflicts).1 Because the problem of deciding whether a given unit can

use a particular import at instantiation time is undecidable (via a trivial reduction from

1This restriction on imports does not limit the expressiveness because the restrictions on linking
prohibit linkages with duplicate signatures (Table 4.1).



120

unit-expr = (unit (import sig-expr∗) (export sig-expr∗) (init-depend sig-id∗)
def∗)

...

Figure 5.2. Initialization dependencies

the halting problem, by constructing a unit where the first occurrence of the import

in question follows the execution of a given Scheme program that may or may not

halt), all initialization dependencies must be specified by the unit implementor. Explicit

declaration of imports co-exists well with the idea that they are part of the unit’s interface,

since the dependency information must be conveyed to the potential user’s of the unit.

Thus, the unit implementor can both declare dependencies that cannot happen, and can

omit dependencies that can happen.

When a compound-unit expression is executed, a run-time check ensures that each

of the initialization dependencies of each of the linked unit values is satisfied by their

ordering in the compound’s link clause. A run-time error occurs if an ordering violation

is detected. Because the exact unit values in the compound are not known until the

compound expression is executed, it is not in general possible to move this particular

class of errors from run time to compile time; however, this run-time error is a significant

improvement over the uninitialized variable error that would occur without the init-

depend clause in two ways. First, the mistake is caught when it occurs, as the erroneous

compound statement is executed, instead of being detected only during a later invocation

and initialization of the resulting unit. Second, the error message reports which constraint

is violated, so that the programmer can easily debug the compound expression, instead

of requiring the programmer to trace back the control flow that lead to the access of an

uninitialized variable.

5.1.1 Static Analysis

Although my unit system requires manual specification of initialization dependencies,

the design could support compile-time checking of initialization dependency specifications

with a static analysis tool for Scheme programs. The key property of the analyzer is

that it partitions the set of imported bindings into three categories: unused, used, and

uncertain. It must not classify bindings as unused unless it is has proven that they cannot

be used during initialization; a similar constraint holds for the used bindings, although

it is reasonable to assume (possibly imprecisely) that each top-level statement in the



121

unit’s body is reached during initialization. A dependency on an import signature that

includes only unused bindings is an error, and it is also an error to omit a dependency

on a used binding. The programmer should then be informed of signatures that include

only uncertain bindings; the analysis gives no insight on whether these signatures should

be included or not.

5.1.2 Units and Value Recursion

The problems associated with unit initialization occur in other contexts, such as

value recursion in functional programming languages (i.e., letrec constructs). Both a

unit’s body and a letrec’s bindings introduce recursive bindings, and a compound unit

essentially concatenates several unit bodies/letrecs together (as per the operational

semantics of Chapter 2). An unrestricted letrec in a call-by-value language, such as

Scheme’s letrec, experiences the same potential of encountering undefined bindings as

units do.2

Following PLT Scheme’s letrec,3 the definitions in a unit’s body are executed from

left to right, and for a compound unit the bodies of constituent units are also executed

in top-to bottom order. A well-defined, easy-to-understand ordering lets the programmer

reason about any side-effects that occur during unit initialization. The drawback of a

predictable execution ordering is that certain compound units (or letrecs) might fail,

even though they could succeed with some other particular execution order, chosen on

a case-by-case basis. In a letrec expression, the bindings can be rearranged by the

programmer into the working order, just as the linked units of a compound unit can be

rearranged when an initialization constraint is violated. However, the rearrangement is

limited in the unit case because definitions from two different constituent units cannot

be interchanged.

In the following example units, an execution order that initialized a then c then d

then b would not raise an error, but this order is prohibited.

2Haskell’s letrec avoids this problem altogether with lazy evaluation, and ML’s letrec avoids
it by restricting definitions to syntactic values.

3Standard Scheme [Kelsey et al. 1998] does not specify evaluation ordering for letrec bindings
(or function call arguments).



122

(define-signature s (a b))
(define-signature t (c d))
(define u

(unit (import s) (export t) (init-depend s)
(define c 1)
(define d a)))

(define v
(unit (import t) (export s) (init-depend t)

(define a 1)
(define b c)))

(define c
(compound-unit (import) (export)

(link (((S : s)) u T )
(((T : t)) v S ))))

In fact, a system for reordering execution to avoid uninitialized variable errors amounts to

lazy evaluation, which can make reasoning about side-effects difficult or impossible. Syme

[2006] has studied this problem in the context of letrec, and shown how the programmer

can direct the use of lazy evaluation in a call-by-value language to form an initialization

graph that will execute in the correct order. His techniques could be applied to units

by adding an optional annotation to the definitions in a unit’s body that would indicate

that annotated definitions are allowed to be executed out-of-order, i.e., lazily.

5.2 Link Inference

Because units are first-class values, the abstractive power of a full programming

language can be applied to unit creation and linking expressions. This flexibility can

obscure the exact interface of a unit value flowing into a linkage in a compound expression

at compile time. However, units are often compounded without taking advantage of the

flexibility of first-class unit values, so that a unit’s definition is statically apparent from a

usage site. Figure 5.3 presents an extension to the unit system that supports the definition

of unit values that allow the usage site to query the unit’s interface at compile time.

def = (define-unit unit-id (import sig-expr∗) (export sig-expr∗) def∗)
| (define-unit-binding unit-id expr (import sig-id∗) (export sig-id∗))
| (define-compound-unit unit-id (import link-spec∗) (export link-id∗)

(link linkage∗))
...

unit-id = Scheme symbols

Figure 5.3. First-order unit definitions



123

The define-unit and define-compound-unit forms create a unit value just as their

unit and compound-unit counterparts, but they also bind the unit value to the specified

name. Furthermore, they attach a compile-time description of the unit’s interface to the

name. When the name is used in a context that expects to see compile-time information,

it can extract and use the information. In any other usage context the information is

lost, and the name acts just as though it was created with a combination of define and

unit (or compound-unit) instead of define-unit (or define-compound-unit).

The define-unit-binding forms binds an existing unit to a unit-id, and attaches the

specified interface to it as compile-time information. Because uses of the unit-id might rely

on the correctness of the information, define-unit-binding performs a run-time check

that the specified interface is consistent with the given unit value (this includes checking

that the expression resulted in a unit value). One possible use of define-unit-binding

is to create a function with a unit parameter, where the parameter needs to satisfy a

particular interface; constructs in the function’s body can take advantage of knowledge

of the interface at compile time.

(define (f u-param)
(define-unit-binding u u-param (import s) (export t))
——— u ———)

The information provided by the unit definition constructs is used to infer linkages in

compound units. Not only are unit dataflow patterns often simple enough to be captured

with unit definitions, but linking patterns are often simple enough that particular linkages

do not need to be written down at all. The compound-unit/infer form (Figure 5.4)

allows a programmer to specify which units to link, without listing explicitly how the

exports from one unit are routed into the imports of another. It uses the compile-time

information attached to its constituent units to infer how they should be plugged together.

For each import into one of its constituent units (including exports out of the compound

unit), an export from one of the constituent units (including imports into the compound

itself) with the same signature is linked into the import. If an ambiguity is present because

a signature is exported from two or more of the units, the inference fails at compile time.

It also fails if a needed signature export is missing.

The following example illustrates inference by giving the definition of u4 with infer-

ence, and an equivalent unit u5 without.



124

unit-expr = (compound-unit/infer
(import link-spec/infer∗)
(export export-spec/infer∗)
(link linkage/infer∗))

...
def = (define-compound-unit/infer unit-id

(import link-spec/infer∗)
(export export-spec/infer∗)
(link linkage/infer∗))

...
link-spec/infer = sig-id

| link-spec
export-spec/infer = link-id

| sig-id
linkage/infer = unit-id

| ((link-spec∗) unit-id link-id∗)

Figure 5.4. Link inference

(define-unit u1 (import q) (export r)
———)

(define-unit u2 (import r) (export s)
———)

(define-unit u3 (import q r s) (export t)
———)

(define-compound-unit/infer u4 (import q) (export s t)
(link u1 u2 u3))

(define-compound-unit/infer u5 (import (lq : q)) (export ls l t)
(link (((lr : r)) u1 lq)

(((ls : s)) u2 lr)
(((l t : t)) u3 lq lr ls)))

The ambiguities in a compound linkage can be resolved without forgoing all inference.

Instead of specifying just a unit-id for a linkage/infer, the programmer can specify parts

of the units interface, following the syntax of a compound-unit’s linkage. Each link-spec

to the left of the unit specifies a link-id to associate with a particular exported signature.

Unlike the link-specs in a compound-unit, this listing is not exhaustive, but only serves

to name a chosen subset of the unit’s exported signatures. These link-ids can then be

used on the right side of the same, or other, unit-ids to indicate that an import is to be

satisfied with that link, the same as in the compound-unit case. Again, the listing is

not exhaustive, so other linkages can still be inferred for other imports. In the case of

ambiguity, the explicitly given linkage overrides any other linkage that could be inferred.



125

The framework mentioned in Section 5.1 provides an example of inference. Each of the

units in the framework exports a single signature, and no two export the same signature;

inference is ideal in this situation.

(define-compound-unit/infer framework@
(import mredˆ)
(export ———)
(link application@ version@ color-model@ exn@ mode@ exit@ menu@

preferences@ number-snip@ autosave@ path-utils@ icon@ keymap@
editor@ pasteboard@ text@ color@ color-prefs@ comment-box@
finder@ group@ canvas@ panel@ frame@ handler@ scheme@ main@))

Without inference the compound unit is more verbose.

(define-compound-unit framework@
(import (mred : mredˆ))
(export ———)
(link
(((application : framework:applicationˆ)) application@)
(((version : framework:versionˆ)) version@)
(((color-model : framework:color-modelˆ)) color-model@)
(((exn : framework:exnˆ)) exn@)
(((mode : framework:modeˆ)) mode@)
(((exit : framework:exitˆ)) exit@ mred preferences)
(((menu : framework:menuˆ)) menu@ mred preferences)
(((preferences : framework:preferencesˆ)) preferences@ mred exn exit

panel frame)
(((number-snip : framework:number-snipˆ)) number-snip@ mred preferences)
(((autosave : framework:autosaveˆ)) autosave@ mred exit preferences frame

scheme editor text finder
group)

(((path-utils : framework:path-utilsˆ)) path-utils@)
(((icon : framework:iconˆ)) icon@ mred)
(((keymap : framework:keymapˆ)) keymap@ mred preferences finder handler

frame editor)
(((editor : framework:editorˆ)) editor@ mred autosave finder path-utils

keymap icon preferences text
pasteboard frame handler)

(((pasteboard : framework:pasteboardˆ)) pasteboard@ mred editor)
(((text : framework:textˆ)) text@ mred icon editor preferences keymap

color-model frame scheme number-snip)
(((color : framework:colorˆ)) color@ preferences icon mode text

color-prefs scheme)
(((color-prefs : framework:color-prefsˆ)) color-prefs@ preferences editor

panel canvas)
(((comment-box : framework:comment-boxˆ)) comment-box@ text scheme keymap)
(((finder : framework:finderˆ)) finder@ mred preferences keymap)
(((group : framework:groupˆ)) group@ mred application frame preferences

text canvas menu)



126

(((canvas : framework:canvasˆ)) canvas@ mred preferences frame text)
(((panel : framework:panelˆ)) panel@ icon mred)
(((frame : framework:frameˆ)) frame@ mred group preferences icon handler

application panel finder keymap text
pasteboard editor canvas menu scheme
exit comment-box )

(((handler : framework:handlerˆ)) handler@ mred finder group text
preferences frame)

(((scheme : framework:schemeˆ)) scheme@ mred preferences icon keymap text
editor frame comment-box mode
color color-prefs)

(((main : framework:mainˆ)) main@ mred preferences exit group handler
editor color-prefs scheme)))

5.2.1 Relationship with Type Systems

The unit definition functionality amounts to a type system for units that does not

perform inference, but instead requires every binding to be annotated with the type

of the units that can flow there. Furthermore, the type annotations are optional be-

cause units are embedded in an untyped language. As an intrinsic part of performing

inference, the compound-unit/infer form statically checks that the compounding op-

eration will succeed at run time. Thus, even when the linkages are fully specified in

a compound-unit/infer, the static information about the subunits is used to ensure

that the compounding operation cannot cause a run-time error. As in the above exam-

ple, define-unit-binding can be used to give unit types to bindings, such as function

parameters, that do not start with them.

5.3 Structural Signature Matching

The nominal character of signatures in unit compounding gives meaning to signatures

as explicitly declared interfaces to units, and prevents unintentional linkages from working

simply because they share some of the same binding names. However, the flexibility

offered by structural signature matching is often convenient. For example, a unit that

exports several signatures can often be treated more conveniently as a unit that exports

a single signature encompassing all of the bindings of the previous signatures. Such a

unit u2 can almost be defined from u1 using only existing techniques (Figure 5.5).

The body of u2 first creates a unit u3 that exports i-sig using the bindings imported

into u2 which are in scope throughout u2’s body, including the entirety of u3. The u3 unit

is then linked with u1 to form u4 which can now be invoked, placing the definitions of y



127

(define-signature i-sig (x ))
(define-signature s1 (y))
(define-signature s2 (z ))
(define-signature t (y z ))
(define-unit u1 (import i-sig) (export s1 s2)

———)

(define-unit u2 (import i-sig) (export t)
(define-unit u3 (import) (export (rename i-sig (x i:x )))

(define i:x x ))
(define-compound-unit/infer u4 (import) (export s1 s2)

(link u3 u1))
(define-values/invoke-unit u4 (prefix i: s1) (prefix i: s2))
(define y i:y)
(define z i:z ))

Figure 5.5. Manual structural signature matching

and z into the body of u2. These definitions are then used to satisfy the export signature

t . This pattern takes advantage of the fact that the signatures of a noncompound unit are

always matched against the body of the unit structurally to ensure the proper bindings

are defined. By going though a unit’s body, it can change signatures to a structurally

equivalent, but nominally distinct signature.

Going a through unit’s body introduces a problem, however. When u2 is invoked,

u4 is invoked, which executes the definitions in u3, which in turn relies on the value

of the import x . Thus, u2 has an initialization dependency on its import, unlike u1.

The unit/new-import-export extension (Figure 5.6) captures the desired semantics of

u2 by directly dealing comparing the signatures as a primitive form, without the extra

invocation that leads to the initialization dependency.

To change a unit’s import and export bindings, the unit/new-import-export form

gives the desired import and export signatures, the unit expression to base the new unit

on, and its import and export signature. A unit/new-import-export/infer form would be

able to omit the import and export signatures for the unit expression.

(define-unit/new-import-export u2 (import i-sig) (export t)
((i-sig) u1 s1 s2))

To further facilitate this idiom, a signature can contain an open form that copies into it

the contents of another signature. For example, t can be defined as follows.

(define-signature t ((open s1) (open s2)))



128

spec = (open sig-expr)
...

def = (provide-signature-elements sig-expr∗)
| (define-unit/new-import-export unit-id

(import sig-expr∗)(export sig-expr∗)
((sig-expr∗) expr sig-expr∗))

| (define-values/invoke-unit/use-context expr
(import sig-expr∗) (export sig-expr∗))

| (define-unit-from-context unit-id sig-expr)
unit-expr = (unit-from-context sig-expr)

| (unit/new-import-export (import sig-expr∗) (export sig-expr∗)
((sig-expr∗) expr sig-expr∗))

...

Figure 5.6. Structural matching

The open spec is defined with define-signature-form as a signature extension similar

to the struct form.

The framework provides a larger example of the use of structural matching. Since it is

composed of many units, each exporting a different signature, the overall framework unit

must export many different signatures. This gives clients of the framework unit maximum

flexibility in just using part of the framework, but in most cases a client simply wants to

import the entire framework. This idiom can appear whenever a unit is built from several

units for purposes of internal organization, but should be provided to the external clients

with a unified interface. Thus, the framework has two definitions, as follows.

(define-compound-unit/infer framework-separate@
(import mredˆ)
(export framework:applicationˆ

framework:versionˆ
framework:color-modelˆ
———
framework:mainˆ)

(link ———))

(define-signature frameworkˆ
((open framework:applicationˆ)
———
(open framework:mainˆ)))

(define-unit/new-import-export framework@ (import mredˆ) (export frameworkˆ)
((framework:applicationˆ ———) framework-separate@ mredˆ))



129

5.3.1 Convenience Forms

Figure 5.5 uses several techniques for managing import and export bindings that are

useful in general. First, creating a unit that exports bindings from the context (u3)

is awkward manually. The unit-from-context creates a unit with the given export

signature by using in-scope variables to satisfy the exports. Thus, u3 can be defined as

follows.

(define-unit-from-context u3 i-sig)

Second, invoking a unit by using the context to satisfy its imports (instead of invoking only

no import units) can be accomplished with define-values/invoke-unit/use-context,

which would support the definition of u2 as follows (it does not resolve the initialization

problem as unit/new-import-export did).

(define-unit u2 (import i-sig) (export t)
(define-values/invoke-unit/use-context u1

(import i-sig)
(export (prefix i: s1) (prefix i: s2))

(define y i:y)
(define z i:z ))

The provide-signature-elements form is a module-level companion to define-

values/invoke-unit. It specifies that the contents of a signature are provided from

the enclosing module.



CHAPTER 6

IMPLEMENTATION AND EXPERIENCE

To explore units in an extensible language, I have implemented the unit system

described in Chapters 4 and 5 as a language extension to PLT Scheme. Because PLT

Scheme already supported a unit-based component system, I ported a significant portion

of a major PLT Scheme application, DrScheme [Findler et al. 2002], from the previous

system to my own.

The unit system is implemented using Scheme macros and functions to translate

unit expressions and definitions into primitive Scheme — without any changes to the

underlying interpreter or compiler. The ability to deploy the new constructs without

changes to the underlying architecture is the primary advantage of the macro-based

implementation. A secondary advantage is the automatic management of variable scoping

provided by syntax objects; however, the translation relies on low-level syntax object

manipulation features of the macro system in order to perform some manual scope

management.

6.1 Units

The basic strategy for translating units and compound units into functions follows

the original unit system [Flatt and Felleisen 1998]. A unit value becomes a function

value, and the unit’s imports and exports are stored in mutable reference cells. The

unit-function creates reference cells to contain its exported values, and it returns these

cells along with another function that contains the unit’s body. The unit-body function

takes in reference cells that contain the unit’s imported values, and the body of this

function places the values of exported definitions into the corresponding cells as they are

executed. Because the exported cells are created before the unit’s body is invoked, they

can be passed into other units by a compound-unit expression before their associated

unit body has executed.



131

Using reference cells for imports and exports allows units to mimic the standard let

and set! implementation of letrec in Scheme; the cells themselves correspond to bindings

that are resolved immediately upon being linked to other units. However, to support the

extensible recursive scope that is crucial for unit bodies, the values in the cells are not

resolved until the unit is invoked and the cells are mutated.

Figure 6.1 contains an example signature and unit definition, and it shows what they

expand to. The i1 identifier is introduced by the define-signature macro to hold a

unique run-time identifier for this signature, and the signature’s name, se, is bound to a

structure that describes it. This includes the identifiers that hold the compile-time and

run-time information (se and i1), as well as the identifiers that the signature specifies for

import/export (x ).

(define-signature se (x y))
(define-signature si (a))
(define u

(unit (import si) (export se)
(define y (lambda () x ))
(define x (lambda () a))))

expands to

(define i1 (gensym))
(define-syntax se

(make-signature
(make-siginfo (list (quote-syntax se))

(list (quote-syntax i1)))
(list (quote-syntax x ) (quote-syntax y))))

———
(define u

(make-unit
(vector (vector i2))
(vector (vector i1))
(lambda ()

(let ((exp1 (box undefined))
(exp2 (box undefined)))

(values
(lambda (import-table)

(let ((imp1 (vector-ref (hash-table-get import-table i2) 0)))
(set-box! exp2 (lambda () (unbox exp1)))
(set-box! exp1 (lambda () (unbox imp1)))))

(hash-table (i1 . (vector exp1 exp2))))))))

Figure 6.1. Unit compilation



132

When a unit imports or exports a particular signature, say se, it can query the compile-

time environment for se’s information. It uses the list of signature names to implement

the compile-time checks that prohibit certain duplicate import or export signatures. It

uses the run-time bindings (e.g., i1) in make-unit code it produces so that each unit

value has its signature’s run-time tags attached. This information enables the various

run-time checks that ensure that compatible unit values flow into certain expressions (for

example, as a subunit in a compound expression). The list of names (e.g., (quote-syntax

x ) (quote-syntax y)) allows the unit macro to compile the unit’s body by redirecting

uses and definitions of those names to the appropriate reference cells. In this case, a

corresponds to cell imp1, x to exp1, and y to exp2. This mapping is accomplished in a

multistage process that is further discussed in Section 6.2.

Because a compound-unit expression can supply the imports in any order, the

unit-body-function takes in a single value: a hash-table that maps a run-time signature

identifier to a vector that contains the cells for that signature. Similarly, the export

cells are stored in a hash-table of vectors to accommodate arbitrary orderings for the

export-linkage bindings in compound-unit expressions.

Since a signature can extend another signature, a unit might receive an import whose

signature extends the declared signature for that import. The cells are stored in the

vector in the order declared in the signature, with the cells of the extension following

those of the extended signature. Thus, the unit safely ignores the unexpected extension.

The single element lists in the definition of se contain, in general, all of the compile-time

and run-time identifiers that are associated with the signature’s parents. Similarly, the

innermost single element vectors in the make-unit call are for parent signatures (the

outermost vectors have one vector entry per imported/exported signature).

6.2 Signature Macros

The signature s in Figure 6.2 contains definitions in addition to imported/exported

variables. Because the u unit imports s, it can refer to the imports f , g , x , y , and m. The

unit macro does not directly traverse the unit’s body; instead it introduces the macro

definitions in the let-syntax expression to have the macro system perform the traversal.

Thus, immediately after expanding the unit macro, the body still contains references to

f , g , and x . Further macro expansions replace these variables, which are bound by the

let-syntax expression, with the corresponding unbox expressions (the make-id-mapper



133

(define-signature s
(f g x
(define y (f x ))
(define-syntax m

(syntax-rules ()
(( arg) (lambda () (g (+ y arg))))))))

(define u
(unit (import s) (export)

——— f ——— g ——— x ——— y ———
(m ———)
———))

expands to

———
(define u

(make-unit
(vector (vector i1))
(vector)
(lambda ()

(let ()
(values

(lambda (import-table)
(let ((imp1 (vector-ref (hash-table-get import-table i1) 0))

(imp2 (vector-ref (hash-table-get import-table i1) 1))
(imp3 (vector-ref (hash-table-get import-table i1) 2)))

(let-syntax ((f (make-id-mapper (quote-syntax (unbox imp1))))
(g (make-id-mapper (quote-syntax (unbox imp2))))
(x (make-id-mapper (quote-syntax (unbox imp3)))))

(letrec-syntaxes+values
(((m)

(syntax-rules ()
(( arg) (lambda () (g (+ y arg)))))))

(((y)
(f x )))

——— f ——— g ——— x ——— y ———
(m ———)
———))))

(hash-table))))))

Figure 6.2. Unit compilation with macros in signatures



134

compile-time function creates a macro transformer that performs this replacement).

The code for definitions in the signature are stored in the signature’s compile-time

information, and copied into the unit’s letrec-syntaxes+values expression.1 The ref-

erences in the definitions to imported variables are bound in the scope of the let-syntax

transformers, so they will all be eventually replaced with the correct unbox expressions.

Thus, the (f x ) call becomes ((unbox imp1) (unbox imp3)), and the (m ———) macro

call becomes (lambda () (g (+ y ———))) which in turn expands to the following.

(lambda ()
((unbox imp2) (+ y ———)))

The code that is copied into the unit from the signature is stored as a syntax object

in the signature’s compile-time information, and as a syntax object its variables have

scoping information attached. This scoping information is kept when the code is placed

in the unit, so that the original bindings are referenced, and lexical scope is preserved.

For example, in the following, the + reference in m inside of the unit will still refer to

the + in scope at the signature’s definition.

(define u
(let ((+ 1)

(f 2)
(unit ———))))

Similarly, the f inside of the definition of y has the same scoping information as the

signature’s f , and it will always be bound to the let-syntax’s f (the f identifier used

here comes from the signature’s compile-time information, just as the definitions do).

When an imported signature has renaming or prefixing, the import names that are

used in the unit differ from the names used inside of signature-contained definitions. In

this circumstance, the unit macro emits extra macros that transform uses of the external

(signature-specified) name into the internal (unit-import-specified) name.

6.3 Signature Extensions

A signature form definition, such as open or struct, is essentially a new kind of macro

definition, created with define-signature-form. It is implemented as a macro-based

extension to Scheme, and it uses the same technique as define-signature to communicate

compile-time information: in this case, a signature macro is placed in a structure that

1letrec-syntaxes+values binds multiple macros and values in a single recursive scope.



135

marks it as a signature macro, and that structure is bound using define-syntax to the

name of the signature form.

As the define-signature macro processes the body of the signature definition, it can

encounter either variables (e.g., x ), or applications (e.g., (m x )). When it encounters

an application, it looks up m’s definition in the compile-time environment (and raises

a compilation error if there is none). It then applies the resulting function to the

application’s code, represented as a syntax object. The define-signature macro expects

the result to be a list of syntax objects which it adds to the list of signature elements still

to process.

Thus, the implementation of define-signature contains a simple macro expander

for macro calls inside of signatures. Because scoping issues are the same for signature

macros and the usual Scheme macros, syntax objects can represent the input and output

of signature transformers. Thus, the complexity of lexically scoped macro expansion that

is encapsulated in the syntax objects does not need to be reimplemented for signature

macros.

6.4 First-Order Units

The unit definition forms (define-unit, define-unit-binding, etc.) use define-

syntax to bind a compile-time description of the unit value’s interface to the unit’s

name. The unit inference forms (e.g., compound-unit/infer) use the compile-time

interface information as input to an inference algorithm that specifies how the units

should be linked together. An inference form expands to a noninference form (e.g.,

compound-unit) form with the linkages fully specified.

6.5 Experience

The component examples of Chapters 4 and 5 all run on the implementation of units

for Scheme described in this chapter. Furthermore, I have converted approximately

200 units in the DrScheme code base from the existing unit system to my new unit

system. Many of the changes were trivial because the existing units did not represent

component decompositions that would benefit from compile-time information. However,

several signatures did include structure shape information, which was supported in the

old unit system primitively, but is supported in my system as an extension to the core

signature functionality.



136

In addition to the GUI framework (Section 5.3), the slideshow [Findler and Flatt 2004]

collection2 employs the structural matching pattern for creating a unit as a compounding

of several units according to an internal decomposition, but whose signature from the

perspective of clients of the library should be monolithic.

The vast majority of unit definitions were directly visible from the usage site, and

each of the 15 converted instances of unit compounding used an inference form to do

the compound. The define-unit-binding form was used only five times to set up these

compounds, including once in the web server where it was used to give a compile-time

interface to a unit-valued function parameter. Table 6.1 lists the sizes of the compound

unit expressions before and after the conversion, along with the source file the compound

resides in. Sizes are the number of symbols in the expression, not the number of lines,

because of the flexibility inherent in laying out Scheme code.

Sixty-two unit definitions exhibited the following particularly simple idiom of creating

a module simply to hold a unit.

(module name mzscheme
(require (lib "unit.ss")

———)
(provide name-unit)
(define-unit name-unit (import ———) (export ———)

———))

I abstracted this pattern into a new language called a-unit that allows for a compact

representation of the pattern.

(module name (lib "a-unit.ss")
(require ———)
(import ———)
(export ———)
———)

A similar language, a-signature, supports the analogous abstraction for signature defini-

tions.

2actually the texpict collection that slideshow relies on.



137

Table 6.1. Compound unit sizes
File # of syms before # of syms after before / after
web-server/configuration.ss 56 69 123%
web-server/launch.ss 23 20 87%
web-server/web-server-unit.ss 27 10 37%
web-server/web-server.ss 26 15 58%
texpict/mrpict-unit.ss 36 10 28%
texpict/texpict-unit.ss 32 9 28%
test-suite/tool.ss 38 12 32%
stepper/stepper+xml-tool.ss 23 13 57%
profjBoxes/tool.ss 38 12 32%
help/private/link.ss 81 56 69%
handin-server/web-status-server.ss 47 44 94%
graphics/graphics-unit.ss 29 10 34%
framework/framework-unit.ss 291 149 51%
drscheme/private/link.ss 195 27 14%
browser/browser-unit.ss 80 18 22%



APPENDIX

UNIT GRAMMAR

The syntax of the unit system is introduced in Figures 4.4, 4.6, 4.10, 4.11, 5.2, 5.3,

5.4, and 5.6. I collect here the complete syntax, including an additional tag feature. Tags

are useful when a unit wants to import the same signature multiple times (including

sub-signatures) which usually causes a compile-time error due to ambiguity. A tag on a

signature becomes part of the unit’s interface and allows the unit’s user to specify linkages

for particular interfaces.

Each of the following nonterminals refers to Scheme symbols (I use the different names

to clarify the intended use of the symbol): link-id , sig-id , id , unit-id , value-id , macro-id ,

sig-form-id , and struct-id . The expr and def nonterminals are for Scheme expressions

and definitions. I only give here the unit-related productions. The s-expr nonterminal is

for an arbitrary piece of Scheme syntax. The nonterminal∗ notation indicates that the

nonterminal can occur zero or more times.

I use the following abbreviation to concisely convey the optional tagging mentioned

above. When T [x ] is used as a nonterminal, it indicates a reference to a new nonterminal

defined as follows.

x | (tag id x )

Thus, T [x ] refers to x with an optional tag added.



139

unit-expr = (unit (import T [sig-expr]∗) (export T [sig-expr]∗) init-dep def∗)
| (compound-unit (import T [link-spec]∗) (export T [link-id]∗)

(link linkage∗)
| (compound-unit/infer

(import link-spec/infer∗)
(export export-spec/infer∗)
(link linkage/infer∗))

| (unit-from-context T [sig-expr])
| (unit/new-import-export

(import T [sig-expr]∗) (export T [sig-expr]∗) init-dep
((T [sig-expr]∗) expr T [sig-expr]∗))

sig-expr = sig-id
| (prefix symbol sig-id)
| (rename sig-id ren∗)

ren = (id id)
init-dep = ε

| (init-depend T [sig-id]∗)
link-spec = (link-id : sig-id)

linkage = ((T [link-spec]∗) expr T [link-id]∗)
link-spec/infer = sig-id

| link-spec
export-spec/infer = link-id

| sig-id
linkage/infer = unit-id

| ((T [link-spec]∗) unit-id T [link-id]∗)
sig-def = (define-signature sig-id (spec∗))

| (define-signature sig-id extends sig-id (spec∗))
spec = value-id

| (define-syntaxes (macro-id∗) expr)
| (define-values (value-id∗) expr)
| (sig-form-id s-expr∗)
| (open sig-expr)
| (struct struct-id (id∗) omit∗)

omit = ε
| -type
| -selectors
| -setters
| -constructor



140

def = (define-values/invoke-unit expr T [sig-expr]∗)
| (define-values/invoke-unit/infer expr)
| (define-values/invoke-unit/use-context expr

(import T [sig-expr]∗) (export T [sig-expr]∗))
| sig-def
| (define-signature-form sig-form-id expr)
| (provide-signature-elements sig-expr∗)
| (define-unit unit-id (import T [sig-expr]∗) (export T [sig-expr]∗) init-dep

def∗)
| (define-unit-binding unit-id expr

(import T [sig-id]∗) (export T [sig-id]∗) init-dep)
| (define-compound-unit unit-id (import T [link-spec]∗) (export T [link-id]∗)

(link linkage∗))
| (define-compound-unit/infer unit-id

(import link-spec/infer∗)
(export export-spec/infer∗)
(link linkage/infer∗))

| (define-unit/new-import-export unit-id
(import T [sig-expr]∗) (export T [sig-expr]∗)
((T [sig-expr]∗) expr T [sig-expr]∗))

| (define-unit-from-context unit-id T [sig-expr])
...

expr = (invoke-unit expr)
| unit-expr
...



REFERENCES

Aho, A. V., Sethi, R., and Ullman, J. D. 1986. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Boston, USA.

Ancona, D., Damiani, F., Drossopoulou, S., and Zucca, E. 2005. Polymorphic
bytecode: Compositional compilation for Java-like languages. In POPL ’05: Proceed-
ings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM Press, New York, NY, USA, 26–37.

Ancona, D. and Zucca, E. 2001. True modules for Java-like languages. In ECOOP
’01: Proceedings of the 15th European Conference on Object-Oriented Programming.
Springer-Verlag, Berlin, Germany, 354–380.

Ancona, D. and Zucca, E. 2002. A calculus of module systems. Journal of
Functional Programming 12, 2, 91–132.

Batory, D., Sarvela, J. N., and Rauschmayer, A. 2004. Scaling step-wise
refinement. IEEE Transactions on Software Engineering 30, 6, 355–371.

Bawden, A. 2000. First-class macros have types. In POPL ’00: Proceedings of the
27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ACM Press, New York, NY, USA, 133–141.

Blume, M. and Appel, A. W. 1999. Hierarchical modularity. ACM Transactions
on Programming Languages and Systems 21, 4, 813–847.

Boudol, G. 2004. The recursive record semantics of objects revisited. Journal of
Functional Programming 14, 3, 263–315.

Cejtin, H., Fluet, M., Jagannathan, S., and Weeks, S. 2005. Formal speci-
fication of the ML basis system. http://mlton.org/pages/MLBasis/attachments/
mlb-formal.pdf.

Clinger, W. and Rees, J. 1990. Macros that work. In POPL ’91: Proceedings of the
18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ACM Press, New York, NY, USA, 155–162.

Crary, K., Harper, R., and Puri, S. 1999. What is a recursive module? In PLDI
’99: Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language
Design and Implementation. ACM Press, New York, NY, USA, 50–63.

Culpepper, R., Owens, S., and Flatt, M. 2005. Syntactic abstraction in
component interfaces. In GPCE ’05: 4th International Conference on Generative
Programming and Component Engineering. Springer, Berlin, Germany.

DeRemer, F. and Kron, H. 1975. Programming-in-the-large versus programming-
in-the-small. In Proceedings of the International Conference on Reliable Software. ACM
Press, New York, NY, USA.



142

Dreyer, D. 2004. A type system for well-founded recursion. In POPL ’04: Proceed-
ings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM Press, New York, NY, USA, 293–305.

Dreyer, D. 2005a. Recursive type generativity. In ICFP ’05: Proceedings of the 10th
ACM SIGPLAN International Conference on Functional Programming. ACM Press,
New York, NY, USA, 41–53.

Dreyer, D. 2005b. Understanding and evolving the ML module system. Ph.D. thesis,
Carnegie Mellon University.

Dreyer, D., Crary, K., and Harper, R. 2003. A type system for higher-order
modules. In POPL ’03: Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. ACM Press, New York, NY, USA, 236–249.

Duggan, D. and Sourelis, C. 1996. Mixin modules. In ICFP ’96: Proceedings of
the 1st ACM SIGPLAN International Conference on Functional Programming. ACM
Press, New York, NY, USA, 262–273.

Dybvig, R. K., Hieb, R., and Bruggeman, C. 1992. Syntactic abstraction in
Scheme. Lisp and Symbolic Computation 5, 4, 295–326.

Findler, R. B., Clements, J., Flanagan, C., Flatt, M., Krishnamurthi, S.,
Steckler, P., and Felleisen, M. 2002. DrScheme: A programming environment
for Scheme. Journal of Functional Programming 12, 2, 159–182.

Findler, R. B. and Flatt, M. 1998. Modular object-oriented programming with
units and mixins. In ICFP ’98: Proceedings of the Third ACM SIGPLAN International
Conference on Functional Programming. ACM Press, New York, NY, USA, 94–104.

Findler, R. B. and Flatt, M. 2004. Slideshow: Functional presentations. In ICFP
’04: Proceedings of the Ninth ACM SIGPLAN International Conference on Functional
Programming. ACM Press, New York, NY, USA, 224–235.

Findler, R. B. and Flatt, M. 2006. PLT Framework: GUI Application Framework ,
350 ed. http://download.plt-scheme.org/doc/350/html/framework/.

Flatt, M. 2002. Composable and compilable macros: You want it when? In ICFP
’02: Proceedings of the 7th ACM SIGPLAN International Conference on Functional
Programming. ACM Press, New York, NY, USA, 72–83.

Flatt, M. 2006. PLT MzScheme: Language Manual , 350 ed. http://download.
plt-scheme.org/doc/350/html/mzscheme/.

Flatt, M. and Felleisen, M. 1998. Units: Cool modules for HOT languages.
In PLDI ’98: Proceedings of the ACM SIGPLAN 1998 Conference on Programming
Language Design and Implementation. ACM Press, New York, NY, USA, 236–248.

Gosling, J., Joy, B., Steele, G., and Bracha, G. 2000. The Java Language
Specification, second edition. Addison-Wesley, Boston, USA.



143

Harper, R. and Lillibridge, M. 1994. A type-theoretic approach to higher-order
modules with sharing. In POPL ’94: Proceedings of the 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM Press, New York, NY,
USA, 123–137.

Hirschowitz, T. and Leroy, X. 2005. Mixin modules in a call-by-value setting.
ACM Transactions on Programming Languages and Systems 27, 5, 857–881.

Hirschowitz, T., Leroy, X., and Wells, J. B. 2003. Compilation of extended
recursion in call-by-value functional languages. In PPDP ’03: Proceedings of the 5th
ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming. ACM Press, New York, NY, USA, 160–171.

Hirschowitz, T., Leroy, X., and Wells, J. B. 2004. Call-by-value mixin modules:
Reduction semantics, side effects, types. In ESOP 2004: Proceedings of the 13th
European Symposium on Programming. Springer, Berlin, Germany, 49–63.

Jones, S. P., Ed. 2003. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, Cambridge, UK.

Kelsey, R., Clinger, W., and Rees (Editors), J. 1998. Revised5 report of the
algorithmic language Scheme. ACM SIGPLAN Notices 33, 9, 26–76.

Kelsey, R., Rees, J., and Sperber, M. 2005. Scheme48 Reference Manual , 1.3 ed.
http://s48.org/1.3/s48manual.pdf.

Kohlbecker, E. E., Friedman, D. P., Felleisen, M., and Duba, B. F. 1986.
Hygienic macro expansion. In LFP ’86: Proceedings of the 1986 ACM conference on
LISP and functional programming. ACM Press, New York, NY, USA, 151–161.

Krishnamurthi, S. 2001. Linguistic reuse. Ph.D. thesis, Rice University.

Leroy, X. 1994. Manifest types, modules, and separate compilation. In POPL
’94: Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM Press, New York, NY, USA, 109–122.

Leroy, X. 1995. Applicative functors and fully transparent higher-order modules.
In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. ACM Press, New York, NY, USA, 142–153.

Leroy, X. 1996. A syntactic theory of type generativity and sharing. Journal of
Functional Programming 6, 5, 667–698.

Leroy, X. 2003. A proposal for recursive modules in Objective Caml. http://caml.
inria.fr/pub/papers/xleroy-recursive modules-03.pdf.

Leroy, X. 2004. The Objective Caml System, 3.08 ed. http://caml.inria.fr/pub/
docs/manual-ocaml/index.html.

Lopez-Herrejon, R. E., Batory, D., and Cook, W. 2005. Evaluating support for
features in advanced modularization technologies. In ECOOP ’05: Proceedings of the
19th European Conference on Object-Oriented Programming. Springer-Verlag, Berlin,
Germany.



144

Makholm, H. and Wells, J. B. 2005. Type inference, principal typings, and let-
polymorphism for first-class mixin modules. In ICFP ’05: Proceedings of the Tenth
ACM SIGPLAN International Conference on Functional Programming. ACM Press,
New York, NY, USA, 156–167.

McDirmid, S., Flatt, M., and Hsieh, W. C. 2001. Jiazzi: New-age components
for old-fasioned Java. In OOPSLA ’01: Proceedings of the 16th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications.
ACM Press, New York, NY, USA, 211–222.

McIlroy, M. D. 1969. “Mass produced” software components. In Software Engineer-
ing, P. Naur and B. Randell, Eds. Scientific Affairs Division, NATO, Brussels, 138–155.
Report of a conference sponsored by the NATO Science Committee, Garmisch, Ger-
many, 7th to 11th October 1968.

Milner, R., Tofte, M., Harper, R., and MacQueen, D. 1997. The Definition
of Standard ML (Revised). The MIT Press, Cambridge, Massachusetts, USA.

Odersky, M. and Zenger, M. 2005. Scalable component abstractions. In OOPSLA
’05: Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications. ACM Press, New York, NY,
USA, 41–57.

Okasaki, C. 1998. Purely Functional Data Structures. Cambridge University Press,
Cambridge, UK.

Pierce, B. C. 2002. Types and Programming Languages. The MIT Press, Cambridge,
Massachusetts, USA.

PLT. 2006a. PLT Miscellaneous Libraries: Reference Manual , 350 ed. http:
//download.plt-scheme.org/doc/350/html/misclib/.

PLT. 2006b. PLT MzLib: Libraries Manual , 350 ed. http://download.plt-scheme.
org/doc/350/html/mzlib/.

Russo, C. V. 2001. Recursive structures for Standard ML. In ICFP ’01: Proceedings
of the Sixth ACM SIGPLAN International Conference on Functional Programming.
ACM Press, New York, NY, USA, 50–61.

Serrano, M. 2004. Bigloo: A “practical Scheme compiler”, 2.6e ed. http:
//www-sop.inria.fr/mimosa/fp/Bigloo/doc/bigloo.html.

Swasey, D., Murphy VII, T., Crary, K., and Harper, R. 2006. A separate
compilation extension to Standard ML (working draft). Tech. Rep. CMU-CS-06-104,
School of Computer Science, Carnegie Mellon University. January.

Syme, D. 2006. Initializing mutually referential abstract objects: The value recursion
challenge. Electronic Notes in Theoretical Computer Science 148, 2, 3–25. Proceedings
of the 2005 ACM SIGPLAN Workshop on ML.

Szyperski, C. 1997. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, New York.



145

Vinoski, S. 1997. CORBA: Integrating diverse applications within distributed het-
erogeneous environments. IEEE Communications Magazine 35, 2, 46–55.

Waddell, O. and Dybvig, R. K. 1999. Extending the scope of syntactic abstraction.
In POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. ACM Press, New York, NY, USA, 203–215.

Wadler, P. 1987. Views: A way for pattern matching to cohabit with data abstrac-
tion. In POPL ’87: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages. ACM Press, New York, NY, USA, 307–313.

Wells, J. B. and Vestergaard, R. 2000. Equational reasoning for linking with
first-class primitive modules. In ESOP ’00: Proceedings of the 9th European Symposium
on Programming Languages and Systems. Springer-Verlag, Berlin, Germany.

Wirth, N. 1982. Programming in Modula-2. Springer-Verlag, Berlin, Germany.

Wright, A. K. and Felleisen, M. 1994. A syntactic approach to type soundness.
Information and Computation 115, 1, 38–94.


