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Abstract

Racket is a large language that is built mostly within itself. Unlike the usual approach taken by
non-Lisp languages, the self-hosting of Racket is not a matter of bootstrapping one implementation
through a previous implementation, but instead a matter of building a tower of languages and libraries
via macros. The upper layers of the tower include a class system, a component system, pedagogic
variants of Scheme, a statically typed dialect of Scheme, and more. The demands of this language-
construction effort require a macro system that is substantially more expressive than previous macro
systems. In particular, while conventional Scheme macro systems handle stand-alone syntactic forms
adequately, they provide weak support for macros that share information or macros that use existing
syntactic forms in new contexts.

This paper describes and models features of the Racket macro system, including support for
general compile-time bindings, sub-form expansion and analysis, and environment management. The
presentation assumes a basic familiarity with Lisp-style macros, and it takes for granted the need for
macros that respect lexical scope. The model, however, strips away the pattern and template system
that is normally associated with Scheme macros, isolating a core that is simpler, can support pattern
and template forms themselves as macros, and generalizes naturally to Racket’s other extensions.

1 Macros as a Compiler-Extension API

The progression from text pre-processors (such as the C pre-processor) to Lisp macros to
Scheme macros is an evolution toward a wider compiler API—one that, at the Scheme end,
exposes the compiler’s management of lexical context. This widening of the API makes
certain language extensions possible that were technically impossible before, such as a
local transformer that reliably expands to a reference of an enclosing binding.

The classic example of a scope-respecting macro is or, which (in simplified form) takes
two expressions. It returns the value of the first expression if it is not # £ (i.e., false) or the
value of the second expression otherwise:

(or el e2) = (let ([tmp el]l) (if tmp tmp e2))

The tmp binding in the expansion of or ensures that the first expression is evaluated only
once. A Scheme macro system ensures that the or macro works as expected in a setting
like this expression:

(let ([tmp 5]) (or #f tmp))
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An expansion oblivious to scope would allow the or-introduced tmp binding to shadow
the outer binding of tmp; the program would then produce #f (false) instead of 5. In-
stead, Scheme’s hygienic macro expander (Kohlbecker et al. 1986) preserves the original
apparent binding structure, and the or-introduced tmp does not shadow the outer tmp.

Although Scheme is best known for its pattern-matching macros (Clinger and Rees
1991; Kohlbecker and Wand 1987), the crucial addition in Scheme’s macro API compared
to Lisp is the syntax object data type (Dybvig et al. 1993; Sperber 2007), along with
an operator for quoting literal program fragments. A syntax object represents a program
fragment and carries with it information needed to respect lexical scope. The #’ quoting
operator is like the ’ operator, but #’ produces a syntax object that encapsulates the
program fragment’s lexical context—the bindings in scope where the quoted fragment
occurs. For example, the syntax object produced by

(let ([x 1]1) #'x)

records that the program fragment # ' x occurred in the context of a particular binding of
x. A syntax object’s lexical context can be inspected through functions such as free-
identifier=7, which determines whether two syntax objects correspond to identifiers
that are bound in the same place:

> (let ([x 1]) (free—-identifier=? #’'x #'x))

#t

> (free—-identifier=? (let ([x 1]) #'x)
(let ([x 11) #'x))

#£

Functions like free—identifier="? are typically used within procedural macros, which
are bound with define-syntax and can be arbitrary functions that transform a source
syntax object into a new syntax object.

Racket builds on procedural macros and syntax objects while further expanding the
compiler functionality that is available through macros. The Racket macro API exposes
the compiler’s general capability to bind and access compile-time information within a
lexical scope, as well as the compiler’s ability to expand a sub-expression’s macros. This
wider macro API enables language extensions that were technically impossible (or, at
best, awkward to simulate) in the narrower macro API of earlier Scheme systems. Such
extensions can be generally characterized as macros that cooperate by sharing compile-
time information, and we describe several examples in

which is the bulk of the paper, presents a model of Racket macros. The full
model is about three pages long. For its presentation, we build up the model in a way that
imitates the historical evolution of macro systems. We start with a core language and basic
parsing rules, then add scope-oblivious macros, next add tracking of lexical scope within
syntax objects, and finally add support for sub-form expansion and definition contexts.
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2 Cooperating Macros

Macros in Racket cooperate with each other in many different ways, including the way that
define-struct provides information for the mat ch form, the way that the class
form leverages define and lambda, and the way that 1ambda propagates information
about definitions within its body to later definitions. These uses illustrate key tools for
cooperation: compile-time bindings, sub-form expansion (both complete and partial), and
definition contexts.

2.1 Structure Definition and Matching

Whereas Scheme has just one notion of compile-time information, the macro, Racket sup-
ports the binding of identifiers to arbitrary compile-time information. One such example is
structure information, which is how define—-struct communicates information about
the shape of a structure declaration to the mat ch pattern-matching form.

The define-struct form expands to a set of run-time definitions using define,
plus a single compile-time binding using define-syntax. For example,

(define—-struct egg (color size))

expands to the following definitions:

(define (make-egg ¢ s) ....) ; Primitive egg constructor
(define (egg? v) ....) ; Predicate to distinguish eggs
(define (egg-color e) ....) ; Accessor for the color field
(define (egg-size e) ....) ; Accessor for the size field
(define-syntax egg ; Static information about eggs

(make-struct-desc #'make-egg #'egg? ....))

The make—egg function is a constructor, the egg? function is a predicate, the egg—
color function is a selector, and so on. The egg binding, meanwhile, associates a static
description of the structure type—including references to its constructor, predicate, and
selector functions—with the name egg for use in other macros. In general, the use of
define-syntax does not always create a macro. If the value bound to the identifier
introduced by define—-syntax is a function, then the macro expander knows to call
that function when it sees the identifier, but if the identifier is bound to something else,
then using the identifier results in a syntax error.

Cooperating macros can, however, use the syntax—1local-value function to extract
the value bound to the identifier. In particular, the mat ch pattern-matching form recog-
nizes bindings to structure definitions using syntax—local-value, and it generates
code that uses the predicate and selector functions. For example,

(define (blue-egg-size v)

(match v
[ (egg 'blue s) s]))

expands to roughly
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(define (blue-egg-size v)
(if (and (egg? v) (eg? (egg-color v) ’'blue))
(egg-size s)
(error "match: no matching case")))

The implementation of match uses syntax—local-value on the egg identifier to
learn about its expected number of fields, its predicate, and its selector functions.

Using define-syntax for both macros and other compile-time bindings allows a sin-
gle identifier to play multiple roles. For example, make—struct-desc in the expansion
of Racket’s define—-struct macro produces a value that is both a structure description
and a functionE] Since the descriptor is also a function, it can act as a macro transformer
when egg is used as an expression. The function behavior of a structure descriptor is to
return the identifier of structure’s constructor, which means that egg as an expression is
replaced by the make-egg constructor; that is, (egg 'blue 1) expandsto (make-—
egg 'blue 1). Overloading the egg binding in this way allows egg-constructing
expressions and egg-matching patterns to have the same shape.

2.2 Patterns and Templates

Macro transformers typically pattern match on uses of the macro to generate the macro’s
expansion. Although transformers could use the mat ch form to match macro uses, Racket
provides the syntax—case pattern-matching form, which is more specialized to the task
of matching syntax fragments. The syntax—case form matches syntax objects, and the
associated syntax form produces a syntax object using pattern variables that are bound
by syntax—case. Arbitrary Racket code can occur between syntax—case’s binding
of pattern variables and the syntax templates that use them.
For example, the following implementation of defthunk expands a use like

(defthunk f (random))

to

(define (f) (random))

The macro transformer receives a use of defthunk as an in-stx argument, which
is a syntax object. The syntax—case form attempts to match in-stx to the pattern
(defthunk g e), which matches when a use of defthunk has exactly two sub-
forms; in that case, g is bound to the first sub-form and e is bound to the second:

LA structure description is itself a structure, and a structure can have a prop:procedure
property that determines how the structure behaves when applied to arguments.
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(define-syntax defthunk
(lambda (in-stx)
(syntax—-case in-stx ()
[ (defthunk g e)
(if (identifier? (syntax g))
(syntax (define (g) e))
(error "need an identifier"))1)))

The (syntax g) expression in the matching clause refers to the part of in-stx that
matched g in the pattern, and the macro transformer checks that the g part of a use in—
stx is an identifier. If so, the matching pieces g and e are used to assemble the macro
expansion.

A challenge in implementing syntax—-case and syntax is communicating the pat-
tern variables bound by syntax-case to the uses in a syntax template. Since the
right-hand side of a syntax—case clause can be an arbitrary expression, syntax—
case cannot easily search for uses of syntax and replace pattern variables with match
references. One way to handle this problem is to build syntax—-case and syntax (or,
at least, the notion of pattern variables) into the macro system. With generalized compile-
time bindings like those in Racket, however, syntax—case can be implemented instead
as a macro that binds each pattern variable to compile-time information describing how to
access the corresponding matched value, and syntax checks each identifier in a template
to determine whether it refers to such compile-time information.

For example, the syntax-case clause above is translated to the following:

(let ([tmp-g ...extractgfrom in-stx...]
[tmp-e ...extract e from in-stx ...])
(if (and tmp-g tmp-e) ; if the pattern matched...
(

let-syntax ([g (make-pattern-var (syntax tmp-g) 0)]
[e (make-pattern-var (syntax tmp-e) 0)])
(if (identifier? (syntax g))
(syntax (define (g) e))
(error "need an identifier")))
(error "bad syntax")))

Ignore for the moment that this expansion itself is being used as compile-time code. The
syntax—case form can be used in a run-time position, so think of the expression above
as run-time code.

The g and e pattern variables in the original syntax—case form are represented in the
expansion by compile-time records that contain references to the tmp—g and tmp—e vari-
ables that store the matched sub-forms. The records also store the ellipsis depth (Kohlbecker
and Wand 1987) of the pattern variables, so that syntax can report mismatches at compile
time. The syntax form checks each identifier in its template; if it is bound to a compile-
time pattern variable record, it is translated to a reference to the corresponding run-time
variable; otherwise, it is preserved as a literal syntax object. The inner if form therefore
expands to
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(if (identifier? tmp-qg)
(datum->syntax (list #’'define (list tmp-g) tmp-e))
(error "need an identifier"))

where the datum—->syntax primitive converts list structure into a syntax object.

When syntax-case is used in a compile-time position, then it binds pattern vari-
ables as meta-compile-time information, and pattern variables in templates are replaced
by compile-time variables. This kind of phase shifting is straightforwardly handled by the
Racket macro expander (Flatt 2002).

2.3 Classes, Definitions, and Functions

The syntax of a Racket class expression is

(class superclass—-expr decl-or—expr¥)

The superclass—expr can be the built-in object$% classE] or any other class, but the
decl-or—expr sequence is our primary interest. The sequence declares all of the fields
and methods of the class, in addition to expressions that are evaluated when the class is
instantiated (analogous to a constructor body).

A typical use of the class form defines some private fields and public methods. To
make the syntax of class easier for Racket programmers to remember, the syntax for
such declarations within a class builds on the standard define form normally used to
define variables and functions. For example,

(define chicken$%
(class object$%
(define eggs empty)
(public nesting? lay-egq)
(define (nesting?)
(not (empty? eggs)))
(define (lay-egg color size)
(set! eggs (cons (make—-egg color size)
eggs)))
)

defines a class chicken% that has a private field eggs and public methods nesting?
and lay-eqgq.

More than making the syntax easier to remember, reusing de f ine for field and method
declarations means that syntactic forms that expand to define also can be used. For
example, a variant of de f i ne might support optional arguments by expanding to the plain
define form:

2 In Racket, class names traditionally end in %.



Z7U064-05-FPR

expmodel 24 April 2014 7:34

Macros that Work Together 7
(define/opt (lay-egg [color ’'brown] [size 3])
(set! eggs (cons (make—-egg color size)
eggs)))

which expands to Scheme’s case-lambda form to handle varying numbers of argu-
ments:

(define lay-egg (case-lambda ....))

As another example, programmers using class often use a define/public form to
declare a public method, instead of writing separate define and public forms. The
define/public form expands to a sequence of public and define declarations.

Finally, although it is implicit in the function-shorthand uses of define above, the
class form also reuses 1ambda for method declarations. For example, the nesting?
method could have been written

(define nesting?
(lambda () (not (empty? eggs))))

Similar to de f ine, any macro that expands to 1ambda can be used with a define (ora
macro that expands to define) to describe a method.

In order for the class macro to properly expand, it must be able to detect all bind-
ings and functions in its body. Specifically, the macro must see all definitions to build
a table of fields and methods, and it must see the functions that implement methods so
that it can insert the implicit this argument (which a method receives when it is called)
into the method’s argument list. Thus, to allow the use of declaration forms like de—
fine/public, the class macro must force the expansion of each decl-or-expr to
expose the underlying uses of define, lambda, and public.

Scheme macro systems do not typically provide a way to force expansion of a sub-
form in the way that class requires. Sub-forms are normally expanded only once they
appear directly within a core syntactic form, after all of the surrounding macros have been
expanded away. That is, when a macro transformer returns an expression that contains
macro uses, then the sub-expression macros are expanded iteratively. The class form,
however, needs to force expansion of its sub-forms before producing its result.

The class form forces sub-expression expansion using the Racket local-expand
function. The 1ocal-expand function takes a syntax object to expand, along with other
arguments to be described later, and it returns the expanded form as a syntax object. The
resulting syntax object can be inspected, transformed, and incorporated into a larger result
by the macro transformer.

2.4 Internal Definitions

The reuse of define in class has a precedent in standard Scheme: define can be
used inside 1ambda and other block forms to create local definitions. For example,
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(define (cook eggs)
(define total-size (sum—-eggs eggs))
(if (< total-size 10)
(cook—-in-small-pan eggs)
(cook—in-big-pan eggs)))

creates a local binding total-size that is available only with the function body. Local
definitions like this are called internal definitions.

In a fully expanded program, internal definitions can be replaced with a let rec local
binding formE] The process of macro expansion must somehow discover and convert inter-
nal definitions to 1et rec forms. Complicating this process, an internal definition can bind
a macro instead of a run-time variable, or an internal definition can shadow the binding of
an identifier from the enclosing environment. Each of those cases can affect the expansion
of later forms in a function body, even affecting whether the form is treated as an internal
definition or as an expression, as in the following case:

(define (cook-omelette eggs)
(define-syntax-rule (define-box id)
(define id (box empty)))

define-box best-eggs)

define-box left-overs)

take-best-eggs! eggs best-eggs leftovers)

values (make-omelette (unbox best-eggs))

rest—-eggs))

(
(
(
(

To handle the interaction of internal definitions and expressions, a syntactic form that
allows internal definitions must partially expand each of its body sub-forms to determine
which are definitions. Each macro definition must be installed immediately for use in
expanding later body forms. If partial expansion reveals a run-time definition, expansion
of the right-hand side of the definition must be delayed, because it might refer to bindings
created later in the body (e.g., a forward reference to a function or macro that is defined
later in the body).

These issues are typically resolved internal to a Scheme macro expander (Ghuloum and
Dybvig 2007; van Tonder 2007), so that only built-in forms like 1 ambda can accommodate
internal definitions. Racket gives a macro transformer all of the tools it needs to implement
internal-definitions contexts: partial sub-form expansion, an explicit representation of def-
inition contexts, and an operation to extend a definition context with bindings as they are
discovered. Consequently, a 1ambda form that supports internal definitions can be imple-
mented in terms of a simpler 1ambda that allows only expressions in its body. Similarly,
the class form can support local macros among its field and method definitions, or a
lambda variant can support definitions mixed with expressions in its body (instead of
requiring all definitions first, as in the standard Scheme 1ambda form).

3 In the current Scheme standard (Sperber 2007), internal definitions are converted to a letrec*
form. Racket’s 1let rec form corresponds to the standard’s let rec* form.



ZU064-05-FPR expmodel 24 April 2014 7:34

Macros that Work Together 9

To perform partial expansion of their sub-forms, the lambda and class macros pro-
vide local-expand with a stop list, a list of identifiers to use as stopping points in
expansion. For 1ambda, the stop list includes only the core syntactic forms, ensuring
that all definition-producing macros are expanded into core definitions. The Racket spec-
ification pins down the set of core syntactic forms, and the corresponding identifiers are
assembled in a library-provided list, which is sufficient to make most macros cooperate
properly. The class macro uses a stop list that also includes identifiers like # ' public
and #’'override, since those forms must be caught and interpreted by the class
macro; they are meaningless to the Racket macro expanderE] When macro uses nest and the
corresponding transformers use partial expansion, the inner transformer’s partial expansion
is not affected by the stop list of the outer transformer, so macros need not be aware of the
stop lists of other macros.

To support internal definitions, the 1ambda and class macros generate a new defi-
nition context value using the syntax-local-make-definition-context func-
tion. The macros provide this context value to 1ocal-expand along with the stop list to
partially expand the body forms in the scope of the definitions uncovered so far. When the
lambda or class macros detect a new definition via partial expansion, they install new
bindings into the definition context using syntax-local-bind-syntaxes. When
the macros detect a define form, they call syntax-local-bind-syntaxes with
just the defined identifiers, which are added to the definition context as bindings for run-
time variables. When the macros detect a define-syntax form, they call syntax-
local-bind-syntaxes with identifiers and the corresponding compile-time expres-
sion, which is evaluated and associated with the identifiers as compile-time bindings.

2.5 Packages

Definition contexts and compile-time binding further enable the implementation of a local-
module form as a macro. Racket’s define—package form resembles the module form
from Chez Scheme (Waddell and Dybvig 1999) and the st ructure form of ML (Milner
et al. 1990). A set of definitions within a package can see each other, but they are hidden
from other expressions. Exported identifiers listed after the package name become visible
when the package is explicitly opened:

(define—-package carton (eggs)
(define eggl (make-egg ’'blue 1))
(define egg2 (make—-egg ’'white 2))
(define eggs (list eggl egg2)))

(open—-package carton)

To allow definitions within a package to see each other, the define-package form
creates a definition context for the package body. The definition context does not escape

4 By convention, identifiers such as public are bound as macros that raise a syntax error when
used incorrectly—that is, outside of a c1lass body.
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the package body, so no other expressions can directly access the package contents. Mean-
while, the package name is bound to a compile-time description of the contents, so that
open—-package can make the exported names available in a later scope, and the package
name itself can be exported and imported like any other binding. When a package is
opened with open—-package, the package’s names are made available by new define-
syntax bindings that redirect to the package’s hidden definitions.

Naturally, packages can be defined within packages, which is supported in the macro
API by allowing definition contexts to nest. Going even further, def ine-package sup-
ports a define* form that binds an identifier for only later expressions within the pack-
age body, like ML’s nested val bindings instead of Scheme’s mutually recursive define
bindings. Such variations on binding scopes are possible in Racket because the machinery
of definition contexts is exposed in the macro APIL.

2.6 Tools

The DrRacket programming environment includes many tools that manipulate Racket pro-
grams and modules, including a debugger, a profiler, and a syntax checker. These tools all
work by first expanding the program, so that they need to handle only the core forms of
the language. The tools are not macros, but they gain many of same sorts of benefits as
cooperating macros by using an expand function that produces a syntax object.

A typical Scheme macro expander (Ghuloum and Dybvig 2007; van Tonder 2007) takes
a syntax object and produces a raw S-expression (i.e., pairs and lists), but the expand
function produces a syntax object for the expanded program. Through syntax objects, the
original names of local variables are intact within an expanded program, while lexical-
context information in the syntax object relates binding occurrences to bound uses. Another
advantage is that various language extensions for manipulating syntax objects in macro
transformers—notably the syntax—case form that gives the macro system its name—
are also available for use by tools that process expanded programs.

Syntax objects thus serve as an intermediate representation of programs for all Racket
tools, whether they simply inspect the program (as in the syntax checker, to show the pro-
gram’s binding structure via arrows overlaid on the source text) or transform the program
(as in the profiler, to add instrumentation). To allow the latter, in particular, the output of
the expand function must also be a suitable input to expand, and expand must be
idempotent. Then, a program transformer can introduce code into an expanded program
and pass it to eval, which will re-expand the program—potentially expanding forms that
were introduced by the transformer, but leaving the previously expanded code intact.

3 Modeling Macro Expansion in Racket

This section builds up a formal model of Racket macro expansion. We build on a traditional
Lisp perspective, instead of assuming previous Scheme models as background. In part, this
strategy is aimed at making the presentation as widely accessible as possible, but it also
lets us adjust and simplify some core representation and expansion details for Scheme-style
macros.
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We begin with a core functional language without macros. We then create a surface
language and add syntax objects representing terms in the surface language to the set of
core-language values. We progressively extend the model with naive macros, macros with
proper lexical scoping, and macros that communicate.

We use the following terminology to describe the relationships between the different
components. The reader consumes a surface program in textual form and produces its
representation as a syntax object. That representation is recursively expanded until all
macros have been eliminated; the result is a “fully-expanded” syntax object. Finally, the
fully-expanded syntax object is parsed into a core-language AST, which may be evaluated.

The sequence of models is implemented and typeset using PLT Redex (Felleisen et al.
2009). The sources are available from our web site:

http://www.cs.utah.edu/plt/expmodel—-6/

3.1 Core Language

The core language of our model includes variables, function applications tagged with APP,
and values. Values include functions formed with FUN, lists formed with LIST, symbols
formed with a curly quote, primitive operations, and possibly other kinds of data.

ast ::=var | APP(ast, ast, ...) | val
var ::= VAR(name)
val ::= FUN(var, ast) | LIST(val, ...) | atom
atom ::= sym | prim | ....
sym ::=’name
prim ::=cons |carlcdr|listl ...
name .= a token such as x, egg, or Lambda

We represent a var as a name wrapped with a VAR constructor. We use a VAR constructor
to help distinguish names in general from names that are used to represent variables, since
names are also used in the representation of symbols.

Primitive operations are treated as literals (written in boldface) for simplicity. For ex-
ample, the term cons is the actual primitive operation itself, not a variable whose value
is the operation. Primitive operations are applied using the same APP form as for applying
functions, so APP allows multiple argument expressions, even though a FUN accepts only
a single argument.

Evaluation of the core language is standard (using substitution for functions):
eval[APP(FUN(var, astyos), ast.,)l = evallast,u[var« evallast., 11
eval[APP(prim, ast,,, ...)]l O(prim, evall[ast.,], -..)
eval[APP(ast,,, astug, -..)]l eval[APP(evalllast,ll, astuy, ...)]
eval[[val] = val

The second case of eval defers the implementation of primitives to a O relation, which
covers at least the primitive operations on lists:

d(cons, val;, L1ST(val, ...)) = LIST(val;, val,, ...)
O(car, LisT(val;, val,, ...)) val,

d(edrx, L1sT(val;, val,, ...)) List(val,, ...)
d(list,val,..) = List(val, ...)


http://www.cs.utah.edu/plt/expmodel-6/
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The language can contain other primitive operations, such as +, which are also given
meaning through 0.

3.2 Syntax Objects

The core language serves two roles: it is the target language into which a surface program is
parsed, and it is also the language for implementing macro transformers. Consequently, the
values of the core language must include representations of the surface-language fragments
that macro transformers manipulate; that is, syntax objects.

To model syntax objects, we extend the core language’s values with syntax objects and
primitive operations on syntax objects:

val = ....| stx
prim = ....| stx-e Imk-stx

The new primitive stx-e is short for Racket’s syntax—-e, and mk-stx is short for
make-syntax.

Syntax objects, tagged with STX, combine a value with lexical-context information ctx.
The value must be either an atom or a list of syntax objects. We introduce lexical-context
information later, and for now just use e for ctx.

stx ::= STX(atom, ctx) | STX(LIST(stx, ...), ctx)
id ::= STX(sym, ctx)
ctxi=e

The set of identifiers id is a subset of stx consisting of only those syntax objects that wrap
a symbol.

3.2.1 Names, Variables, Symbols, and Identifiers

The terms name, variable, symbol, and identifier are easily confused, but we use each term
in a specific way. To recap,

o A name, such as x, is a member of some abstract set of tokens in the meta-language
(i.e., a “meta-symbol” in the implementing language, as opposed to a symbol in
the implemented language). Names are used in the representation of variables and
symbols.

e A variable, such as (VAR x), is the formal argument of a function, or it is a reference
to a function argument that is replaced by a value during evaluation. Variables appear
only in ASTs.

e A symbol, such as ’x, is a value during evaluation. A symbol can appear as a literal
expression, but since a symbol is constructed using a curly quote, it is never mistaken
for a variable and replaced with a value.

o An identifier, such as (STX ’x @), is a symbol combined with a lexical context. Like
a symbol, an identifier is a value during evaluation—especially during the evaluation
of macro transformers.

A Lisp programmer may be tempted to think of variables as implemented with symbols.
Indeed, when an interpreter is implemented in Lisp, a variable or symbol in the interpreted
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language is typically represented using a symbol in the interpreter. Our eval, in contrast, is a
mathematical function; variables and symbols are therefore implemented by names, which
are entities in the mathematical world where the eval function resides. We highlight the
distinction between language and meta-language to clarify which concepts are inherently
connected within the language (e.g., symbols and identifiers) and which are related only by
a representation choice in the meta-language (e.g., symbols and variables, both as names).

3.2.2 Readers and Syntax Objects

A reader consumes a textual representation of a surface program and produces a corre-
sponding syntax object. For example, the reader would convert the source program

(lambda x Xx)
into its representation as a syntax object,
STX(LIST(STX(’ Lambda, ®), STX('x, ®), STX('x, *)), ®)

We do not model the reader process that takes a sequence of characters for a source program
and converts it into a value that represents the source; we work only with the syntax-object
representation.

The following extension of & models the new primitive s tx-e and mk-stx operations
on syntax objects:

d(stx-e, STX(val, ctx)) = val
d(mk-stx, atom, STX(val, ctx)) StX(atom, ctx)
d(mk-stx, LIST(stx, ...), STX(val, ctx)) = STX(LIST(stx, ...), ctx)

That is, stx—e unwraps a syntax object by throwing away its immediate context, while
mk-stx constructs a new syntax object by borrowing the context from an existing syntax
object (which might have been a literal STX value in the original program or might itself
have been constructed with mk-stx).

For example,

eval[APP(stx-e, APP(mk-stx, 'x, STX('y, *)))]
= 0(stx-e, eval[APP(mk-stx, 'x, STX('y, *))])
= d(stx-e, O(mk-stx, 'x, STX('y, *)))
= 0(stx-e, STX('x, ®))
='x

3.2.3 Model vs. Implementations

The core model’s FUN AST form is close to 1ambda in Scheme, and the sym represen-
tation is similar to a quoted symbol in Scheme. The model’s 1ist primitive operation is
analogous to a 1ist function, while a LIST constant is more like a quoted list in Scheme.
For example, the model AST

LisT(’ lambda, LIST( %), v)
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is analogous to the Scheme expression
"(lambda (x) vy)

Along the same lines, an STX literal in the model AST is analogous to a syntax-quoted
form in Scheme. For example,

STX(LIST(STX(’ 1ambda, ), STX(LIST(STX(’x, *)), ¢), STX('y, *)), ®)
is analogous to
#' (lambda (x) vy)

where #' is a shorthand for a syntax form in the same way that ’ is a shorthand for a
quote form. Note that in Racket, the printed form of a syntax object reports its source
location (if any) and the encapsulated expression text:

> #' (lambda (x) V)
f<syntax:1:0 (lambda (x) vy)>

The stx-e model primitive corresponds to the syntax—e function in Racket, and
mk-stx in the model is similar to datum->syntax with its arguments reversed:

> (syntax-e (datum->syntax #'y ’'x))
r
X

Applying syntax—e to acomplex syntax object exposes pieces that might be manipulated
with car and cdr. Often, such pieces are reassembled with datum—>syntax:

> (define stx #' (fun x y))

> (syntax—e stx)
" (#<syntax:1:0 fun> #<syntax:1:0 x> #<syntax:1:0 y>)
> (datum->syntax stx
(cons #’lambda
(cdr (syntax-e stx))))
#<syntax (lambda x y)>

The model is simpler and more primitive than Racket and Scheme in several ways.
The datum->syntax function recurs into a list whose elements are not syntax objects,
which is why the model’s non-recurring mk—-stx has a different name. In Racket, the core
form without pattern variables is quote-syntax, and syntax expands to quote-
syntax for literal program fragments. Standard syntax—case systems do not include
Racket’s syntax—e operation, although it is essentially the expose function from Dybvig
et al. (1993); instead, the built-in pattern-matching notation is used to deconstruct syntax
objects. The syntax—>datum operation, meanwhile, recursively applies syntax—e,
discarding lexical-context information both on the immediate syntax object and on nested
syntax objects.

Not all implementations of syntax—-case associate a lexical context to a list or num-
ber. In Racket, consistently associating a lexical context to every program fragment gives
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the programmer control over the expansion of constants and application forms. Such con-
trol is beyond the scope of this paper, but our model is intended to accommodate those
extensions, which are used heavily in the implementation of Racket (e.g., to support func-
tions with keyword arguments).

3.3 Parsing

For our purposes, we define parsing as the task of converting a syntax object to an AST
that can be evaluated. We define a parser for a Scheme-like language as follows:

e A lambda form is parsed into a FUN ast node. Unlike in Scheme, 1ambda allows
only a single argument and omits a set of parentheses around the argument.

e All literal values, even primitive operations (written in boldface), must be quoted
in a source program; the quoted literals are parsed as aroms.

e A syntax form is parsed into an stx value (without support for pattern variables).

e A sequence of expressions grouped with parentheses is parsed as an APP node when
the first element of the group is not the name of a primitive syntactic form (such as
lambda or quote) or a macro.

e An identifier as an expression is parsed as a var.

For example, a function that accepts a single number argument to increment would be
written in the surface language as

(lambda x ('+ x '1))

which the reader converts to the stx

STX(LIST(STX(’ 1ambda, ),
STX(x, ),
STX(LIST(STX(LIST(STX('quote, o),
STX(+, ®)), °),

STX(’x, ),
Li1sT(STX('quote, o),
STX(1, °))),

),
*)

and the job of the parser is to convert this szx to the ast

FUN(VAR(x), APP(+, VAR(x), 1))

3.3.1 Symbol-Driven Parser

Ignoring macros, and also assuming that keywords like 1ambda are never shadowed, we
could implement a parser from szxes to asts with the following parse meta-function:

parse[STX(LIST(STX(’ Lambda, ), STX('name, ®), stx), ®)]| = FUN(VAR(name), parse[[stx])
parse[STX(LIST(STX('quote, ®), stx), )] = strip[[stx]

parse[STX(LIST(STX(’syntax, e), stx), ®)]
parse[[ STX(LIST(StX,a0r» StXrands ---)5 ®) ]l APP(parse[[stx,uorll, parse[stx aall, -..)
parse[[STX(’name, )] = VAR(name)

SIx
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The clauses to define meta-functions in this paper are ordered, so that the next-to-last clause
of parse produces an APP form when the initial identifier in a sequence is not lambda,
quote, or syntax.

The parse function uses a strip meta-function to implement quote by stripping away
lexical context:

strip[STX(atom, ctx)]] = atom
strip[ STX(LIST(stx, ...), ctx)]] = LIST(strip[szx], ...)

The difference between a quote form and a syntax form is that the latter does not strip
lexical context from the input representation.

3.3.2 Identifier-Driven Parser

When we add lexical-context information to stx (instead of just using e), parse will need
to take that information into account, instead of simply looking for identifiers named
lambda, quote, and syntax. To prepare for that change, we refine parse as follows,
deferring identifier resolution to a resolve meta-function. For now, resolve simply extracts
the name in an identifier, but we will refine it later to use the lexical-context information of
an identifierf|

resolve[STX('name, )] = name

parse[STX(LIST(idiumbdas iargs StXboay), c1x)] = FUN(VAR(resolve[id,.]l), parse[[stxsoa])
where 1ambda = resolve[lidiumpaall
parse[STX(LIST(id o, S1X), ctx)]
where quote = resolve[[id el
parse[STX(LIST(id,yuax, 5tX), ctx)]] = stx

where syntax = resolve[[id,yua]

parse[[ STX(LIST(StX a0, StXrands --.), CtX)]] APP(parse[ stx,uorll, parse[stx ol -..)
parse[[id] = VAR(resolve[[id])

strip[[szx]|

The parse meta-function in our model serves the same role as the parse meta-function in
the model of Dybvig et al. (1993). Unlike the Dybvig et al. (1993) model, where parse
is mutually recursive with an expand meta-function, our parse function works only on
fully-expanded terms, and we define a separate expansion process that both consumes and
produces a syntax object. This difference paves the way for sub-form expansion (which
must expand without parsing), and it also reflects the use of syntax objects as a general-
purpose intermediate format in Racket (as discussed in[Section 2.6)).

3.4 Expansion

The next step to modeling Scheme macro expansion is to create an expander that takes a
syntax object for a source program and returns a syntax object for the expanded program.

5 Notation: We use “where” in the parse metafunction to write side conditions that more
conventionally would be written with “if,” whereas “where” more conventionally binds
metavariables. In later metafunctions, we use “where” as in PLT Redex to generalize and unify
conventional “where” and “if” clauses. That is, “where” is a pattern-matching form that binds
italicized metavariables, and it also acts as a side condition by requiring a match.
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The expander sits between the reader and the parser, so that it starts with a syntax object that
may have macro definitions and uses, and it produces a syntax object that fits the limited
shape of syntax objects that are recognized by the parser. In addition to recognizing macro
definitions and uses, the expander will have to recognize all of the forms that the parser
recognizes; it nevertheless defers the production of an AST to the parser, so that the result
of the expander can be used for further expansion in some contexts.

Even without introducing macros, the expander has a role in preparing a source program:
The parse meta-function assumes that a 1ambda identifier always indicates a function
form, but we want our source language to be like Scheme, where any identifier can be used
as a local variable name—even lambda. The expander, therefore, must rename formal
arguments of a function to ensure that they do not shadow the identifiers that parse uses as
keywords.

The expander is implemented as an expand meta-function. To handle shadowing, and
eventually to handle macro bindings, a compile-time environment & is provided to each
use of expand. This environment maps names to transforms, and expand normally starts
with an environment that maps lambda to the FUN transform, quote to the QUOTE
transform, and syntax also to the QUOTE transform. (The parse meta-function treats
quote and syntax differently, but they turn out to be the same at the level of expand.) A
transform also can be an identifier tagged with VAR, which represents a variable bound by
an enclosing function.

€ ::= a mapping from name to transform
transform ::= FUN | QUOTE | (VAR id)
Each case for expand is similar to a corresponding case in parse, except that quote and
syntax are collapsed into a single case:
expand[STX(LIST(idiun, idurg, StXboay)> €1x), E] = STX(LAST(idiams idnews St exppoay) > CIX)

where FUN = E(resolve[idi.]), name,., = fresh, id,.., = STX(C name,..,, ®),
Epew = E+{resolve[[idu]l — (VAR id )}, S8Xexppoady = €Xpand[stxpody, Snewll

expand[STX(LIST(id e, stx), ctx), E] = STX(LIST(iduore, S1X), C1X)

where QUOTE = E(resolve[[id ur]l)

expand [ STX(LIST(StX,u0ry S8Xrands ---)5 €1X), E] = STX(LIST(StXexprarors SWXexprands --+)» CIX)
where $tX,xpraor = €Xpand[[$stx,uors Ell, St egprand --- = €xpand[[$:%aua, S ...

expand([id, E]| = idyen

where (VAR id,..) = E(resolve[[id]))

A significant difference from parse is that the 1ambda case of expand generates a new name
for the formal argument in a 1 ambda form, which ensures that the expanded program does
not use any parse-recognized names as variables. The 1 ambda case maps the original name
to the new one in the environment for the 1ambda form’s body. Correspondingly, the case
in expand for expanding a variable reference installs the new name in place of the original,
which it finds by consulting the environment.

As an example, the source

(lambda lambda lambda)

expands to the identity function essentially as follows:

expand[(lambda lambda lambda), &
= (lambda lambda?2 expand[lambda, E+{lambda— lambda2}])
= (lambda lambda2 lambda?2)
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To make the expansion trace above more readable, identifiers are reduced to their resolve
results, lexical-context information is dropped, %o stands for the initial environment, and
other obvious simplifications are applied.

3.5 Binding and Using Macros

To support macros, we extend the source language with a let-syntax form that is a
simplified version of Scheme’s macro-binding forms. Our let -syntax will bind a single
identifier to a macro transformer function for use in the let-syntax body expression.
For example, the following source program defines and uses a thunk macro to delay
evaluation of an expression until it is applied to a (dummy) argument:

(let-syntax
thunk (lambda e
('mk-stx
("1list (syntax lambda) (syntax a)
('car ('cdr (’'stx-e e))))
e))
((thunk ('4+ "1 "2)) '0))

The e argument to the macro transformer is the representation of the use of the macro
(thunk ('4+ ’1 ’2)). The transformer extracts the ('+ ’1 ’2) sub-expression
from this representation using stx-e, cdr, and car on e. The transformer then places
the sub-expression into a lambda expression using 1list and mk-stx, producing a
representation of (lambda a ('+ '1 '2)).

Support for macros in the expander requires a new LET-SYNTAX transform to serve as
the binding for 1et -syntax. Furthermore, the expansion of a 1et —syntax form binds
an identifier to a compile-time value:

transform ::= ....| (VAR id) | val

The expander needs new cases for evaluating core-form expressions during the process
of expansion. No changes are needed to ast or parse to support macros, however, since
the expander eliminates all uses of macros. The new expander cases include all of the
old cases, plus cases for macro bindings and macro applications. The macro-binding case
implements the new LET-SYNTAX transform:

expand[STX(LIST(ids, idac, StXms, StXpoay), €1X), E] = expand[[$txsoas, &1

where LET-SYNTAX = E(resolve[[id,]),
&, = E+{resolve[lid,...]| —eval[parse[ stx..]1}

In this case, to evaluate the right-hand side of a let —syntax form, the right-hand side
is first parsed. Using parse directly reflects the fact that this model does not cover macro
transformers that are implemented in terms of macros (except that a macro expansion can
include uses of macros)F_’-] The parsed right-hand side is then evaluated, and the result is
bound in the compile-time environment while the 1et —syntax body is expanded.

6 Although expand could be applied to transfomer expressions using the current compile-time
environment as in Dybvig et al. (1993), doing so mixes binding phases in a way that is not true
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The case for a macro application is triggered when the compile-time environment maps
aname to a function value. Invocation of the macro applies the value from the environment
to the macro-use source form. After the macro produces a value (which must be a syntax
object), the expander is again applied to the result.

expand[[$stXacap, Sll = expand[[eval[APP(val, stXmacapp)]l, E]l

Where STX(LIST(idmm'y St-xmi&" "')7 Ctx) = St'x""“'“’)p’
val = E(resolve[[id ]|

Because we have not yet added lexical-context information to syntax objects, the macro
system at this point resembles a traditional Lisp defmacro system. For example, using
the thunk macro as defined above, the expression

(((lambda a (thunk ('+ a '1))) ’'5) '0)

produces 1 instead of 6, because the a binding introduced by the thunk macro captures
a in the expression supplied to thunk. That is, the thunk macro does not respect the
lexical scope of the original program. The expander produces this result for the 1ambda
form roughly as follows, in an environment &, that maps t hunk to the transformer:

expand[(lambda a (thunk ('+ a '1))), &

(lambda a2 expand[(thunk ('+ a '1)), &, = Ep+{a—a2}])

... calling the thunk transformer ...

(lambda a2 expand[(lambda a ('+ a '1)), &)

= (lambda a2 (lambda a3 expand[('+ a '1),&, = E+{a—a3}]))
= ... expanding the body, no more extensions to &; ...

(lambda a2 (lambda a3 ('+ a3 'l)))

3.6 Tracking Lexical Context

To change the macro system so that macro transformers respect lexical scope, we introduce
lexical-context information into syntax objects.

3.6.1 Scope Examples

The first challenge in tracking binding through macro expansion is illustrated by the fol-
lowing example:

((lambda x
(let-syntax m (lambda stx (syntax x))
(lambda x
("+ (m) x))))
1)

The expansion of (m) carries a reference to the outer x into the scope of the inner x.
Proper lexical scoping demands that the two xs are kept distinct.

to Racket or allowed by the current Scheme standard (Sperber 2007). The model is instead easily
generalized to support expansion of transformer expressions through modules and phases (Flatt
2002).
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At first glance, the solution is simply to capture the compile-time environment & in either
the m binding, the (lambda stx (syntax x)) closure, orthe (syntax x) syntax
object. That way, when the x that is introduced by the expansion of m is further expanded,
the captured environment is used instead of the current compile-time environment. The
captured environment then correctly maps x to the binding from the outer 1ambda.

Although the intuition is appealing, a simple environment-capturing approach does not
work in general, because identifiers introduced by a macro expansion can appear in binding
positions as well as use positions. For example, in

(lambda x
(let-syntax n (lambda stx
; expand (n e) to (lambda x ('+ e x))

('mk-stx
("list (syntax lambda) (syntax x)
('mk-stx

("list (syntax ’'+)
('car ('cdr (’'stx-e stx)))
(syntax x))
stx))
stx))
(n "1)))

the expansion of (n 1) is (lambda x (’'+ '1 x)).If the last x simply carried a
compile-time environment from its source (syntax x) expression, then x would refer
to the outermost x binding instead of the one bound by the new Lambda in the expansion
of (n "1).

The difference between the (n ’1) and (m) examples is that (m) introduces x after
the 1ambda that should bind x has been expanded, while (n ’1) introduces x before
the 1ambda that should bind x is expanded. More generally, 1ambda and let-syntax
forms can nest arbitrarily, and macros can expand to definitions of macros, so that identifier
bindings and introductions can be interleaved arbitrarily. This combination of local macros
and macro-generating macros defeats a simple capturing of the compile-time environment
to bind macro-introduced identifiers.

We can more easily account for identifier binding by renaming identifiers in a syntax
object, instead of trying to delay the substitution through an environment. That is, whenever
the expander encounters a core binding form like 1ambda, it applies a renaming to the
syntax object, instead of merely recording the binding in the compile-time environment.
When the expander encounters the first 1ambda in the example containing (m) , it renames
the binding to x:

((lambda xq
(let-syntax m (lambda stx (syntax xp))
(lambda xq
("+ (m) x1))))
1)
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The macro binding m is similarly renamed to m;. When the expander later encounters the
inner 1ambda, it renames x; further to x,.

(lambda x»p
("+ (mp) %))

Since x; is renamed to x5 only within the inner 1ambda form, then (m;) expands to a
use of x1, which still refers to the outer 1ambda binding.

The example with (n ’1) works similarly, where the outer lambda’s binding is
renamed to x1, along with all instances of x quoted as syntax in the n transformer. The ex-
pansionof (n; ‘1) isthen (lambda x; ('+ '1 x71)),so thatthe macro-introduced
x1 is bound by the macro-introduced binding of x;—both of which will be immediately
renamed by the expander to x».

Renaming is a step in the right direction, but it turns out to be only half of the story.
Consider a variation of the (n ’1) example with x in place of ’ 1:

(lambda x
(let-syntax n
(n x)))

The x in (n x) should refer to the outer 1ambda binding. According to our story so far,
renaming leads to (n; xp), which expands to (lambda x; ('+ x; x1)),at which
point the x; from (n; xp) is inappropriately captured by the macro-introduced binding
of X1.

To avoid this kind of incorrect capture, Dybvig et al. (1993) build on the technique
of Kohlbecker et al. (1986). The key is to track syntax objects that are newly introduced
by a macro expansion versus syntax objects that were originally provided to the macro
expansion. Specifically, the result of a macro transformers is marked in such a way that
a mark sticks to parts of the expansion that were introduced by the macro, while parts
that were present in the macro use are unmarked. Representing marks as superscripts, the
expansion of (n; x;) becomes (lambda2 x12 (' +2 X] xlz) ), since the 1ambda,
binding %1, ’ +, and last x| are all introduced by the macro expansion, while the next-to-
last x| was present in the use (n; xp).

Marks, as represented by superscripts, are not treated as a part of a name in the same
way as renamings, as represented by subscripts. In particular, lookup in a compile-time
environment ignores marks, so lambda? indicates FUN in the same way as lambda.
Marks affect renamings, however: a renaming applies only to identifier uses that have the
same current name and marks as the binding identifier. Thus, when the expander encounters
(lambda? x;2 ('+ x| x12)) it renames x> to x5, leaving the unmarked x; alone,
so that the result is correctly (lambda xp ('+ x; X3)).

3.6.2 Marks and Renames as Lexical Context

In the model, instead of subscripts and superscripts, marks and renames are attached to a
syntax object through the lexical-context part of a syntax object. Renames are not imple-
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mented by changing the symbol within an identifier, because the original symbol is needed
if the identifier turns out to be quoted. For example, in

(lambda x
’X)

the expander renames x to xi, but the body of the 1ambda form should produce the
symbol ' x, not the symbol ' x;. Meanwhile, the expander cannot simply skip quote
forms when renaming, because some quoted forms may not become apparent until macro
expansion is complete. By putting renaming information into the lexical-context part of an
identifier, the original symbol is intact for quoting.
To support mark and rename information in lexical context, we add two productions to
the grammar of ctx:
ctx ::= o | MARK(ctx, mrk) | RENAME(ctx, id, name)
mrk ::= name
The MARK and RENAME constructors each build on an existing context. A MARK adds a
fresh mark, where a mark is implemented as a name, although integers would work just
as well. A RENAME record maps a particular identifier (with its own renamings and marks
intact) to a fresh name.
The mark and rename meta-functions push MARK and RENAME records down to all ctx
chains in a syntax object:
mark[[STX(atom, ctx), mrk]| = StX(atom, MARK(ctx, mrk))
mark[STX(LIST(stx, ...), ctx), mrk]] = STX(LIST(mark[[stx, mrk], ...),

MARK(ctx, mrk))
rename[[STX(atom, ctx), id, name]| = StX(atom, RENAME(ctx, id, name))

rename[[STX(LIST(stx, ...), ctx), id, name] = STX(LIST(rename(stx, id, name], ...),
RENAME(ctx, id, name))

When a transformer expands a macro use, only syntax objects that were introduced by
the macro should be marked, while syntax objects that were part of the macro use should
remain unmarked. The technique of Dybvig et al. (1993) is to mark the input of a macro
transformer using a fresh key, mark the result of the transformer again with the same key,
and treat double marks as canceling each other. This canceling behavior is reflected in the
marksof meta-function, which extracts the set of non-canceled marks from an identifier:

marksof [STX(sym, ®)]| =0
marksof [STX(sym, MARK(ctx, mrk))] mrk @ (mrk; ...)

where (mrk; ...) = marksof[STX(sym, ctx)]
marksof [STX(sym, RENAME(ctx, id,, name,))]| = marksof[STX(sym, ctx)]|

mrk; ® (mrk; mrk, ...) = (mrk; ...)
mrk; ® (mrk; ...) = (mrk; mrk; ...)

The marksof function only needs the ctx part of an identifier, but we define it on identifiers
as a convenience.

Finally, the redefined resolve meta-function traverses a ctx to interpret marks and renam-
ings. The crucial clause in resolve handles a RENAME record, which renames if the source
identifier of the rename is consistent with the resolution of the rest of the czx. The two are
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consistent when they correspond to the same name after nested renamings and when they
have the same set of marks:

resolve[[STX(name, o)]| name
resolve[[STX(’name, MARK(ctx, mrk))]| resolve[[STX(’name, ctx)]|
resolve[[STX(’name, RENAME(ctx, id, name,.,))]| = name,,.,
where name; = resolve[[id]], name; = resolve[[STX(name, ctx)],

marksof[ id]] = marksof[STX( name, ctx)]|
resolve[[ STX(’name, RENAME(ctx, id, name,))] = resolve[STX(’name, ctx)]

The resolve function otherwise ignores marks, which is why a macro-introduced but never
renamed lambdaQ,

STX(’lambda, MARK(e, mrk,))
resolves the same as a plain 1ambda,
STX(’lambda, )

Note that in the first RENAME case of resolve, when both id and (STX name ctx) resolve
to name|, and when name; is itself the result of renaming, then id and (STX name ctx) must
have the same marks after the renaming—or else the renaming to name| would not apply.
(Since the expander generates a fresh name for each renaming, any renaming to name;
will be the same renaming, and hence it requires the same marks wherever it applies.) We
can exploit this fact to implement a shortcut in marksof: if a renaming to a given name; is
encountered, then ignore any remaining marks, because the results for both identifiers will
be the same.

To support the shortcut, a revised marksof accepts a traversal-stopping name, the last case
of marksof is split into matching and non-matching cases for the name, and the third case
of resolve changes to provide the name to marksof:

marksof[STX(sym, @), name]| =()

marksof [STX(sym, MARK(ctx, mrk)), name]| mrk @ (mrk; ...)

where (mrk; ...) = marksof[STX(sym, ctx), name]|

marksof[STX(sym, RENAME(ctx, id,, name)), name]| 0O

marksof [STX(sym, RENAME(ctx, id,, name;)), name] = marksof[STX(sym, ctx), name]

resolve[[STX(’name, RENAME(ctx, id, name,..))]| = name,..,
where name; = resolve[[id],

name; = resolve[[STX(name, ctx)],

marksof[[id, name;]| = marksof[STX(’ name, ctx), name;]|

As it turns out, this shortcut particularly simplifies the implementation definition contexts,

as explained later in[Section 3.8

3.6.3 Adapting the Expander

With the machinery of marks and renames in place, we can adapt our de fmacro-style
macro model to a Scheme-style model by changing the macro-application, 1ambda, and
let-syntax cases of expand.
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A revised macro-application case for expand shows the before-and-after marking opera-
tions that track which parts of a syntax object are introduced by a macro expansion:

expand[[$:Xmacapps EI = expand[mark[[$txes, 1rkye,], E]
where STX(LIST(idac, $tXarg, )5 C1X) = St pmacapps

val = E(resolve([id,.l), mrk,., = fresh,

StX.yp = eval[APP(val, mark([StXmacapp> MFknew])]l

The revised 1ambda case generates a renaming for the formal argument of the function,
and then it uses rename to apply the renaming to the body of the 1ambda form:

expand[STX(LIST(idiun, idaurg, SXpoay)> €1x), E] = STXLIST(idiams idnews StXexppoay) CIX)
where FUN = E(resolve[ id.]), name,., = fresh,

idye, = renamelidyy, idu,, name,e,|, Euew = E+{name,.,— (VAR id,.)},

St expbody = €Xpand[[rename[[Stxsody, idag, RAMEwey ], Enerll

The environment is still extended to record that the generated name corresponds to a vari-
able. More generally, the model uses lexical context information to represent the identity
of bindings, but the compile-time environment still represents the meanings of bindings.

Since let-syntax introduces a local binding in the same sense as 1ambda, it must
rename the local variable in the same way:

expand[STX(LIST(ids, id, StX,ns, StXboay), C1X), E] = expand[[rename([stxpoay, id, name,e,l, Enewll
where LET-SYNTAX = E(resolve[[id;])), name,., = fresh,
Eew = E+{name,.,— eval[[parse[[stx,, ]| 1}

With the new expand cases, the thunk example of the previous section expands with
proper handling of lexical scope:

expand[[(lambda a (let-syntax
thunk (lambda e .... STX(a, ) ....)
(thunk ('+ STX(a, *) '1)))),
=
= (lambda STX(a, RENAME(e, a, a2))
expand[[(let-syntax
thunk (lambda e .... STX(a, RENAME(e, a, a2)) ....)
(thunk ('+ STX(a, RENAME(e, a, a2)) '1))),
€, =E+{a2—-VAR}])
= ... evaluating the thunk binding ...
= (lambda STX(a, RENAME(e, a, a2))
expand[(thunk ('+ STX(a, RENAME(e, a, a2)) '1)),
Ez = §1+{thunke )]
= ... calling the thunk transformer ...
the macro-introduced a has the marked context ctx
= (lambda STX(a, RENAME(e, a, a2))
expand[(Lambda STX(a, ctx = MARK(RENAME(e, a, a2), mrk;))
('+ STX(a, RENAME(e, a, a2)) '1)),
=)
and the rename to a3 applies to a with marked context ctx
= (lambda STX(a, RENAME(e, a, a2))
(lambda STX(a, RENAME(ctx, STX(a, ctx), a3))
expand[[(‘+ idpoa '1), &5 = E-+{a3 = VAR}]))
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where idp.., = STX(a, RENAME(RENAME(e, a, a2), STX(a, ctx), a3))
= ... expanding the body ...
= (lambda STX(a, RENAME(e, a, a2))
(lambda STX(a, RENAME(ctx, STX(a, ctx), a3))

(‘+ expand[idyoay, Es]l '1)))
where the a3 renaming does not apply, since idy.qy is not marked
= (lambda STX(a, RENAME(e, a, a2))
(Lambda STX(a, RENAME(ctx, STX(a, ctx), a3))
('+ STX(a, RENAME(e, a, a2)) '1)))

3.7 Compile-Time Bindings and Local Expansion

At this point, our model covers macros as they are available in many Scheme implemen-
tations. We now add two new primitives that reflect the expanded macro API of Racket:
1lvalue (short for syntax—local-value) for accessing arbitrary compile-time bind-
ings, and 1lexpand (short for 1ocal-expand) for forcing the expansion of a sub-form.

The new primitives are available only during the application of a macro transformer, so
we add them to a new set of atoms tprim:

atom ::= .... | tprim
tprim ::= 1value | lexpand

Evaluation of a tprim application does not use O, because it relies on the expansion
context. In particular, application of 1value extracts a value from the compile-time envi-
ronment, and lexpand must cancel any mark introduced for the current expansion before
starting a nested expansion. We therefore revise eval to accept a compile-time environment
and mark in addition to the expression to evaluate.

To evaluate a use of 1value, the argument expression is evaluated and must produce
an identifier, and the identifier must be mapped to a value in the current compile-time
environment, in which case that value is the result of the 1wvalue call:

eval[APP(lvalue, ast), &, mrk] = E(resolve[lid,esul)
where id,... = eval[ast, E, mrk]|

The essence of lexpand is that eval for an application of 1lexpand must use expand.
In addition, 1expand require two bookkeeping steps:

e Before forcing expansion of the given syntax object, lexpand applies a mark to
cancel the one from the enclosing macro application, and then it adds the mark
back after nested expansion (to be canceled again when the enclosing expansion
completes). By removing and restoring the mark for an outer expansion that is in
progress, lexpand avoids interference between the original expansion and the sub-
form expansion.

o To enable partial expansion, the stop list provided to 1expand creates new bindings
in the compile-time environment to a STOP transform. In addition, in much the
same way that lexpand removes the current expansion’s mark before starting
a sub-form expansion, existing STOP transforms are removed from the compile-
time environment by using nostops, in case a macro transformer that is invoked via
lexpand itself calls lexpand:
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nostops([E]] = {var— transform | €(var) = transform
and transform # STOP}

The eval rule for lexpand puts these steps together, along with evaluation of the argu-
ments to lexpand:

eval[APP(lexpand, ast,.,, AStuyps), S, mrk]] = mark[[expand[mark[[stx, mrk]l, Egopsll, mrk]
where stx = eval[[ast,,, §, mrk]l, LIST(id,.p, ...) = evall[astyps, &, mrk],
E,ps = Nostops[E]+{resolve[id,.,] —STOP} ...

Expansion of a form that has a STOP transform is the same as for a QUOTE transform,
except that multiple sub-forms are allowed inside the form:

expand[STX(LIST(idyy, stx, ...), ctx), E] = STX(LIST(idyp, StX, ...), CIX)
where STOP = E(resolve[[id.,])

To illustrate, the program

(let—-syntax

public (lambda e ('syntax-error))
(let-syntax

class (lambda e

((lambda e2
("car ('cdr (’'stx-e e2))))
("lexpand ('car ('cdr (’'stx-e e)))
("list (syntax public)))))
(class (public ’'8))))

simulates how public in the class system makes sense only within a class form (other-
wise it reports a syntax error), while class locally expands its body stopping at public
forms. The program expands to 8 roughly as follows (omitting lexical-context information,
since it is not directly relevant to the example):

expand[[(let-syntax public....
(let-syntax class....(class (public'8)))),

Eoll

= ... evaluate transformer expression for public ...
=expand[(let-syntax class ....(class (public'8))),

& =&+{public—....}]
... evaluate transformer expression for class ...
expand[[(class (public'8)),&, =E+{class—....}]
... apply the class transformer ...
evall.... (lexpand (syntax (public '8))

('1list (syntax public)))....,

1l

Ez, mrk,]]
expansion stops immediately at public :
eval[.... (syntax (public'8)) ...., &, mrk/]
... transformer strips the public form away ...
= eval[(syntax '8), &, mrk,]
= expand[['8, &;]

Local expansion is consistent with full expansion only when the stop list is either empty
or when the stop list contains at least the primitive binding forms. If a stop list omits a
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binding form, but it includes a form that can wrap a reference to a bound variable, then a
partial expansion can produce a different result than full expansion. This effect is illustrated
in the following example:

(let-syntax
stop (lambda e (‘car ('cdr ('stx-e e))))
(let—-syntax
ex (lambda e
("lexpand ('car ('cdr ('stx-e e)))
("list (syntax stop))))
(ex (lambda x (let-syntax
arg (lambda e (syntax (stop x)))
(arg))))))

When the ex macro forces the expansion of (lambda x ....) and stops at uses of
stop, the result is essentially (lambda x, (stop xp)), where both x,s are really
xs with RENAME wrappers to redirect x to some x,. The latter x, however, also has a
MARK due to introduction by the local arg macro. Re-expanding (lambda x; (stop
x5) ) therefore produces (lambda x3 (stop xj)); since the marks on the two x;s
are not the same, the new x3 binding does not capture the inner x,.

3.8 Definition Contexts

To support definition contexts, we add two new expansion-time primitives: new-defs
(shortfor syntax—-local-make-definition—-context) for creating new contexts,
and def-bind (short for syntax—-local-bind-syntaxes) for binding names in a
context.

tprim ::= ....| new-defs | def-bind

A definition context is similar to a RENAME record in a syntax object, except that the set
of renamings associated with the context is extensible imperatively. Updates of a definition
context require a definition-context store 2 with addresses g. A DEFS wrapper for syntax
objects encapsulates a 0, and DEFS can also tag a 0 to form a value. Within X, 0 maps
identifiers to renamed variables.

.... | DEFS(0)
.... | RENAME(ctx, id, name, 0) | DEFS(ctx, 0)

val ::
crx i

0 ::= addr | NULL
2 ::= definition-context store, 0 — (id — sym)
S=setof o

‘When resolve encounters a DEFS wrapper, it unpacks the wrapper into a sequence of RENAME
wrappers. For reasons explained below, the generated RENAME wrappers must record the
source definition context. Thus, RENAME is extended above to include an address ¢. The
special address NULL is used for RENAME wrappers that originate from lambda or let—
syntax renamings.

The expand cases must be revised to take a 2 argument and produce a resulting <stx, 2)

tuple, and eval must similarly consume and produce a Z. For the existing cases, the X is
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simply carried through, including to the resolve and parse meta-functions. The new case
in eval for a new-defs form, however, extends the definition-context store with a new,
empty definition context:

eval[APP(new-defs), E, mrk, 2] = (DEFS(0), &, Z+{o—D})
where o = fresh

A new eval case handles the use of def-bind to extend a definition context with an
identifier that corresponds to a run-time binding. A run-time binding is just like one created
by lambda, and def-bind similarly generates a fresh variable and maps the original
identifier to the new variable for syntax objects. While the expansion of 1ambda applies
the renaming to a body expression, evaluation of def-bind records the renaming in a
definition context. Evaluation of def-bind also extends the compile-time environment
to indicate that the generated variable maps to itself, just like the expansion of 1ambda.

eval[APP(def-bind, astuy, asta), &, mrk, 2] = (0, Ex+{name,,— (VAR id,,)}, Zs)
where (DEFS(0), &, /) = evallastuy, &, mrk, Z],

(id, &, %,) = evallastu, &;, mrk, 2,1, name,.., = fresh,
id,., = renamellid, id, name,..|,
2; = Z+{0— 2 (0)+{mark[id, mrk] —name,...} }

When def-bind is used to bind an identifier to a compile-time value (including a
macro transformer), the given compile-time expression must be evaluated, and then its
result can be bound in the environment. Like the evaluation case for binding variables, the
case for binding a compile-time value generates a fresh variable, maps it in the definition
context, and extends the compile-time environment. In this case, however, the extended
compile-time environment contains a compile-time value, instead of just a variable.

eval[APP(def-bind, astuy, astu, asty), &, mrk, 2] = (0, EA4{name,.,—val}, Zs)
where (DEFS(0), &, 2} = evalllastas, &, mrk, 2],
(id, &, %2) = evalllasti, &, mrk, ], (stx, 5, Zs) = eval[ast., &, mrk, 2],
<val , &4, 24> = eval[[parse[[defs[mark[[stx, mrk], o], Z;1, &;, mrk, Z;],

name,,,, = fresh, id,.,, = rename|[[id, id, name,],
s = 2+{o—2Z(0)+{mark[id, mrk] —name,..}}

A definition context is associated with an expression by extending 1expand to accept
a definition context as its last argument. The definition context is applied to the given
expression before it is expanded (using a defs meta-function that is like rename and mark),
so that expansion uses the context. Less obviously, the definition context is also added
to the result of local expansion. For syntax objects introduced by local expansion, the
second addition ensures that if the introduced syntax objects correspond to a definition, the
definition’s binding will use the correct lexical context.

eval[APP(lexpand, astey:, AStyops, AStays), S, mrk, Z]| = (mark[defs[stx, o], mrk], s, Z)
where (stXeqr, &1, 21) = eval[astey, &, mrk, Z],

(LIST(id10p, -..), &2, Z2) = eval[[astyps, &1, mrk, 2],

<DEFS(0), E;, 23> = evall[ast s, &, mrk, 2],

Eqiops = Nostops[[E;]+{resolve[idy.p, Z;] —STOP} ...,

$0Xu00 = defs[mark[[$txey,, mrkll, oll, {stx, Z;) = expand[$stXe, Eops, 251
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Given the extended definition of ctx, a natural extension of resolve is to add a DEFS clause
while generally extending resolve to accept the current store 2. The new DEFS clause could
simply unpack the wrapper into a set of RENAME wrappers based on the content of the
definition context in the store, then recur:

renames[[o, (), ctx] = ctx
renames|[o, ((id name) (id, name,) ...), ctx]] = renames|o, ((id, name) ...),
RENAME(ctx, id, name, 0)]|
resolve[STX(val, DEFS(ctx, 0)), Z]| = resolve[[STX(val, ctx,..), 2]
where {id —name,,, ...} = 2(0),
CtXpew = renames|o, ((id name,.,) ...), ctx]|

This simple extension of resolve does not work, because it does not terminate when o is part
of a cycle in 2. A cycle is created in 2 for most definition contexts, because each defined
identifier is placed into the context where the bindings occur. More complex cycles are
created when definition contexts are nested, as in nested define—package forms (see

[Section 2.5). For example, in the Racket expression

(define—-package p ()
(define x 1)
(define-package g ()

(define x 2)))

the two defined identifiers must resolve to different bindings, say, x1 and x3. The corre-
sponding syntax objects are roughly

STX(x, DEFS(DEFS(e, 0;), 0;))
S1X(x, DEFS(DEFS(DEFS(DEFS(®, 0)), 02), 02), 01))

2 = {0, {STX(x, DEFS(®, 0)))«x1,
STX(x, DEFS(DEFS(DEFS(DEFS(e, 0;), 03), 02), 0;)) < x3}
0, {DEFS(DEFS(DEFS(e, 0)), 02), 02)« x2}}

The first identifier has 0, twice, because the identifier appears in both the first define
form and its expansion. The second identifier has nested 0s, because it appears before and
after both the outer expansion of de fine-package and the inner expansion of define.
In 2, the 0, binding reflects the final identifiers. The o, binding reflects the state of the
second x by the time it was bound for the inner package. It was put into the ¢, context
during the expansion of the define-package form, and then put into the 0, context
before and after expanding the inner define. The inner expansion created the temporary
binding x2, but it was later subsumed by the x3 binding for the enclosing context.

To accommodate cycles within 2, resolve must keep track of which contexts are already
being used toward a renaming. For an initial call to resolve, no contexts are already being
used. When a DEFS tag is unpacked into RENAMEs, then the corresponding context is
already being used for the purposes of checking targets of renamings in the branches of
the wrapper (i.e., the id in each RENAME wrapper). However, the context is not yet used
for the spine of the lexical-context wrapper, because if no renaming applies among the
unpacked ones, a later DEFS wrapper for the same definition context might apply. Thus,
resolve accepts two sets of definition contexts to be skipped: one for the spine, and one for
branches that are rename targets.
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resolve[[stx, 2] = resolve*[stx, 2, &, T

resolve*[STX(’name , RENAME(CEX, idorig, RAME ey O))y Z, Sspines Sbranchl]l = NaAMEyer,
where name; = resolve*[[id,ig, 2, Spranchs Sorancnlls

name, = resolve*[STX( name, ctx), Z, {0}YUSines Strancnll,

marksof[[id,.,, name;]| = marksof[STX(’name, ctx), name]|
resolve*[STX(’name, DEFS(ctx, 0)), 2, Sypines Shrancn]l = resolve*[STX(’name, ctx),

2, Sspines Sbranch

where 0 € Sine
resolve*[STX("name, DEFS(ctx, 0)), 2, Sopines Sorancn]l = resolve*[STX( name, ctx,ev),

Zs Sspi/w, {O}UShranch]]
where {id —name,,, ...} = 2(0), ctx,., = renames[ o, ((id name,..,) ...), ctx]|

Finally, we revise marksof to handle DEFS wrappers, taking care to properly support
renaming of identifiers that are bound in a definition context. Consider the following Racket
example:

(lambda ()
(define x 1)
(define-syntax m (lambda (stx) #’ (list x)))
(m))

When a definition context is used to expand the body forms of this 1ambda, then all iden-
tifiers acquire the definition context. The local expansion of (m), furthermore, produces
an x that has a mark in addition to the definition context. If the x from define is then
used as a Letrec binding to continue expansion, then the extra mark on the x from (m)
could prevent it from being bound by the letrec. This is the same potential problem as
described at the end of and it occurs because (m) is expanded only far enough
to discover that it acts an expression rather than a definition.

To avoid this problem, resolve must ignore marks that are introduced during partial ex-
pansion for identifiers that are bound by the partial expansion’s definition context. Ignoring
such marks simulates a complete expansion, which would replace a marked variable with
the fresh name that is used for its binding. Since lexpand adds the definition context
to both its argument and its result, two instances of the definition context serve to bracket
the marks that should be ignored later by resolve. Combining this idea with the observation
from that marks after the definition-context renaming can be ignored for a
further renaming, it suffices to make marksof ignore all marks after the first instance of a
definition-context renaming:

marksof[STX(val, DEFS(ctx, 0)), Z, name]| = ()
where name € mg(2(0))
marksof[[STX(val, DEFS(ctx, 0)), 2, name]| = marksof[STX(val, ctx), Z, name]|

4 Related Work

Our model builds directly on the model of Dybvig et al. (1993), adding extensions for
compile-time bindings, partial expansion, and definition contexts. Another difference in
our model is that the expander, which maps syntax objects to syntax objects, is decoupled
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from the parser, which maps syntax objects to an executable AST. This change allows us
to model 1local—-expand, but it also reflects Racket’s pervasive use of syntax objects
as a basis for program analysis and transformation (see [Section 2.6). Previous models
of Scheme macros do not account for the handling of internal-definition contexts (e.g.,
in the body of lambda); ribs, as described informally by Waddell and Dybvig (1999),
sound similar to our definition contexts, but no model is provided, and the construct is not
accessible to macro transformers.

Our model inherits one drawback of the Dybvig et al. (1993) model: whether marks
and renamings actually make macros respect lexical scope as intended is hardly apparent.
Other models of macros face similar problems:

e Gasbichler (2006) attacked the gap between specification and mechanism in his
model of macros based on explicit substitutions, but Gasbichler’s model treats pattern-
variable bindings differently than other bindings, which turns out not to work com-
pletely right for macro-generating macros, thus leaving a gap in the explanation.

e The Ay calculus of Herman (2010) creates a tight correspondence between speci-
fication and behavior for a restricted subset of syntax—-rules macros. The A,
calculus uses a custom type system to specify the binding structure of a macro’s
arguments. Expressions are annotated with the new bindings brought into scope,
and macros with ambiguous scoping rules are disallowed. The calculus does not
handle the flexibility and power of syntax-case macros, and the type system
would require significant extension to represent the essence of local expansion and
definition contexts.

e Other frameworks for lexically-scoped macros, notably syntactic closures (Bawden
and Rees 1988) and explicit renaming (Clinger 1991), use a notion of lexical context
that more directly maps to the programmer’s view of binding scopes. Unfortunately,
the more direct representation moves binding information into the expansion envi-
ronment; in the case of syntactic closures, it tangles the representation of syntax and
expansion environments, and in the case of explicit renaming, identifier comparisons
depend on a compile-time environment. Our goals require a purely “syntactic” rep-
resentation of syntax, which can be locally expanded, transported into a new context,
and then re-expanded.

An important direction for further research is to find a model with the syntactic advantage
of Dybvig et al. (1993), but with a more obvious connection to the usual notion of binding
scopes, that is able to support our extensions for cooperation among macros.

Previous work on expansion-passing style macros (Dybvig et al. 1988) addresses the
problem of expanding sub-forms in a macro use. In expansion-passing style, a macro re-
ceives two arguments: the term to transform and an expander function. The macro can call
the function to expand sub-forms, and it can pass a modified expander function to be used
for the sub-form expansion. Similarly, Common Lisp provides the functions macroex—
pand and macroexpand-1, as well as an expansion hook *macroexpand-hook*.
Both of these mechanisms give macros the power to expand sub-forms, and they give
a macro the ability to change the expander’s behavior for the duration of the sub-form
expansion. In contrast, 1ocal—-expand always invokes the standard expander, allowing
only the addition of new stopping conditions and an optional definition context. These re-
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strictions make 1ocal—-expand less powerful but more predictable than previous mech-
anisms for sub-form expansion. In addition, 1local-expand works with macros that
respect lexical scope, whereas previous facilities were developed for scope-oblivious sys-
tems.

Continuation-passing style (CPS) also enables a kind of sub-form expansion for macros,
as described by Hilsdale and Friedman (2000). Only macros explicitly written in CPS can
participate in sub-form expansion, so such macros cannot easily re-use existing forms like
define. Furthermore, since macros cannot verify that sub-forms follow the protocol,
mistakes generally lead to mysterious error messages at best and bewildering behavior at
worst.

Compile-time meta-programming in the style of Template Haskell (Sheard and Peyton
Jones 2002) supports the expansion of sub-forms within a macro transformer, because
macros are compile-time functions that can be called directly from other compile-time
functions. Macros in Template Haskell also respect lexical scope. Unlike Lisp and Scheme,
however, uses of macros must be explicitly marked in the program source with a leading $,
which creates different demands on the representation of syntax and the resolution of bind-
ing. For example, an identifier’s role within a template as binder or not can be determined
immediately, whereas the determination must be delayed within Scheme templates. The
advantage of Scheme-style macros, and the target of our work, is to allow new syntactic
forms that have the same status as built-in syntactic forms, thus supporting a tower of
languages.

Other systems address the need for cooperation and communication of language ex-
tension at a different level. Ziggurat (Fisher and Shivers 2008) and Silver (Van Wyk et
al. 2009) both support static analysis in languages with extensible syntax. Expansion or
“delegation” is automatically triggered by the system as necessary to support analyses, and
expansion proceeds only far enough to produce a syntactic form that can be analyzed. Com-
pared to Ziggurat and Silver, macro expansion in Racket is simpler and at a lower level;
only expansion and binding information is available for a sub-term, and other information
must be encoded in the expansion.

Language constructs based on fresh names (Gabbay and Pitts 1999; Shinwell et al.
2003) or higher-order abstract syntax (Pfenning and Elliott 1988; Pfenning and Schiir-
mann 1999) address the problem of manipulating program fragments with bindings, but
they have different operations than syntax objects. Programs using fresh-name features
explicitly open and close term representations, instead of automatically absorbing lexical
information. With higher-order abstract syntax, binders and bindings are implicit, instead
of entities that can be manipulated explicitly. Syntax objects fit somewhere in between:
lexical information is maintained automatically, but it can be manipulated more directly.
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Appendix
ast == var | ApP(ast, ast, ...) | val stx ::= STX(atom, ctx)
var ::= VAR(name) | STX(LIST(stx, ...), ctx)
val ::= FUN(var, ast) | atom id ::= STX(sym, ctx)
| L1ST(val, ...) | stx | DEFS(0) ctx=e
atom ::= sym | prim | tprim | .... | RENAME(ctx, id, name, o)
sym = "name | MARK(ctx, mrk)
prim ;= stx-e |mk-stx| .... | DEFS(ctx, 0)

tprim ::= new-defs | def-bind
| lvalue | lexpand
0 ::= addr | NULL

transform ::= FUN | LET-SYNTAX | QUOTE
| (VAR id) | val | STOP

name ::= a token such as x, egg, or Lambda

& ::= a mapping from name to transform
addr, mrk ::= name

2 ::= definition-context store, 0 — (id — sym)

S:=setof o
d(stx-e, STX(val, ctx)) = val
d(mk-stx, atom, STX(val, ctx)) = StX(atom, ctx)

d(mk-stx, LIST(stx, ...), STX(val, ctx)) = STX(LIST(stx, ...), ctx)

1]

eval[APP(FUN(var, astyos), aStas), &, mrk, 2] eval[[astyos[var«vall, &, mrk, Z,]]

where (val, €, Z,) = evall[asta,, €, mrk, 2]

eval[APP(prim, ast,s,, ...), &, mrk, 2] = (6(prim, val, ...), &, Z,>

where ((val ...), €/, Z)) = eval*[(), (astuy ...), &, mrk, =]

eval[[ APP(ast,p, ASturg, ...) ]| = evall[APP(evalllast,,]l, astu,, ...)]
eval[val, &, mrk, 2] = (val, €, %)

eval[APP(lvalue, ast), &, mrk, 2] = (E(resolve[stx, =1, &1, Z))

where (stx, &, ;) = eval[last, §, mrk, 2]
eval[ APP(lexpand, aster, AStyaps, AStag), S, mrk, Z]| = (mark[defs[[szx, ol, mrkll, €, =)
where ($tXepr, E1, 21) = eval[astey:, &, mrk, 2,

(LIST(idsop, -..), E2, Z2) = evall[astyops, E1, mrk, 2,

<DEFS(O’), &, 23) = evall[asty, &2, mrk, 2o,

Eqops = Nostops[[E;]+{resolve[idy.,, =] — STOP} ...,

$1Xuee = defs[mark[[stxe.,, mrkll, o1, (stx, Z) = expand[[$stXews Sopss 2311

eval[APP(new-defs), E, mrk, 2] = (DEFs(0), &, Z+{0—@})
where o = fresh
eval[APP(def-bind, astug, asty), &, mrk, =] = (0, Ex+{name,,— (VAR iduo)}, Z3)

where <DEFS(U), E[, Z,) = eva][[astdt,,;\, E, mrk, 2]], <ld, Ez, 22) = evall[ast,»,,, E], mrk, Z/]],
name,,,, = fresh, id,., = renamelid, id, name,.]
35 = 2+{0—>2(0)+{mark[id, mrk] — name,..} }

eval[APP(def-bind, astuy, astu, asta), &, mrk, Z] = (0, E+{name,.,—val}, Zs)
where (DEFS(0), &, ;) = evallastug, E, mrk, =], (id, &, %) = evallastu, &, mrk, Z,],
(stx, &, %) = evalllastay, &2, mrk, ],
(val, &4, Z,) = evall[parse[[defs[mark[[stx, mrkll, oll, Zs1I, &, mrk, =],
name,.,, = fresh, id,., = rename[lid, id, name,..],
35 = ZA{o0—->2(0)+{mark[id, mrk] — name,..} }
eval*[(val ...), (), E, mrk, 2] = {(val ..),E, %)
eval*[(val ...), (asty ast; ...), E, mrk, 2] = eval*[(val ... valy), (ast; ...), &1, mrk, 2]
where (valy, €1, Z;) = eval[asto, E, mrk, =]
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expand[STX(LIST(idjun, idurg, StXboay), C1X), E, 2] = <STX(LIST(id,m, iews St exphody), CIX), 2 ,>
where FUN = E(resolve[lidium, Z1), name,., = fresh, id,.., = rename([id,, idu, name,,],
$SBuewbody = reName[Stxpoays idug, naMe,e ], Enew = E+{name,.,— (VAR id,.,)},
(Stexppoay, 21) = expand[[SEuewbodys Enews 21
expand[ STX(LIST(id o, $1X), ctx), E, 3] = (STX(LIST(id uore, 52), Ctx), =)
where QUOTE = E(resolve[[id o, Z11)
expand[STX(LIST(id,s, idyacs SXrnss SEXpoay), C1X), &, Z] = expand[[stXewboss» S+{name,.—val}, =1
where LET-SYNTAX = E(resolve([id;s, Z]), name,.., = fresh,
(val, &, Z,) = evalllparse[stxus, 2], &, no-mrk, [,
St pewbody = reNAMe[[Stxpodys idmac, NAME ]|
expand[[$Xacapps & 21 = expand[mark[[stx.,, mrk.e.]l, &, /1
where STX(LIST(id e, StXargs ++)s CIX) = SWmacapps val = E(resolve[idyac, Z1), mrk,e, = fresh,
(Stxep, E1y Z1) = eval[APP(val, mark[$tXuacas Mrkues]), & Mrkyey, 2]

expand[STX(LIST(idyp, stx, ...), ctx), €, =] = (STX(LIST(idp, SIX, ...), C1X), Z)

where STOP = E(resolve[[idy.,, =)

expand [ STX(LIST(StX 107, $Xpuas --.), C1X), &, 2] = (STX(LAST(SXerpriors SXexprua, --2), 1Y), Z1)
where ((SXexprior SXexprma ---)» Z1) = expand*[(), (or 2% -..), €, Z1]

expand[[id, &, Z] = (idyen, %)

where (VAR id,..) = E(resolve[[id, Z])

expand*[(stXuone -..), (), €, 2]
expand* [ (stXuone -..), (Stxp s1X; ...), €, Z]
where (stXone0, 21) = expand([[stxo, €, Z]|

<(Stxdw ), 2)
expand* [ (StXuone -.. $SBXaoneo), (s2x; ...), E, Z/]]

parse[ STX(LIST(idiumbdas idargs StXpoay), €1X), Z]| = FUN(VAR(resolve[[iday, 2]1), parsellstxsoay, 1)
where 1ambda = resolve[ idiumpaa, 2]

parse[[ STX(LIST(id o, Stx), ctx), 2] = strip[[stx]|
where quote = resolve[id e, 2]
parse[[ STX(LIST(idyya, StX), ctx), =] = stx

where syntax = resolve[[idyma, 2]
parse[[ STX(LIST(SX,a0r» StXrands --.), CtX), Z]| APP(parse([stxX,uor, 21|, parsellstx o, 21, ...)
parse[id, Z] = VAR(resolve[id, Z])
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resolve[[stx, 2] = resolve*[stx, 2, &, D]

name
resolve*[STX(’name, ctx),
2, Sopine Strancall

resolve*[[STX("name, ), 2, Sines Shranchl
resolve*[STX( name, MARK(ctx, mrk)), =, Sspines Sorancal

resolve*[STX(’name, RENAME(CIX, i rig, NAMErervs O))y Z, Spines Shrancn]l = name,e,
where name,; = resolve*[[id,ig, Z, Soranchs Spranch]ls
name; = resolve*[STX( name, ctx), =, {0}YUSpines Sprancills
marksof[[id,,, =, name,]| = marksof[STX('name, ctx), Z, name,]|
resolve*[STX(’name, RENAME(CIX, id,ig, name:, 0)), 2, Syines Sprancnll = resolve*[STX( name, ctx),
27 Sxpine, Shran('h]]
resolve*[STX(’name, ctx),
2’ Sspine, Sbrtm(‘h]]

resolve*[STX(’name, DEFS(ctx, 0)), =, Sspine> Sorancall

where 0 € Spine
resolve*[STX(’name, DEFS(ctx, 0)), =, Sspine> Sorancill resolve*[STX("name, ctx,..),

2, Sopines £0YUSbrancnll

where {id —name,., ...} = 2(0), ctX,, = renames|[ o, ((id name,.,) ...), ctx]

ctx
renames[[o, ((id> name,) ...),
RENAME(ctx, id, name, 0)]|

renameslo, (), ctx]|
renames|lo, ((id name) (id, name) ...), ctx]|

mark[[STX(atom, ctx), mrk]| = StX(atom, MARK(ctx, mrk))
mark[[STX(LIST(stx, ...), ctx), mrk] = STX(LIST(mark([stx, mrk], ...), MARK(ctx, mrk))

rename[[STX(atom, ctx), id, name]| = StX(atom, RENAME(ctx, id, name, NULL))
rename[[STX(LIST(stx, ...), ctx), id, name]| = STX(LIST(rename(stx, id, name], ...),
RENAME(ctx, id, name, NULL))

defs[[STX(atom, ctx), o] = StX(atom, DEFS(ctx, 0))
defs[STX(LIST(stx, ...), ctx), o] = STX(LI1ST(defs[[stx, o], ...), DEFS(ctx, 0))

marksof[STX(val, ®), =, name]| =0

marksof[[STX(val, MARK(ctx, mrk)), 2, name]| = mrk @ marksof[STX(val, ctx), Z, name]|
marksof[[STX(val, RENAME(ctx, id, name;, 0)), 2, name]| = marksof[STX(val, ctx), Z, name]|
marksof[STX(val, DEFS(ctx, 0)), Z, name]| =()

where name € rmg(2(0))
marksof[[STX(val, DEFS(ctx, 0)), Z, name]|

marksof[STX(val, ctx), Z, name]|

mrk; @ (mrk, mrk; ...) = (mrk; ...)
mrk; & (mrk; ...) = (mrk; mrk; ...)

strip[[STX(atom, ctx)]| = atom
strip[[STX(LIST(stx, ...), ctx)]| = LIST(strip[szx]], ...)

1]

nostops[[E]] = {var —transform | E(var) = transform
and transform # STOP}
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