
Precise Garbage Collection for C

Jon Rafkind
University of Utah

rafkind@cs.utah.edu

Adam Wick
Galois, Inc.

awick@galois.com

John Regehr
University of Utah

regehr@cs.utah.edu

Matthew Flatt
University of Utah

mflatt@cs.utah.edu

Abstract
Magpie is a source-to-source transformation for C programs that
enables precise garbage collection, where precise means that inte-
gers are not confused with pointers, and the liveness of a pointer
is apparent at the source level. Precise GC is primarily useful for
long-running programs and programs that interact with untrusted
components. In particular, we have successfully deployed precise
GC in the C implementation of a language run-time system that was
originally designed to use conservative GC. We also report on our
experience in transforming parts of the Linux kernel to use precise
GC instead of manual memory management.

Categories and Subject Descriptors D.4.2 [Storage Manage-
ment]: Garbage Collection

General Terms Design, Reliability

Keywords garbage collection, precise, accurate, conservative, C

1. GC in C
Automatic memory management simplifies most implementation
tasks, and among programming languages currently in widespread
use, most automate memory management through garbage collec-
tion (GC). The C programming language is a notable exception,
leaving memory management largely in the hands of the program-
mer. For some tasks, especially relatively low-level tasks, explicit
control over memory management is useful and important. Even
so, C is used for many implementation tasks that would benefit
from automatic memory management.

A popular approach for adding GC to C is to use conservative
GC [Boehm 2003]. A conservative GC assumes that any word in a
register, on the stack, in a static variable, or in a reachable allocated
object is a potential pointer that counts toward the further reacha-
bility of objects. A conservative GC is not completely “conserva-
tive” in the sense of retaining any object whose address might be
computed eventually, because the C language allows arbitrary ref-
erences to be synthesized, which would mean that no object could
ever be collected. Nevertheless, the approximation to “conserva-
tive” in a conservative GC works well in practice, because C pro-
grams rarely synthesize pointers out of thin air.

A conservative GC is typically implemented as a library, which
makes using it relatively easy. In many cases, calls to malloc can
be replaced with GC malloc, and calls to free can be turned into

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISMM’09, June 19–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-347-1/09/06. . . $5.00

no-ops. The resulting program usually runs about as well as before,
but without the ongoing maintenance burden of manual memory
management. In our experience, however, conservative GC works
poorly for long-running programs, such as a web server, a program-
ming environment, or an operating system kernel. For such pro-
grams, conservative GC can trigger unbounded memory use due to
linked lists [Boehm 2002] that manage threads and continuations;
this problem is usually due to liveness imprecision [Hirzel et al.
2002], rather than type imprecision. Furthermore, the programs
are susceptible to memory-exhaustion attack from malicious code
(e.g., user programs or untrusted servlets) that might be otherwise
restricted through a sandbox [Wick and Flatt 2004].

This paper describes our design of and experience with a GC
for C that is less conservative. Our precise GC counts references
toward reachability only for words that correspond to values whose
static type is a pointer type, and only for words that correspond to
variables that are in scope. Of course, this GC is not completely
“precise” in the sense of retaining only objects that will be refer-
enced later in execution, but it is precise in the useful sense that a
program can be written to reliably drop all references to a given ob-
ject; no integers or dead registers will accidentally or maliciously
retain the object.

Precise GC requires that a C program obeys many restrictions—
the same ones that apply to using conservative GC, and more—
or the program can crash. For example, to use precise GC, a
C program must never extract a pointer from a variable typed as
long, at least not if a collection may have occurred since the value
was stored in the variable. These extra constraints are, however,
satisfied by normal C programming practices. Furthermore, our
implementation relies on fewer assumptions about the C compiler
and target architecture than conservative GC, because it transforms
the original program to explicitly cooperate with the GC.

Our initial motivation for precise GC in C was to support a
run-time system for a high-level language, PLT Scheme. The PLT
Scheme run-time system is implemented in C, and it was originally
designed to use conservative GC. Switching to precise GC has
solved many memory-use problems for PLT Scheme software:

• Users of the DrScheme programming environment, which runs
on top of PLT Scheme, were forced to restart at least ev-
ery day when PLT Scheme used conservative GC. Even stu-
dents writing tiny programs would have to restart after several
hours. Users of DrScheme with precise GC no longer restart
DrScheme to free memory. More concretely, running the cur-
rent version of DrScheme within DrScheme using conservative
GC accumulates around 40 MB on every iteration, while mem-
ory use with precise GC is stable at around 100 MB.

• When building bytecode and documentation for the current
PLT Scheme distribution, peak memory use is about 200 MB
using precise GC. With conservative GC, peak use is around
700 MB—and the gap continues to widen as the documentation
grows more complex.

• With conservative GC, a mail client built on PLT Scheme would
have to be restarted every couple of days, or immediately after
opening a large attachment. With precise GC, the mail client
does not run out of memory, and it routinely runs for weeks at
a time.

More generally, the switch to precise GC allows PLT Scheme to
provide programmers with the usual guarantees about memory use,
such as being safe for space [Appel 1992, Clinger 1998].

Based on our positive experience with precise GC in PLT
Scheme, we have experimented further by testing its use on other C
programs—even applying it to significant subsystems of the Linux
kernel. Our Magpie tool converts C source programs to cooperate
with precise GC. Magpie converts many C programs automati-
cally, and it can convert others with varying levels of programmer
intervention.

The contributions of this paper are twofold. First, we describe
the design and implementation of Magpie’s conversion of C to co-
operate with a precise GC, including the assumptions and heuristics
that have proven effective on a spectrum of programs. Second, we
provide a report on applying Magpie to the PLT Scheme run-time
system, other user applications, and the Linux kernel.

The rest of this paper is organized as follows. Section 2 de-
scribes the semantic assumptions of precise GC with respect to C
programs. Section 3 describes the transformation of C programs
that enables them to use precise GC at run time. Section 4 de-
tails our experience using and benchmarking precise GC. Section 5
compares to related work.

2. C Semantics and Precise GC
The key constraint a C program must obey to use precise GC is that
the static types in the program source must match the program’s
run-time behavior, at least to the extent that the types distinguish
pointers from non-pointers. The implementation of precise GC,
meanwhile, is responsible for handling union types and the fact
that the static type of a C variable or expression often provides an
incomplete description of its run-time shape. For example, void*
is often used as a generic pointer type, where the shape of the
referenced data is unspecified. Thus, the concerns for precise GC in
the source program can be divided into two parts: those that relate
to separating live pointers from other values, and those that relate
to connecting allocation with the shape of the allocated data.

2.1 Pointers vs. Non-pointers
For GC to work, all live objects must be reachable via pointer
chains starting from roots, which include static and local variables
with pointer types. For precise GC, the values of variables and
expressions typed as non-pointers must never be used as point-
ers to GC-allocated objects, because objects are not considered to
be reachable through such references. In addition, to support GC
strategies that relocate allocated objects, Magpie disallows refer-
ences through non-pointer types even if the same object is reach-
able through a pointer-typed reference. Memory can be allocated
by malloc and other system-supplied (non-GC) allocators, but the
allocated memory is treated by the GC as an array of non-pointers.

Object-referencing invariants must hold whenever a collection
is possible, but some code (such as a library function) might safely
break them temporarily between collections. Library functions that
are opaque to the GC remain safe as long as they do not invoke call-
backs or retain copies of pointers. Custom allocators, in contrast,
typically break these invariants permanently, because they allocate
objects of statically unspecified shape in a block of primitively al-
located memory. In Section 2.3, we discuss other ways in which re-
alistic C programs sometimes break these invariants and how those
problems can be addressed.

Some constraints on the C program depend on the specific GC
implementation that is used with Magpie-converted code. The GC
may support interior pointers, i.e., pointers into the middle of a GC-
allocated object, including to the end of the object. In practice, we
find that interior pointers are common in real C programs, while
programs specifically adjusted to work with precise GC (such as
the PLT Scheme runtime system) can avoid them to help improve
GC performance. Note that a pointer just past the end of an array
is legal according to the C standard, and Magpie considers such
pointers to be valid interior pointers.

The GC may also allow a pointer-typed location to refer to an
address that is not a GC-allocated object. In practice, we find that
references that point outside of GC-allocation regions should be al-
lowed, so that pointers produced by a non-GC allocator can be min-
gled with pointers to GC-allocated objects. GC implementations
that relocate objects require that a pointer-typed object either refer
to a GC-allocated object or refer outside the region of GC-allocated
objects; otherwise, an arbitrary value might happen to overlap with
the GC-allocation region and get “moved” by a collection. Pointer-
valued local variables need not be initialized explicitly to satisfy
this requirement, because Magpie inserts initialization as needed.

A C union type can give a single memory location both pointer
and non-pointer types. Magpie assumes that only one variant of
the union is conceptually “active” at any time, as determined by the
most recent assignment into the union or address-taking of a union
variant, and accesses of the union must use only the active variant.
Magpie tracks the active variant as determined by assignments,
address operations, and structure copying through memcpy.

2.2 Allocation Shapes
To dynamically track the shapes of referenced data, all allocation
points must be apparent, and the type of the data being allocated—
at least to the degree that it contains pointers versus non-pointers—
must be apparent. More generally, Magpie requires that the types
of data allocated by a C program fit into four categories: atomic
(non-pointer) data, arrays of pointers, single structures, and arrays
of structures. Structures and arrays of structures are handled sep-
arately for performance reasons, since the former are simpler and
more common. Similarly, pointer arrays and atomic arrays could
be treated as structure arrays, each containing only a pointer or a
non-pointer, but they are common enough to be handled directly.

A combination of type and category is determined from each al-
location expression, which must use a recognized allocation func-
tion, typically malloc, calloc, and realloc, but Magpie sup-
ports a configurable set of allocators.1 The argument to the alloca-
tion function must be computed via sizeof, except when allocat-
ing atomic data. Roughly, the size expression is expected to be one
of the following:

sizeof(t) allocates a single t structure
sizeof(t) * e allocates an array of t structures
sizeof(t*) * e allocates a pointer array

e allocates an atomic block

If t is a pointer type, then sizeof(t) is treated like sizeof(t*) by
allocating a pointer array. Similarly, if t is a structure type that has
no pointer fields, then sizeof(t) can be treated as just a number
to allocate an atomic block. The interesting case is when t is a
structure type that contains a mixture of pointers and non-pointers;
a single structure or array of structures is allocated, depending on
whether the sizeof expression is multiplied by another expression.

More generally, an allocation size can be computed with opera-
tions other than just sizeof and *, and the sizeof sub-expression

1 To keep a call to malloc intact, so that it continues to allocate non-GC
memory in the converted program, a developer may wrap the call in a
function whose implementation is withheld from Magpie.

need not appear on the left-hand side of a multiplication. When
Magpie sees a multiplication, it checks both operands; if one or the
other (but not both) indicates a single structure or structure array,
then the multiplication expression indicates a structure array. A di-
vision, left-shift, or right-shift operation also indicates a structure
array when the first argument indicates a single structure or struc-
ture array. For an addition or subtraction expression, the operands
are checked separately, and the result with the higher precedence
applies to the overall expression, where the precedence order is
(least to greatest) atomic block, single structure, pointer array, and
structure array.

For example, the code

int** x = malloc(sizeof(int*) * 5);

would be considered a pointer to an array of pointers, because int*
in sizeof(int*) is a pointer, and 5 is atomic. Allocators that
return arrays of objects, such as calloc, return an array of the
resulting type; for example, calloc(sizeof(int),2) is the same
as malloc(sizeof(int)*2).

2.3 Violating Assumptions
A programmer can easily construct C code that does not satisfy
Magpie’s assumptions but that works in a non-GC setting. Often,
code that breaks Magpie’s assumptions also does not conform to
the C standard, but Magpie is meant to work as well as possible on
C programs as they appear “in the wild.” In this section, we point
out some specific issues and relate our experience with realistic
programs.

Pointer Manipulation Pointer arithmetic can shift an address so
that it does not refer to an allocated object, and then further arith-
metic can shift the address back. If a collection can occur between
the arithmetic operations, then a reachability assumption of our GC
has been violated. The following pathological code illustrates this
problem, assuming that work might trigger a collection. It uses
pointer arithmetic to treat an array as indexed from 1024 to 2047,
instead of 0 to 1023:

int* p = GC_malloc(sizeof(int) * 1024);
p -= 1024;
work(p);
p[1024];

Programmers rarely create code like this, and Magpie’s behavior
on such code is undefined. The 175.vpr benchmark from Spec2000
contains similar code, but with an offset computed at run time that
turns out to be 0, so the benchmark runs with Magpie.

Other potential kinds of pointer manipulation (that we did not
encounter) include saving pointers to disk and later loading and
dereferencing them, or using exclusive-or operations to collapse
pointers in a doubly-linked list. Again, those pointer manipulations
would trigger undefined behavior with Magpie.

A programmer might more reasonably use pointer arithmetic to
compute a position within an allocated object or to increment or
decrement a pointer in a loop. Such code works fine with Magpie,
since interior pointers are allowed.

Pointers as Integers and Integers as Pointers For various rea-
sons, some C programs store pointers as integers or vice-versa. In
many cases, passing a pointer/integer as an integer/pointer corre-
sponds to an implicit union. For example, some functions support
a kind of closure argument by accepting a function pointer com-
bined with a data pointer that is supplied back to the function; a
programmer who needs to pair a function with an integer may sim-
ply pass the integer as a pointer instead of allocating space to hold
the integer. In other cases, such as in the main Ruby implemen-
tation, pointers are represented as integers to facilitate tests on the
bits that form an address.

Programs that mix pointers and integers in this way can work
with conservative GC, but they generally do not work with precise
GC. (Although precise GC can work with explicit unions, assum-
ing an implicit union on every word of data is impractical.) For a
GC implementation that does not relocate allocated objects, storing
an integer in a pointer-typed location does not lead to a crash, but it
may cause an object that should be freed to be retained. The prob-
lem is worse for a GC implementation that relocates objects, since
relocation could change a value stored in a pointer-typed location
that is actually used as an integer. Of course, storing a pointer in
an integer-typed location can lead to a crash with any precise GC
implementation.

We have no work-around for programs that use integer locations
to store pointer values. The Ruby implementation is the only
program that we attempted to convert to precise GC where we
found such a mismatch, and in that case, we gave up on conversion.

Unconverted Libraries Libraries that are not instrumented to sup-
port precise GC often can be used within an application using pre-
cise GC. Indeed, any useful application that runs on a stock operat-
ing system must at least use system functions, and most programs
rely on standard libraries that do not cooperate the with GC.

Since unconverted libraries do not directly call GC allocation
functions, collections are normally not possible during a library
function call. The fact that pointers passed to the function are
effectively hidden, then, does not break Magpie assumptions in
a way that matters. Two possibilities can break assumptions in a
significant way: a library function might keep a pointer that it was
given and try to use the pointer in later calls, and a library function
might invoke a callback that uses precise GC before the library
function returns. These issues are essentially the same as for the
foreign-function interface of a high-level language with GC.

As an example of the first case, a function might take a string
pointer and store it in a table that is used by future function calls.
Since programmers are generally responsible for managing mem-
ory, functions that keep pointers must be documented as doing so,
which means that the cases where functions create trouble for pre-
cise GC are clear, at least at the level of documentation. Further-
more, since manual memory management is so easy to get wrong,
library APIs tend to avoid relying on memory management by the
caller; a library function that accepts a string will typically copy the
string content if it needs to be preserved for later use by the library.

In some cases, a library function cannot avoid relying on the
caller to handle allocation. For example, a library may record
a mapping from string names to objects, and the library cannot
in general make copies of objects. Such cases are not handled
automatically by Magpie. Instead, a programmer must manually
use the GC’s immobile boxes, which are explicitly allocated and
freed, but which can refer to GC-allocated objects (unlike memory
allocated by a non-GC malloc).

When a library invokes callbacks into code that uses GC, then
any objects originally passed to the function may have moved
by the time the callback returns. Library functions that invoke
callbacks must be treated in a similar way to functions that store
pointers, where the return from the callback is analogous to calling
a second library function that uses values stored by the earlier call.

Explicit Deallocation Although a GC can normally coexist with
a non-GC allocator—as long as the former need never traverse ob-
jects allocated by the latter—a program can violate one of the GC’s
assumptions if the GC and non-GC allocators share the same under-
lying allocator of memory pages. An explicit non-GC deallocation
might release a page of memory back to the underlying allocator,
and the GC might later acquire that page. If the deallocated refer-
ence is not cleared, then it may point into the GC-allocation area
without pointing to an allocated object.

For example, in this program:

s->p = unconverted_malloc();
...
unconverted_free(s->p);
do_some_allocating_work();

if unconverted free() releases a page of memory, and if the GC
starts using the same page during do some allocating work(),
then s->p is left pointing into the GCable region and probably not
to the beginning of an object. If the GC does not allow interior
pointers to GCable objects, the program can crash. We encountered
this problem within the implementation of PLT Scheme. The
solution is to either always clear a pointer that is freed by a non-
GCed allocator (as we do in PLT Scheme), allow interior pointers
(as we do for C programs other than PLT Scheme), or adjust the
allocator so that the GC never uses a page of memory that was
formerly used by the non-GC allocator.

3. Transformation
The transformation of an unmodified C program to one that can
use precise GC requires five conversions: insertion of code to track
local variables [Henderson 2002], generation of traversal functions
for structures that contain pointers [Goldberg 1991], replacement
of the allocation functions, generation of union-tracking code, and
identification of static/global variables.

3.1 Tracking Local Variables
Figure 1 illustrates how Magpie exposes stack variables to the
collector through a per-function transformation. Variables that have
a pointer type and structures with pointer-typed fields have their
addresses added to a stack-allocated linked list that shadows the C
stack. GC set stack frame() sets the current GC frame that the
collector will traverse, while GC last stack frame() returns it.
These functions are normally inlined during compilation.

The example in Figure 1 has a single local variable in the pointer
category. If the function included additional pointer variables, they
would be added to the same frame. If the function includes vari-
ables that are arrays of pointers, structures, or arrays of structures,
they would be added to additional frames, one for each shape cate-
gory.

For each category, the general shape of the frame is as follows:

frame[0] = last_gc_frame;
frame[1] = (number_of_elements << 2) + type;
frame[2] = &variable1;
frame[3] = &variable2;
...

Traversing the stack during the mark phase of a garbage collection
consists of walking the GC frames and applying the correct mark
and repair functions to each pointer in the frame.

A non-local jump via longjmp or setcontext prevents the
normal stack unwinding, which leaves the GC shadow stack in an
inconsistent state relative to the program stack. To counter this,
after any call to setjmp or getcontext, Magpie re-establishes
the GC stack by re-installing the enclosing function’s GC frame.

A local variable is registered with the collector only if its value
is needed across a call that potentially triggers a garbage collection.
For example, the transformation of the function

int feed() {
int* x;
x = create_burger(75);
return cheeseburger(x);

}

does not introduce a GC frame. Although the local variable x is
a pointer, its acts only as a temporary location to get the result

// ORIGINAL
int cheeseburger(int* x) {

add_cheese(x);
return x[17];

}

// TRANSFORMED
int cheeseburger(int* x) {

void* gc_stack_frame[3];
/* chain to previous frame: */
void* last_stack_frame = GC_last_stack_frame();
gc_stack_frame[0] = last_stack_frame;
/* number of elements + shape category: */
gc_stack_frame[1] = (1 << 2) + GC_POINTER_TYPE;
/* variable address: */
gc_stack_frame[2] = &x;
/* install frame: */
GC_set_stack_frame(gc_stack_frame);
add_cheese(x);
/* restore old GC frame */
GC_set_stack_frame(last_stack_frame);
return x[17];

}

Figure 1. Stack-registration conversion

from create burger into cheeseburger, and no GC is possible
during the transition.

Even when a variable is live across a function call, it may not
require registration. For example, the transformation in Figure 1
is needed only when add cheese allocates. Prior to transforming
any functions, Magpie can perform a call-graph analysis to deter-
mine which functions do not lead to allocation, and thus avoid un-
necessary GC frame creation. This analysis and optimization can
dramatically reduce the overhead of GC on small, frequently called
functions that compute without allocation (as demonstrated in the
benchmarks of Section 4.2).

Nested blocks with local variables can be treated like nested
functions, where break, continue, and goto statements must be
converted (similar to return) to correctly remove a nested GC
frame. Most of our experiments have used that approach, but the
transformation that we use on the Linux kernel simply lifts local
variables to the beginning of the function (this lifting is performed
automatically by CIL [Necula et al. 2002a], which we use to parse
C source). The variable-lifting implementation treats the entire
function body as the live range for each local variable.

The example in Figure 1 shows the GC frame being uninstalled
before the result x[17] is computed. However, if evaluating the re-
turn value could trigger a garbage collection, then the expression’s
result would have to be computed and stored in a temporary vari-
able before uninstalling the GC frame.

3.2 Generating Traversal Functions
For each structure and array type that is declared in the original pro-
gram, if the structure or array contains pointers, Magpie generates
mark and repair functions for the type. These functions are stored
in a gc tag struct structure, and when an object is allocated, the
gc tag struct structure is associated with the allocated object.

The mark function is used to traverse a structure or array during
the mark phase of a collection, while the repair function is used to
update pointers when objects are moved (with GC implementations
that relocate objects). For example, given the following struct:

struct a {
int* x;
int* y;

};

A mark function is generated to call GC mark on each pointer
within an instance of the struct:

void gc_mark_struct_a(void* x_) {
struct a* tmp = (struct a*) x_;
GC_mark(tmp->x);
GC_mark(tmp->y);

}

Similarly, a repair function is generated to call GC repair on the
address of each pointer within the struct:

void gc_repair_struct_a(void* x_) {
struct a* tmp = (struct a*) x_;
GC_repair(&tmp->x);
GC_repair(&tmp->y);

}

Magpie normally generates mark and repair automatically when
transforming C code to cooperate with GC, but a programmer can
optionally annotate the original code to provide custom versions.
Custom mark and repair functions are useful when a data structure
does not fit into one of the four categories that the GC transfor-
mation can recognize (see Section 2.2) or when unions are better
handled by using existing information in the data-type instead of
adding code to track the active variant (as discussed in Section 3.4).

3.3 Converting Allocation
The transformation to support precise GC must detect allocations
and replace them with GC allocations, in the process associating
tags (for mark and repair functions) with the allocated data. For
some types of data, a generic tag such as gc atomic tag can be
used. For example, the allocations

p = (int*)malloc(sizeof(int)*n);
a = (int**)malloc(sizeof(int*)*m);
f = (bun*)malloc(sizeof(bun));

are converted to

p = (int*)GC_malloc(sizeof(int)*n, gc_atomic_tag);
a = (int**)GC_malloc(sizeof(int*)*m, gc_array_tag);
f = (bun*)GC_malloc(sizeof(bun), gc_bun_tag);

where gc bun tag is generated from the declaration of the bun
type.

The tag is computed from the expression that contains sizeof.
The type argument of the sizeof operator could identify an atomic
type, a pointer type, or a structure type, which selects respectively
gc atomic tag, gc array tag, or a specific tag for the structure.

3.4 Handling Unions
When a type contains a union of pointer and non-pointer types,
the mark and repair functions need to follow and update a pointer
variant only when it is active. The active variant of a union is
tracked using an extra byte outside of the object whenever a field
of the union is assigned or its address is taken. The automatically
generated mark and repair functions consult the byte to determine
whether to follow or repair the pointer variant.

For example, given the declaration

union {
int i;
int* p;

} a;

then the sequence

a.i = 1;
iwork(&a);
a.p = q;
pwork(&a);

is converted to:

a.i = 1;
GC_autotag_union(&a, 0);
iwork(&a);
a.p = q;
GC_autotag_union(&a, 1);
pwork(&a);

In addition, active-variant information must be copied between
unions on struct assignment and struct copying via memcpy.

3.5 Denoting Static/Global Variables
In addition to converting functions to register local variables, Mag-
pie locates all static/global variables and registers them in initializa-
tion functions that are called when the program starts. Each vari-
able’s location is registered with a tag that provides mark and repair
functions and, if necessary, union variant tracking.

4. Implementation and Experience
We have produced three implementations of Magpie. The first is
used within the PLT Scheme run-time system, and is fairly specific
to that code base. The second was developed to test our approach
to precise GC on arbitrary C applications. The third was developed
to apply precise GC to the Linux kernel.

4.1 Precise GC for PLT Scheme
Our exploration of precise GC in C started as a way to improve
the memory performance of the DrScheme programming environ-
ment, which is built on PLT Scheme. Although DrScheme is im-
plemented in Scheme, the PLT Scheme run-time system—which
provides the core language, threading, and GUI constructs—is im-
plemented in C and C++. The run-time system was originally im-
plemented with conservative GC, because that choice allowed us to
quickly combine a Scheme interpreter with an existing GUI library.
Also, relying on GC for new C and C++ code let us avoid problems
with manual memory management.

For a while, our investment in the C implementation grew
rapidly, and conservative GC seemed to work well enough. As
DrScheme grew ever larger and more complex, however, the impre-
cision of conservative GC interfered with the way that we wanted
to structure the programs. Threads became particularly trouble-
some. DrScheme is designed to run untrusted programs within
the same virtual machine as the programming environment itself,
which simplifies communication for debugging, and we have devel-
oped sandboxing techniques and language constructs within PLT
Scheme to keep debugged code separate from the environment.
These techniques require reliable garbage collection of deadlocked
threads and other scheduling entities. Unfortunately, since threads
often refer to each other in various ways, they end up forming the
kind of linked lists that Boehm warns against [Boehm 2002]. That
is, retaining an extra thread due to GC imprecision can end up hold-
ing onto many extra threads, each of which refers to other code and
data, and so on. We instructed the GC to allocate atomic mem-
ory whenever possible, and we attempted to help the GC further
by manually breaking links within the run-time system, but since
threads capture stacks and registers, conservative GC does not pro-
vide enough guarantees to reliably break links. The end result is
that running a program repeatedly within DrScheme would cause
memory use to grow without bound.

Since we were stuck with a huge investment in C code for
PLT Scheme, we created an ad hoc tool to transform our C and
C++ code to support precise GC. This conversion strategy let us
work on the GC problem while the C code continued to evolve to
meet other needs. Eventually, we were able to replace conservative
GC with precise GC in the default PLT Scheme build, and that

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12

H
ea

p
 s

iz
e

(M
B

)

Iterations

conservative
precise

Figure 2. Running DrScheme inside DrScheme

change immediately solved a large class of memory-use problems.
In particular, repeatedly running DrScheme within itself maintains
a steady state for any number of runs. Figure 2 illustrates this.

The precise GC implementation for PLT Scheme works only
when the C/C++ code follows a certain constrained style, which
the PLT Scheme maintainers must follow. Memory management
uses a hybrid copying–compacting collector, where objects are
allocated into a nursery and surviving objects are copied into an
older generation, which is itself periodically compacted. This
GC implementation does not allow interior pointers, except for
large blocks of memory that are allocated specifically with interior-
pointer support. Disallowing interior pointers reduces the GC
overhead, but increases the burden on maintainers of the C/C++
code to not create interior pointers.

For typical non-allocating tasks, PLT Scheme with precise
GC performs 10%–20% slower than the conservative GC vari-
ant, mostly due to the overhead of registering stack-based pointers
and other cooperation with the GC. Programs that allocate signifi-
cantly, however, tend to run faster with precise GC, due to its lower
allocation overhead and faster generational-collection cycles. Con-
sequently, most PLT Scheme programs run faster with precise GC
while also using less memory.

The table in Figure 3 shows the run times of PLT Scheme on
several standard Scheme benchmarks, comparing Boehm’s con-
servative GC [Boehm 2003] to precise GC. (Note that these are
different Scheme benchmarks running in a single C-implemented
run-time system, as opposed to different C programs. From the
perspective of testing precise GC, we are effectively varying the
inputs and keeping the program constant.) The numbers are nor-
malized to the fastest run of each benchmark, including the time
required for garbage collection; each cell in the table shows total
run time followed by the run time not counting garbage collection.
The times in the table are for PLT Scheme using a just-in-time (JIT)
native-code compiler, but the relative results are similar when the
JIT is disabled.

The table shows that benchmarks run slower with conservative
GC when collection is a significant part of the benchmark; that
is, when the second number for the conservative GC column is
much less than the first, then both numbers tend to be larger than
the corresponding numbers in the precise GC column. These
results demonstrate how both allocation and collection tend to be
faster in our precise GC implementation. For benchmarks that
spend relatively little time collecting, however, the conservative GC
implementation can be up to 20% faster than precise GC.

Thus, the benchmarks illustrate that we pay a price in base
performance when building on a C infrastructure with precise GC
compared to using conservative GC. In the context of a run-time
system for a functional language, however, allocation is common
and guarantees about space usage important, so that the cost in base
performance is worthwhile.

fastest
(msec)

conservative GC
/ mutator only

precise GC
/ mutator only

cpstack 441 4.48 / 1.56 1 / 0.79
ctak 4916 1.38 / 0.63 1 / 0.94
dderiv 614 4.58 / 1.45 1 / 0.87
deriv 546 4.81 / 1.52 1 / 0.87
div 526 6.28 / 2.00 1 / 0.74
dynamic2 1856 0.95 / 0.64 1 / 0.64
earley 511 1.79 / 0.58 1 / 0.51
fft 2246 1.30 / 1.30 1 / 0.87
graphs 709 3.03 / 1.17 1 / 0.84
lattice2 6280 0.93 / 0.83 1 / 1
maze2 619 1.30 / 0.89 1 / 0.95
mazefun 894 1.77 / 1.06 1 / 0.94
nboyer 6497 1.66 / 0.66 1 / 0.47
nestedloop 727 0.86 / 0.86 1 / 1
nfa 352 0.83 / 0.83 1 / 1
nqueens 460 2.58 / 1.19 1 / 0.93
nucleic2 399 2.70 / 1.43 1 / 0.88
paraffins 351 3.31 / 0.98 1 / 0.45
puzzle 279 0.98 / 0.98 1 / 1
sboyer 13387 1.15 / 0.91 1 / 0.89
scheme2 470 1.16 / 0.87 1 / 0.96
tak 441 1 / 1.14 1 / 1
takl 869 0.78 / 0.78 1 / 1
takr 1592 0.96 / 0.96 1 / 1
triangle 140 0.99 / 0.99 1 / 1

Figure 3. PLT Scheme benchmarks, normalized to precise (Intel
Core Duo 2.0 GHz, 1.25 GB, OS X 10.5.6, PLT Scheme 4.1.4)

4.2 Precise GC for User Applications in C
Wick’s dissertation [Wick 2006] describes an implementation of
Magpie for converting arbitrary C code to work with precise GC.
Unlike the tool used with PLT Scheme—where the maintainers of
the C code initially used conservative GC and are willing to write
new code in a slightly constrained style to better support GC—this
implementation is intended for use on “legacy” C code that was
designed and implemented with manual memory allocation. Mag-
pie thus provides a general migration path from manual memory
management in C, and also lets us measure the cost and benefits of
precise GC compared to manual memory management.

An important component of Wick’s Magpie is its graphical
user interface (GUI) for exploring and confirming allocation and
reference points within a C program. The GUI steps through each
point in a program that appears to be an allocation, and it asks the
user to confirm Magpie’s inference of the type of allocation that
is performed. The GUI also asks the user to confirm Magpie’s
analysis of datatype definitions and how they relate to needed
mark and repair procedures. Finally, the GUI lets a user confirm
Magpie’s tracking of unions, and it encourages the user to explain
how existing fields in a structure can be used to select the active
union variant instead of relying on separate tracking. Of course,
Magpie also offers a non-GUI mode, in case a programmer believes
that the tool’s automatic inferences will be completely correct, as
is often the case.

Figure 4 summarizes the results of using Magpie on several
Spec2000 benchmarks, reporting the run time relative to the orig-
inal program after replacing allocation with Boehm’s conservative
GC [Boehm 2003] or Magpie’s precise GC. The “no opt” col-
umn of the table reports the run time when using precise GC with
Magpie’s interprocedural analysis disabled (so that each function is
transformed with the assumption that any function call can trigger
a collection).

The 197.parser benchmark is of special interest, since its base
performance relies on a custom memory allocator. Both the conser-

conservative GC precise GC no opt
164.zip 1.03 1.09 1.31
175.vpr 0.98 0.96 1.02
176.gcc - 1.34 1.61
179.art 1.00 0.94 0.94
181.mcf 1.00 1.00 1.15
183.equake 1.00 0.99 1.02
186.crafty 0.99 1.02 1.09
186.ammp 0.90 0.96 0.96
197.parser 1.44 5.35 6.89
197.parser* 1.44 3.52 5.22
254.gap 1.00 2.39 2.46
256.bzip2 1.01 0.99 0.99
300.twolf 0.95 0.88 0.89

Figure 4. Magpie benchmarks, normalized to original (Intel Pen-
tium 4 1.8 GHz, 256 MB, FreeBSD 4.11-STABLE)

vative and precise GC variants of this benchmark replace the cus-
tom allocator with the GC allocator, but in the variant of the bench-
mark marked with an asterisk, custom mark and repair routines al-
low Magpie to avoid tracking the active variant of a union. Even so,
the precise GC variant is considerably slower than the conservative
GC variant. Magpie’s optimizer is able to speed the program con-
siderably by avoiding unnecessary registrations of local variables
with the GC. Furthermore, hand tuning of the Magpie output—to
avoid some remaining registrations—brought performance of pre-
cise GC in line with conservative GC.

The 254.gap benchmark also runs much more slowly with
precise GC than conservative GC. In this case, Magpie’s opti-
mization provided relatively little improvement, probably because
the benchmark uses function pointers extensively, which weakens
Magpie’s analysis. More significantly, profiling suggests that con-
versions for precise GC cause addresses of local variables to be
taken inside tight loops, handicapping compiler optimizations.

Wick’s dissertation provides an extensive report on the process
and ease of converting the benchmarks for precise GC. To summa-
rize, Magpie’s inference can convert all of the benchmark programs
automatically, and confirming the inference through Magpie’s GUI
took no more than a few minutes for each benchmark.

Wick’s experiments also confirm that memory use in both the
conservative and precise GC variants of the benchmark track mem-
ory use of the original program. We tested memory use for some
longer-running programs, including video-game emulators and the
nano text editor. The ZSNES emulator experienced unbounded
heap growth with a naive application of conservative GC, but speci-
fying allocation of atomic memory for a large block fixed that prob-
lem. The nano text editor experienced unbounded heap growth
with conservative GC, and there was no obvious repair through al-
location of atomic memory or explicit link-breaking. In all cases,
precise GC yielded memory use close to the original program.

Overall, experiments with Magpie suggest that precise GC is a
viable alternative to manual memory management for a typical C
program. However, it is not especially beneficial for short-running
programs without untrusted components. For a domain where
precise GC can offer useful guarantees compared to conservative
GC, we turn our attention to an OS kernel.

4.3 Precise GC for Linux
Memory management in an operating system (OS) is difficult for
several reasons: memory leaks are harmful, since an OS should be
able to go for months between reboots; memory corruption is ex-
tremely undesirable, since it can lead to security violations; mem-
ory allocation protocols are typically finely tuned, and therefore
difficult to understand, debug, and modify; and modern operating

base time (sec) precise GC no opt
175.vpr 250.08 1.03 1.16
164.gzip 68.33 1.01 1.21
197.parser 444.71 4.45 13.83
300.twolf 787.45 1.01 1.04
456.hmmer 1034.70 1.18 1.36
464.h264 2466.33 1.33 1.73
lame(mp3) 90.139 0.99 1.12

Figure 5. CIL-based Magpie benchmarks, normalized to base time
(Intel Pentium 4 1.8 GHz, 768 MB, Linux 2.6.22.4)

systems tend to be monolithic, meaning that many millions of lines
of code run in a single address space, lacking any significant iso-
lation from kernel components that leak memory. These problems
result in operating systems that are insecure, unreliable, and hard to
maintain. Indeed, it is not uncommon to periodically reboot a sys-
tem that is known to suffer from memory management problems.
Engler et al. [2000] found a number of memory management bugs
in Linux—and certainly left others undiscovered.

High-level languages with automatic memory management
have been used to implement operating systems before, includ-
ing SPIN [Bershad et al. 1995], Lisp machines [Bromley 1986],
JavaOS [Sun Microsystems, Inc. 1997], and Singularity [Hunt and
Larus 2007]. The performance implications of GC in such set-
tings, however, are mixed with other details of a safe programming
model that are potentially costly. Our aim is to approach calcu-
lating the cost of GC from the other side, by introducing garbage
collection to a stock, manually-managed kernel; in this case, the
Linux kernel. While this does remove the impact of other language
features, it does introduce effects contrary to the expectations of
the original programmer, and thus may introduce subtle additional
costs. To put it another way: if the original programmers knew
about this conversion, they might have written and optimized the
code differently.

Neither the PLT Scheme tool nor the improved Magpie was up
to the task of converting Linux code, which uses many gcc exten-
sions of C. Since parsing was the main obstacle at first, we opted
to use the CIL parsing and analysis engine [Necula et al. 2002a]
for a new implementation. The resulting tool is a 2300 line OCaml
program that can process hundreds of kilobytes of C programs in
less than a second. Otherwise, the tool uses essentially the same
inference and conversion algorithms as the second Magpie.

As an initial test, we applied our new tool to several Spec2000
benchmarks and some other programs. Figure 5 shows the relative
run time of the benchmarks converted to precise GC. Although
only half of the benchmarks are the same as tested with the earlier
version of Magpie, the overall results are consistent with the earlier
results (as listed in Figure 4).

Transforming the Linux kernel presented interesting additional
challenges for our tool (besides merely parsing gcc syntax). The
Linux kernel is about 95% C code and rarely violates the con-
straints set out in Section 2, but the kernel includes some assembly
code, and it occasionally violates our constraints. Also, Linux uses
many different allocators, which complicates the transformation of
allocation sites.

Partial Transformation Altering the entire kernel to properly use
a precise collector would probably require man-years of effort. We
simplified the problem in several ways:

• We did not convert the entire kernel. Instead, we concentrated
on the ext3 filesystem, the kernel filesystem interface, and the
IPV4 network stack, because they are well modularized and
easy to benchmark. To ensure that the kernel references to these
subsystems were visible to the GC, we also converted parts of

the scheduler. In total, we transformed 74,975 lines of C source
(386,511 after pre-processing), and we modified 85 lines by
hand. Since we transformed only part of the kernel, we disabled
Magpie’s interprocedural analysis.

• The GC never moves allocated objects. This simplification
allows the kernel to store references in places that the GC does
not traverse—especially in unconverted parts of the kernel—as
long as the reference also exists in a place that the GC traverses.

• The GC allocates physical memory only, so that it can support
kernel allocations that require contiguous physical memory.
This choice effectively disables the virtual memory system for
kernel data, and it could be restored by using separate allocation
techniques for physical and virtual memory.

• We consider only execution on a uniprocessor, and we dis-
able thread pre-emption within the kernel (which is the default
configuration for Linux). Also, we disable interrupts during a
garbage collection to prevent nested collections.

The main conversion task for the filesystem and network code
took only a couple of hours. Expanding the set of converted files
and correctly converting allocation sites took much longer; the
debugging and testing process stretched out to a couple of months
of part-time work. We performed the conversion by running the
transformation tool on a set of source files, recompiled the kernel
for User Mode Linux, and ran the resulting kernel in a debugger.
When a crash occurred, we were usually able to track it down to an
allocator that was not correctly converted to a GC allocator.

Given this approach to partial conversion, we are not confident
that memory is always traced correctly in our prototype. The
partially converted kernel runs well enough to host a PLT Scheme
build, run the Apache and PLT Scheme web servers, and perform
other basic tasks for hours at a time. We believe that the prototype
works well enough to provide meaningful performance results, but
our conversion effort is a lower bound (well below the real cost!)
of the effort needed for a correct conversion.

Allocation Much of the kernel’s code is no different from ap-
plication code, and Magpie is able to insert appropriate GC stack
frames and create most traversal routines. The kernel uses many
different kinds of allocators, however, that are difficult to convert
to GC allocations automatically. In particular, kmem cache alloc
allocates an object of a predetermined size and then passes the ob-
ject to an arbitrary function, usually for initialization purposes,
before returning the value. We replaced by hand all calls to
kmem cache alloc with kmalloc and a call to the initialization
function. The filesystem code used an allocator, alloc fdmem,
which allocates memory from high memory (using vmalloc) if a
large block of memory is required; we replaced this allocator with
a call to kmalloc as well.

Some kernel data structures required hand coded traversal rou-
tines, because the structure could not be replaced with a garbage
collector allocator. A dentry hash structure is allocated with
vmalloc, which our collector currently doesn’t handle, so each
dentry hash instance is registered with the GC as a root. An-
other example is loadable modules, which are not allocated at all,
but instead are mapped on top of the memory layout of the data
from the module file. Fortunately, modules do not point to any data
structures that need to be traversed in the partial conversion, so new
traversal routines were not created for them.

The kernel includes a lockless data structure that is shared be-
tween processors by using a read-copy-update (RCU) object [Sling-
wine and McKenney 1995] that is attached to the data structure of
interest. Although RCU objects exist for multiprocessing, they are
relevant to memory tracing even on a uniprocessor. Each proces-
sor maintains its own copy of the RCU object, and when the last

processor relinquishes control of the object, a predefined callback
is executed, much like a finalizer. These finalizers retain references
to objects that are unreferenced by the rest of the system, while the
RCU objects are referenced only by a special cache that is main-
tained by the processor itself. We wrote explicit mark routines for
RCU objects to detect and handle these cases.

Stack Handling A notable difference between the kernel-mode
and user-mode environments is the size of the stack. Each Linux
thread has a fixed-size kernel stack that is typically 8 KB on a 32-
bit machine. Our experiments started with the user-mode Linux
architecture, which uses 4 KB kernel stacks. This turned out to
be too small, because the GC frames add enough overhead to
exceed the 4 KB limit. After increasing the stack size to 8 KB,
our transformed code could successfully run without corrupting
memory. The normal settings for an x86 build of Linux uses 8 KB
kernel stacks, so this was not an issue when we tested kernels on
real hardware.

Our converted Linux kernel maintains a shadow GC stack for
each thread’s kernel stack. We added a field to the thread structure,
struct task, called gc stack, and we defined GC set stack to
set this field in the current running thread. During kernel initializa-
tion there is not yet any current thread, so we added an initialization
stack and an additional flag that specifies whether to use the initial-
ization stack or the current thread’s stack.

GC Implementation One crucial aspect of integrating GC with
Linux is how to initialize the GC’s data structures and register
root pointers. If GC initialization precedes virtual-memory ini-
tialization, then some data structures cannot not be allocated. If
GC initialization is too late, then earlier parts of the kernel cannot
use GC allocators. We added GC initialization immediately after
virtual-memory initialization. Kernel initialization steps that pre-
cede virtual-memory initialization use boot memory, which the GC
ignores.

The converted Linux kernel invokes the GC at a constant fre-
quency, which lets us disable collections during interrupts. A GC
that runs in parallel with the kernel would work better, because the
kernel is not executing all the time, but we opted not to build a con-
current GC. Interrupts preempt threads, and they could potentially
violate the invariants maintained by the GC shadow stack. How-
ever, because interrupts cannot force a garbage collection to occur,
the GC shadow stack will always be in a consistent state. Inter-
rupts are disabled during a garbage collection to ensure that no GC
shadow stack becomes inconsistent.

To map each page in memory to a GC record for its meta-data,
we use a pagemap structure in Linux, which provides a direct map
between the first 896 MB of virtual memory and physical memory.
Specifically, we store a pointer to the GC meta-data inside the page
frame structure.

Performance Figure 6 shows the throughput of running dd un-
der several configurations. The “tmpfs” bars show dd on an ext3
filesystem mounted inside an already-mounted tmpfs filesystem,
and the run with GC is suffixed with “-gc.” In these cases, the
processor is the bottleneck, and the results show a loss in through-
put due to support for GC. We also tested a transformed kernel with
collections disabled, but there was no measurable difference, which
indicates that the overhead is entirely in instrumentation to cooper-
ate with the GC. The bars prefixed with “disk” show the throughput
of dd on a physical partition formatted with the ext3 filesystem. In
this case, where disk is the bottleneck, no performance is lost.

Figures 8–9 show results from running the dbench test suite
on a kernel with GC. The dbench filesystem benchmark suite
is designed to run various filesystem operations and measure the
duration of each operation. Figure 8 shows the amount of mem-
ory reclaimed by each collection during the benchmark run, which

 0

 100

 200

 300

 400

 500

tmpfs
tmpfs-gc

disk
disk-gc

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Figure 6. Running dd with an ext3 filesystem

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600

D
u
ra

ti
o
n
 (

m
s)

Time (s)

GC
Normal

Figure 7. Filesystem operations in dbench with and without GC

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350

C
o
ll

e
c
te

d
 (

M
B

)

Time (s)

Figure 8. Running dbench; each data point represents a collection

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350 400

C
o
ll

e
c
ti

o
n
 t

im
e
 (

m
s)

Time (s)

Figure 9. Time required for each collection during dbench

demonstrates that the benchmark generates considerable allocation
work. Figure 7 shows the worst-case duration that dbench experi-
enced while performing I/O. The spikes correspond to collections,
although a spike did not occur for every collection. Finally, Fig-
ure 9 plots the time taken for a full collection. On average, the
GC required 30 ms to traverse the entire object hierarchy and free
unused memory. We used the rdtsc (read timestamp counter) in-
struction to capture these timings, because the normal timing facil-
ities that Linux offers do not work when interrupts are disabled.

5. Related Work
When adding a garbage collector to a C program, most program-
mers choose a non-moving, conservative collector [Boehm 2003].
These collectors easily link into C programs, as they require no fur-
ther knowledge from the C runtime and do not move objects dur-
ing collection. Using virtual memory, some conservative collectors
provide a limited form of copying collector, with the copying hid-
den from the underlying C code [Rodriguez-Rivera et al. 1998], but
such collectors are rare. Both types of conservative systems suf-
fer from memory fragmentation and memory leaks [Boehm 2002],
arising from two common inference errors. First, the collector may
mistakenly assume some value is a system root, which requires any
object it reaches be saved. Second, the collector may assume that
a numeric value in the heap is actually a pointer; considered as a
pointer, such a number may reference a valid heap location, thus
incorrectly marking that location as reachable. For most appli-
cations, conservative identification of roots is a more significant
problem than misidentification of integers as pointers [Hirzel et al.
2002]. Smith and Morrisett [1998] attempted to solve some of the
misidentification problems but were still conservative on the stack
and other areas of memory.

Our approach to precise GC for C is similar to that of Henderson
[2002] for precise collection in C code generated by the Mercury
compiler. In particular, the shadow stack that we use for GC
frame is the same as in Henderson’s system. Baker et al. [2007]
demonstrated an improvement to Henderson’s linked stack-frame
technique by putting stack-variable addresses in a separate array,

instead of embedding frames in the C stack, but also by using
C++ exceptions to take pointer references only when a collection
occurs. Jung et al. [2006] use a similar approach; local variables
are updated upon return from a function that performed a garbage
collection. Compared to all of these systems, the main difference
in our work is that Magpie converts C code written by humans,
instead of code generated by a compiler, so it must accommodate a
wider variety of source code.

HnxGC supports precise GC in C++ programs where the pro-
grammer uses special annotations and templates to enable GC al-
location and reclamation. HnxGC also does not work on arbitrary
code, and instead requires a programmer to use the HnxGC API.
Other “smart pointer” libraries for C++ work in a similar way.

Magpie assumes that a C program obeys various constraints, but
another approach to automatic memory management in C is to en-
force constraints through a type system or sound analysis. Dhurjati
et al. [2003] enforce strong types for C (among other restrictions),
and then soundly check the code for memory errors. Although their
approach works given the restrictions on the language, it still does
not test for some kinds of memory errors. For example, it does
not check that a program does not reference any deallocated ob-
jects. Cyclone [Jim et al. 2002], CCured [Necula et al. 2002b], and
Managed C++ [Mic 2004] more aggressively follow the same path,
leading to a language that is no longer C, though it may resemble
C, and therefore requires porting the original program.

Another way to make memory management in C more reliable
is to use tools that detect memory usage errors, instead of using
automatic memory management [Austin et al. 1993, Ding and
Zhong 2002, Dor et al. 1998, Evans 1996, Heine and Lam 2003,
Sparud 1993]. These approaches combine heuristics, programmer
annotations (in some cases), and unsound analyses to find some
set of situations that may cause a memory error. Although these
tools somewhat assist the programmer, they all emit false positives.
Further, they may miss situations leading to memory errors. Thus,
they still potentially require considerable effort on the part of the
programmer. Given the presence or lack of these tools, other
researchers suggest methods for finding the source of memory leaks
by hand [Beaty 1994, Pike et al. 2000].

6. Conclusions
Automatic memory management offers many benefits for C code,
and conservative GC and reference counting are fine choices for
many programs. Those memory-management techniques are a poor
match, however, for long-running programs that have complex ref-
erence patterns and that host extensions or untrusted code. For
example, the main Ruby implementation uses conservative GC,
Perl 5 uses reference counting with weak references, and Python
uses conservative GC; programmers who stress these systems fre-
quently encounter problems with memory use.

We have presented precise GC for C as a practical alternative,
specifically as implemented in the Magpie source-to-source trans-
former and related infrastructure. On the one hand, precise GC
incurs mutator overhead, and it requires some programmer effort
when the type structure of a program is not readily apparent. On the
other hand, precise GC eliminates important classes of space leaks,
and it enables shorter collection times. Precise C is a clear improve-
ment over conservative GC for PLT Scheme in terms of memory
use, and most PLT Scheme programs run faster with precise GC.
We can whole-heartedly recommend precise GC for implementors
of C-based language run-time systems who have previously relied
on conservative GC or reference counting.

Emboldened by success in PLT Scheme, we have also applied
precise GC to parts of the Linux kernel. In this environment,
the benefits of precise GC are less clear, for two reasons. First,
the user/kernel interface of an OS tends to be much narrower
than a high-level language interface, directly preventing user-mode
code from causing space leaks in the kernel. Second, low-level
concurrency and hardware-level interactions can create problems
for a precise collector. While precise GC is less obviously desirable
in this setting, our experiments suggest that it is at least viable.

This material is based upon work supported by the National Science
Foundation under Grant No. 0509526.

References
Andrew Appel. Compiling with Continuations. Cambridge University

Press, 1992.
Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection

of all pointer and array access errors. Technical report, University of
Wisconsin-Madison, December 1993.

Jason Baker, Antonio Cunei, Filip Pizlo, and Jan Vitek. Accurate garbage
collection in uncooperative environments with lazy pointer stacks. In
International Conference on Compiler Construction, 2007.

Steven J. Beaty. A technique for tracing memory leaks in C++. SIGPLAN
OOPS Mess., 5(3):17–26, June 1994.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski, D. Becker,
S. Eggers, and C. Chambers. Extensibility, safety and performance in the
SPIN operating system. In ACM Symp. on Operating Systems Principles,
pages 267–284, December 1995.

Hans-J. Boehm. Bounding space usage of conservative garbage collectors.
In Proc. ACM Symp. on Principles of Programming Languages, pages
93–100, 2002.

Hans-J. Boehm. Space efficient conservative garbage collection. In ACM
Conf. on Programming Language Design and Implementation, pages
197–206, 2003.

Hank Bromley. Lisp Lore: A Guide to Programming the Lisp Machine.
Kluwer Academic Publishers, 1986.

William D. Clinger. Proper tail recursion and space efficiency. In ACM
Conf. on Programming Language Design and Implementation, pages
174–185, 1998.

Dinakar Dhurjati, Sumant Kowshik, Vikram Adve, and Chris Lattner. Mem-
ory safety without runtime checks or garbage collection. In Conf. on
Languages, Compilers, and Tools for Embedded Systems, pages 69–80,
2003.

Chen Ding and Yutao Zhong. Compiler-directed run-time monitoring of
program data access. In Proc. of the Workshop on Memory System
Performance, pages 1–12, 2002.

Nurit Dor, Michael Rodeh, and Mooly Sagiv. Detecting memory errors via
static pointer analysis. In Workshop on Program Analysis for Software
Tools and Engineering, pages 27–34, 1998.

Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking
system rules using system-specific, programmer-written compiler exten-
sions. In ACM Symp. on Operating Systems Design and Implementation,
2000.

David Evans. Static detection of dynamic memory errors. In ACM Conf.
on Programming Language Design and Implementation, pages 44–53,
1996.

Benjamin Goldberg. Tag-free garbage collection for strongly typed pro-
gramming languages. In ACM Conf. on Programming Language Design
and Implementation, pages 165–176, 1991.

David L. Heine and Monica S. Lam. A practical flow-sensitive and context-
sensitive C and C++ memory leak detector. In ACM Conf. on Program-
ming Language Design and Implementation, pages 168–181, 2003.

Fergus Henderson. Accurate garbage collection in an uncooperative envi-
ronment. In ACM Intl. Symp. on Memory Management, pages 150–156,
2002.

Martin Hirzel, Amer Diwan, and Johannes Henkel. On the usefulness of
type and liveness accuracy for garbage collection and leak detection.
ACM Trans. Program. Lang. Syst., 24(6):593–624, 2002.

HnxGC, 2009. http://hnxgc.harnixworld.com/.
Galen C. Hunt and James R. Larus. Singularity: Rethinking the software

stack. ACM SIGOPS Operating Systems Review, 41(2):37–49, 2007.
Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney,

and Yanling Wang. Cyclone: A safe dialect of C. In USENIX Annual
Technical Conference, pages 275–288, 2002.

Dong-Heon Jung, Sung-Hwan Bae, Jaemok Lee, Soo-Mook Moon, and
JongKuk Park. Supporting precise garbage collection in Java bytecode-
to-C ahead-of-time compiler for embedded systems. In Intl. Conf. on
Compilers, Architecture and Synthesis for Embedded Systems, pages 35–
42, 2006.

Managed Extensions for C++ Programming. Microsoft, 2004.
George C. Necula, Scott McPeak, S. P. Rahul, and Westley Weimer. CIL:

Intermediate language and tools for analysis and transformation of C
programs. In Intl. Conf. on Compiler Construction, pages 213–228,
2002a.

George C. Necula, Scott McPeak, and Westley Weimer. CCured: type-safe
retrofitting of legacy code. In ACM Symp. on Principles of Programming
Languages, pages 128–139, 2002b.

Scott M. Pike, Bruce W. Weide, and Joseph E. Hollingsworth. Check-
mate: cornering C++ dynamic memory errors with checked pointers. In
SIGCSE Technical Symposium on Computer Science Education, pages
352–356, 2000.

Gustavo Rodriguez-Rivera, Michael Spertus, and Charles Fiterman. A non-
fragmenting non-moving, garbage collector. In ACM Intl. Symp. on
Memory Management, pages 79–85, 1998.

John D. Slingwine and Paul E. McKenney, 1995. Patent No. 5,442,758.
Frederick Smith and Greg Morrisett. Comparing mostly-copying and mark-

sweep conservative collection. In International Symposium on Memory
Management, pages 68–78, 1998.

Jan Sparud. Fixing some space leaks without a garbage collector. In Con-
ference on Functional Programming Languages and Computer Archi-
tecture, pages 117–122, 1993.

Sun Microsystems, Inc. JavaOS: A standalone Java environment,
1997. http://www.javasoft.com/products/javaos/javaos.
white.html.

Adam Wick. Magpie: Precise Garbage Collection for C. PhD thesis,
University of Utah, June 2006.

Adam Wick and Matthew Flatt. Memory accounting without partitions. In
ACM Intl. Symp. on Memory Management, 2004.

http://hnxgc.harnixworld.com/
http://www.javasoft.com/products/javaos/javaos.white.html
http://www.javasoft.com/products/javaos/javaos.white.html

	GC in C
	C Semantics and Precise GC
	Pointers vs. Non-pointers
	Allocation Shapes
	Violating Assumptions

	Transformation
	Tracking Local Variables
	Generating Traversal Functions
	Converting Allocation
	Handling Unions
	Denoting Static/Global Variables

	Implementation and Experience
	Precise GC for PLT Scheme
	Precise GC for User Applications in C
	Precise GC for Linux

	Related Work
	Conclusions

