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Abstract
Component programming techniques encourage abstraction and
reuse through external linking. Some parts of a program, however,
must use concrete, internally specified references, so a pure compo-
nent system is not a sufficient mechanism for structuring programs.
We present the combination of a static, internally-linked module
system and a purely abstractive component system. The latter ex-
tends our previous model of typed units to properly account for
translucency and sharing. We also show how units and modules
can express an SML-style system of structures and functors, and
we explore the consequences for recursive structures and functors.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Modules, packages

General Terms Design, Languages

Keywords Module, component, structure, functor, unit

1. Introduction
A complete module system for a typed functional language must
support a wide range of features for managing types and organiz-
ing programs, including generativity, translucency, and the shar-
ing of types, as well as nesting, recursive dependency, and flexible
composition of the modules themselves. In particular, module com-
position should support two distinct linking mechanisms: internal
linking and external linking.

Internal linking supports definite reference to a specific im-
plementation of an interface. Internally linked module systems
are common; examples include Java’s packages and classes, ML’s
structures, and Haskell’s modules. In each of these systems, two
modules are linked when one directly mentions the name of an-
other, either with a dotted path (ModuleName.x), or import state-
ment (import ModuleName).

External linking supports parameterized reference to an arbi-
trary implementation of an interface. ML’s module system includes
a functor construct that supports external linking. A functor de-
clares an interface over which its definitions are parameterized; the
parameterization is resolved outside of the functor with a functor
application, in analogy to function application. A functor appli-
cation supplies a structure that satisfies the functor’s declared in-
terface, and it produces another structure. Thus, the functor and
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structure constructs are tied closely together by the functor ap-
plication linking mechanism.

Unlike functions, functors cannot be recursively defined, which
keeps them from expressing patterns where mutually dependent
program features are split across component [30] boundaries. We
argue that this results from the close coupling of the internal and
external linking mechanisms. Each structure produced by a functor
application is potentially accessible with a direct link, which means
that its contents must be fully defined, even if it is not intended to
be the final result of a sequence of applications.

This paper presents a module system based on our experience
developing PLT Scheme. The system supports both internal linking
and recursive external linking, and it uses a different construct for
each. We call the structure-like construct module, and the functor-
like component construct unit. The coupling between modules and
units is looser than between structures and functors; external link-
ages between units can be resolved incrementally without produc-
ing intervening modules. Loose coupling is crucial in allowing
units to naturally support compositions that contain cyclic linkages.
It also permits us to address compilation in the module layer, and
place compilation management functionality there without compli-
cating the component layer.

The unit construct extends our previous model of units [13]
to support cooperation with modules, and to handle translucent
and opaque type imports and exports. We explain our module-
unit separation, and relate its expressive power to that of the SML
module system. In the process, we offer an alternate semantics
for the SML module system through compilation into module and
unit. For SML programmers, our alternate view may offer insights
into enabling mutual recursion among SML functors. For non-
SML programmers, our alternate semantics hopefully complements
the existing semantics of SML and of units to foster a deeper
understanding of key module and component system technologies.

Section 2 introduces units and modules and shows how they
complement each other. Section 3 contains several examples of the
expressiveness of units. Section 4 relates units and modules to func-
tors and structures, and gives a translation from a model of gen-
erative structures and functors into modules and units. Section 5
discusses necessary extensions to our model for practical program-
ming . The type system for units (section 6) adapts ideas from type
systems for SML modules, in particular manifest types [20], to sup-
port sharing and translucency. Section 7 presents a reduction se-
mantics and soundness theorem.

2. Modules and Units
Figures 1, 2, and 3 present the syntax of our language of modules
and units over a simply-typed core language that includes sum and
product types, value definitions, and type definitions. The module
system comprises the module and path constructs, and the unit
system comprises the unit and compound expressions and the
invoke definition.



m, t, x = module, type, and value names
name = m | t | x Pm = mi | Pm.m | Pm.bm
ident = mi | ti | xi Px = xi | Pm.x | Pm.bx
i is an infinite set of stamps Pt = ti | Pm.t | Pm.bt

Figure 1. Names, identifiers, and paths

Ty = int | Ty+Ty | Ty× Ty | Ty→ Ty | Pt K = ?
| unitT Γ (name∗ → name∗) Γ = ε | Γ,B

B = xi:Ty | ti:K | ti:K=Ty | mi:M
M = Γ provide name∗

Figure 2. Type grammar

Prog = M∗

M = module mi provide name∗ = Ds
| module mi:Γ provide name∗ = Ds

Ds = ε | D Ds
D = xi:Ty=E | ti:K=Ty | invoke E as mi:Γ |M
E = Z | Px | injl E | injr E | (E,E) | π1E | π2E

| case E of E + E | λxi:Ty.E | E E
| unit import Γ export Γ. Ds
| compound import Γ export Γ link U∗ where L∗

U = E:import Γ export Γ
L = ident← ident

Figure 3. Term grammar

We present the language without inference, so each value and
type definition comes with an annotation of its type (Ty) or kind
(K ), respectively. The expressions (E ) of the language are typical
of a simply-typed λ-calculus, with the addition of the unit system.
Thus, the language has only one kind, and it has types for integer,
sum, product, function, and unit values. A type can also contain a
path to a type definition.

2.1 Modules
A program (Prog) is a sequence of modules (M ), each of which
contains a sequence (Ds) of definitions (D ). Each definition’s scope
extends from the immediately following definition to the end of the
module. Definitions are accessed from outside of the module with
a path to either a value (Px) or to a type (Pt). For example, the path
m1.n.t refers to the definition of type t inside of module n which is
itself defined inside of m1, a module defined in the scope where the
path appears.

We follow Leroy [20] and use identifiers (xi, ti, mi) for refer-
ences within the module, and names (x, t, m) for all references from
outside of the module. Our α-relation for module-level definitions
is permitted to modify only the stamp on a name, and cannot change
the name itself. This invariant lets us use names to access module
bindings and to freely α-rename identifiers without interference.

A path can contain both names and hatted names (bx, bt, bm). A
name-based reference into a module is valid only when that name is
listed in the module’s provide clause, but a hatted-name reference
ignores the provide clause to allow access to unprovided module
bindings. Thus, hatted names are prohibited in source programs;
however, the path grammar and type system support them because
the type system can require access to unprovided type definitions
during type checking (see section 6.1).

The need for hatted names arises because the module construct
does not support sealing, so the full types of values extracted from
the module are visible from outside of the module. This design
decision makes our module construct more like Haskell’s module
than ML’s structure, and it allows our model to support sealing
functionality in a single place: units.

As our form for managing internal linking, modules have two
roles. First, module definitions can be nested for fine-grained man-
agement of name grouping and lexical scoping. Second, top-level
modules naturally form the boundaries of separate compilation,
because every dependency on another top-level module is explicit
in the body of the module. To facilitate separate compilation for
modules, we restrict a program’s top-level to module definitions
only and require that the dependency relation between modules be
acyclic.

2.2 Units
Component programming emphasizes independent development
and deployment of components, as well as component re-use. Units
support independent deployment with external linking, which lets
each of a component’s dependencies be satisfied at its point of de-
ployment, instead of at its point of implementation. Recursive link-
ing forms an important part of independent deployment, because
any two units can be linked, as long as they satisfy the appropriate
interfaces.

Independent deployment also requires independent or compo-
sitional compilation of components (not merely separate compi-
lation as for modules). Each of a component’s indirect references
must have a signature that describes the compile-time information
for the reference, so that the unit can be compiled without any
knowledge of other units that might be used to satisfy the import.
Since all of a unit’s imported values are supplied externally, and
their types are part of the compile-time signature, units are natu-
rally first-class values, similar to functions. Unit linking is an ex-
pression, similar to function application; consequently, units sup-
port dynamic, run-time linking.

A unit expression creates an atomic unit, with explicit imports
and exports described by contexts (Γ). The unit’s body must define
each exported binding (B ), and its body can refer to any imported
binding. Each imported or exported binding can specify a value,
opaque type, translucent type, or module. Module bindings support
the grouping of imported and exported values, types, and modules.
The type of a unit includes a single context that contains the unit’s
imported and exported bindings, and it also includes a listing of
which of these bindings are imports and which are exports. The
single context can interleave imported and exported bindings, al-
lowing the types of imported values to refer to types exported from
the unit. This feature helps avoid the “double-vision” problem, as
we show in section 4.3.

Units use identifiers and names to distinguish internal and ex-
ternal names, similar to modules. Thus, the α-relation for units re-
names imported and exported definitions inside of the unit by al-
tering only stamps. However, definitions that are not imported or
exported have no need for external consistency, so their names and
stamps both can be changed; this flexibility is needed for the oper-
ational semantics.

A compound expression links units together to form a new unit.
Each linked unit (U ) specifies an expression along with the imports
and exports expected of the expression. The linkages (L ) specify
which type, value, and module exports from the linked units are
used to satisfy each of the linked units’ imports. Each identifier on
the left side of a linkage must be listed in one of the import contexts
accompanying the linked units, and each identifier on the right of
a linkage must be listed in one of the export contexts, or in the
compound unit’s imports. The compound’s export clause specifies
which of the linked units’ exports are themselves exported from
the compound unit. An invoke expression evaluates the definitions
inside of a unit that has no imports, and it places the exported
values and types in the enclosing scope, accessible through the
given module identifier.



module ordered int provide oi unit =
oi unit:unitT . . . =

unit import [] export [item: ? =int, compare:item → item → bool].
item: ? =int
compare:int→ int→ bool = . . .

module set provide set unit t =
t: ? =

unitT
[itm: ? , set: ? , cmp:itm → itm → bool, insert:itm → set → set]
(cmp itm → insert set)

set unit:t =
unit import [itm: ? , cmp:itm → itm → bool]

export [set: ? , insert:itm → set → set].
set: ? = . . . itm . . .
insert:itm → set → set = . . . cmp . . .

module main provide s =
t: ? = unitT [set: ? , item: ? =int, insert:item → set → set]

( → insert item set)
int set unit : t =

compound import []
export [set: ? , item: ? =int, insert:item → set → set]

link ordered int.oi unit : import . . . export . . .
set.set unit : import . . . export . . .

where (cmp ← compare) (itm ← item)
invoke int set unit as set:[set: ? , item: ? =int, insert:item → set → set]
s:set = set.insert 12 . . .

Figure 4. Set example

A subtype relation <: arises naturally from unit values. Roughly
speaking, a unit with less imports or more exports can be used in
place of a unit with more imports and less exports. Section 6.2
discusses subtyping in further detail.1

2.3 Example
Figure 4 presents the skeleton of a set library that is parameterized
over the items in the set. Identifier stamps are omitted for clarity,
but the requisite type annotations and full unit import and export
contexts are present to illustrate each facet of the example. A practi-
cal language that incorporates units would avoid this verbosity with
type inference and a signature facility for abstracting out common
import/export patterns (see section 5).

The ordered int module provides a unit oi unit that exports a
type, item, and a value, compare, that compares two items. The
unit’s body defines item to be int, and the unit exports it translu-
cently, so that item is known to be int when oi unit is used.

The module set provides a unit, set unit, that imports a type,
itm, and a value, cmp, and that exports a type set and a value insert.
The body of set unit references its imports in the definition of its
exports. Because itm is imported as an opaque type, set unit’s body
has no information about it, other than its existence.

Although the implementation of the insert function in set unit
is elided, it would include many direct references to standard li-
brary functions managed by the module system. If the programmer
wishes to support multiple implementations of these library func-
tions, they would become unit imports instead. In this way, mod-
ules manage direct references, whereas units manage indirect ref-
erences.

The main module links oi unit and set unit into int set unit,
and it invokes the result to allow direct access to the insert function
for sets of integers. The compound unit int set unit exports the type
set opaquely, but exports the type item translucently, so that the

1 The complications of subtyping in the core language can be avoided by
taking units out of the core and placing them in a module level, similar to
ML’s functors.

module math provide add add tuple=
add:int→ int→ int= . . .
add tuple:int× int→ int= . . .

module o mod provide o unit =
o unit : unitT [a: ? ,b: ? ,c: ? ,o:(b → c)→ (a → b)→ a → c]

(a b c → o) =
unit import [a: ? ,b: ? ,c: ? ] export [o:(b → c)→ (a → b)→ a → c].

o : (b → c)→ (a → b)→ a → c =
λ f:b → c. λ g:a → b. λ x:a. f (g x)

module t mod provide types unit =
types unit : unitT [t: ? =int× int,u: ? =int,v:int→ int] (→ t u v) =

unit import [] export [ . . . ].
t: ? =int× int u: ? =int v: ? =int→ int

module c mod provide c unit =
c unit : unitT . . . =

compound import []
export [o:(u → v)→ (t → u)→ t → v,

t: ? =int× int,u:=int,v: ? =int→ int]
link o mod.o unit:import . . . export . . .

t mod.types unit:import . . . export . . .
where (a ← t) (b ← u) (c ← v)

module ex provide ex6 =
invoke c mod.c unit as o: . . .
ex6:int = (o.o math.add math.add tuple) (1, 2) 3

Figure 5. Polymorphism

insert function can add integers to the set without exposing the set’s
implementation details. The invoke statement runs int set unit and
groups its exports under the module name set.

3. Expressiveness
Units can express several basic language constructs, including para-
metric polymorphism, recursive functions, and recursive datatypes.
Along with the set example (figure 4), these examples illustrate the
basic methods that units use to support recursive linking and type
abstraction. Section 4.2 shows that they can also express structures
and functors.

A polymorphic function can be encoded as a unit that imports
the relevant type variables and exports the function. Figure 5 con-
tains such a definition of the polymorphic function composition
combinator, o. The unit o unit defines the function, and the units
types unit and c instantiate it to particular types. Because o unit
can be independently compiled, the implementation of o is not du-
plicated when the compound unit c is created or invoked. Further-
more, since o unit is a first-class value, it represents o as a first-
class polymorphic function.

To implement a recursive function, a unit imports the function
to be used for recursive calls, and links with itself. Figure 6 defines
a factorial function with this technique. The unit fact unit defines
and exports the function fact, which relies on the imported facti
function for recursive calls. Linking the unit by itself, providing the
exported fact function for the imported facti, creates the function.

The same technique works at the type level to support recursive
datatype definitions, such as lists of integers (figure 7). The unit
defines type list in terms of an opaquely imported type listi, and
defines the standard constructors and destructors for lists with ref-
erence to list and listi as needed. The compound unit supplies list
for the listi import, causing each of the exported function’s type
references to listi to become references to list. Further, it supplies
u, which equals int for the list unit’s type import. Since list is ex-
ported opaquely, the fact that list depends on listi is not known at
the site of the compound.



module m provide f4 =
fact unit : unitT . . . =

unit import [facti:int→ int] export [fact:int→ int].
fact:int→ int = λ i:int. if0 i then 1 else i × facti (i - 1)

fact compound : unitT [fact:int→ int] ( → fact) =
compound import [] export [fact:int→ int]

link fact unit:import . . . export . . .
where facti ← fact

invoke fact compound as F:[fact:int→ int]
f4:int = F.fact 4

Figure 6. Recursive factorial function

module m provide ex l =
list unit : unitT [t: ? ,listi: ? ,list: ? ,cons:t → listi → list, . . . ]

(t listi → list cons . . . ) =
unit import [t: ? ,listi: ? ] export [list: ? ,cons:t → listi → list, . . . ].

list: ? =int+(t × listi)
cons:t → listi → list = λ x:t. λ l:listi. injr (x, l)
nil:list = injl 0
hd:list → t = λ l:list. case l of (λ n:int. . . . ) + (λ c:t × listi. π1 c)
tl:list → listi = λ l:list. case l of (λ n:int. . . . ) + (λ c:t × listi. π2 c)

int u: . . . = unit import [] export [u: ? =int]. u: ? =int
list compound : unitT . . . =

compound import [] export [list: ? ,cons:int→ list → list, . . . ]
link list u:import . . . export . . .

int unit:import . . . export . . .
where (listi ← list) (t ← u)

invoke list unit as l: . . .
ex:int = l.hd (l.cons 1 l.nil)

Figure 7. Recursive datatype example

4. Structures and Functors
Units and modules have close counterparts in the structures and
functors of Standard ML. A structure is a first-order entity that
groups value, type, and structure definitions under a single name.
The biggest difference between structures and modules is that a
structure can be sealed with a signature, hiding the definitions of
certain specified types and values. In contrast, our module construct
can hide names from direct access, but it does not create abstract
types by hiding type definitions.

A functor is a function that consumes and produces structures,
including, of course, the types and values contained therein. Sim-
ilarly, a unit consumes and produces values, types, and modules;
furthermore, types can be imported or exported opaquely, captur-
ing the sealing functionality of structures. However, functor appli-
cation not only uses the argument structure to satisfy the functor’s
imports, but it also immediately produces the result structure. The
unit system’s separation between linking and invocation (i.e. unit
linking produces a unit, and unit invocation produces a module) is
a crucial difference between units and functors.

A higher-order functor can import and export other functors in
addition to structures. Higher-order functors support incremental
linking patterns, such as currying to simulate multiple-argument
functors. Units naturally support incremental linking, and a unit
can import or export another unit value if desired.

Figure 8 defines a language of structures and first-order, gen-
erative functors with a type system (figure 9) based on manifest
types [20]. (We adopt notation from our type system for units; see
figure 15.) The notable departures from SML include the ability to
freely nest structures and functors, the requirement that each struc-
ture definition has an explicitly given context, and the requirement
that the functor application construct have context and functor type
(F ′) annotations (the second and third are discussed in section 4.2).

m = structure or functor name
Ty′ = int | Ty′+Ty′ | Ty′ × Ty′ | Ty′ → Ty′ | Pt
B′ = xi:Ty′ | ti:K | ti:K=Ty′ | mi:Γ′ | mi:F′

Γ′ = ε | Γ′,B′

F′ = (mi:Γ′ → Γ′)
D′ = xi:Ty′=E′ | ti:K=Ty′ | structure mi:>Γ′=D′∗

| structure mi:>Γ′=P′
m:F′(P′

m:Γ′) | functor mi:F′=D′∗

E′ = Z | Px | injl E′ | injr E′ | (E′,E′) | π1E′ | π2E′

| λxi:Ty′.E′ | E′E′ | case E′ of E′+E′

Figure 8. Language with structures and functors

Γ′ ` Γ′ Γ′ ` F′ Γ′ ` Ty′ : K
ensure that a structure type (represented as a context), a functor type, or a
value type are well-formed

Γ′ ` Γ′ <: Γ′ Γ′ ` F′ <: F′ Γ′ ` Ty′ ≡ Ty′
subtyping for structure and functor types, and type equality for value types

Γ′ ` E′ : Ty′
typing for expressions

Γ′ ` D′∗ : Γ′

Γ ` ε : ε
DSε′

Γ1 ` D : B Γ1,B ` Ds : Γ2

σ(B) 6∈ DOM(Γ1) ρ(B) 6∈ DOMρ(Γ2)

Γ1 ` D Ds : B,Γ2
DS′

Γ′ ` D′ : B′

Γ1 ` E : Ty2 Γ1 ` Ty1 : ? Γ1 ` Ty2 ≡ Ty1

Γ1 ` xi:Ty1=E : xi:Ty1

DVAL′

Γ1 ` Ty : K

Γ1 ` ti:K=Ty : ti:K=Ty
DTYPE′

Γ1 ` Ds1 : Γ3

DISTINCTρ(Γ3) Γ1 ` Γ2 Γ1 ` Γ3 <: Γ2

Γ1 ` structure mi:> Γ2 = Ds1 : mi:Γ2

DSTR′

Γ1 ` Γ2 Γ1 ` Γ3

Γ1 ` F1 Γ1 ` mP1 7→ mi
2:F2 Γ1 ` mP2 7→ mi

3:Γ4

Γ1 ` F2 <: F1 Γ1 ` Γ4 <: Γ3 F1 = (mi
4:Γ5 → Γ6)

Γ1 ` Γ3 <: Γ5 Γ1 ` Γ6{mi
4 ← mP2} <: Γ2

Γ1 ` structure mi
1:> Γ2 = mP1:F1(mP2:Γ3) : mi

1:Γ2

DFAPP′

Γ1 ` Γ2 mi
2 6∈ DOM(Γ1) (mi

2:Γ2), Γ1 ` Γ3

mi
2:Γ2, Γ1 ` Ds1 : Γ4 DISTINCTρ(Γ4)

mi
2:Γ2, Γ1 ` Γ3 <: Γ4 m2 6∈ DOMρ(Γ3)

Γ1 ` functor mi
1:(mi

2:Γ2 → Γ3) = Ds1 : mi
1:(mi

2:Γ2 → Γ3)
DFTOR′

Figure 9. Type system for structures and functors

4.1 Diamond Imports
Diamond import refers to a linking pattern where two functors are
instantiated with the same argument, and their results are subse-
quently linked together. In the final linking step, the initial argu-
ment should be known to be the same for both modules being
linked. In SML, sharing constraints are used to solve diamond im-
port problems.

A typical example of a diamond import is a parser, set up as in
figure 10 (using multiple argument functors to simplify the exam-
ple). The front end functor imports the types t and u; however, P .u
is declared equal to L .t, allowing front end ’s body to rely on this
equality, but requiring functor’s arguments to satisfy it.



structure sym :> [t: ? ] = (t: ? = . . .) . . .
functor lexer : (S:[t: ? ]→ [t: ? =S.t,get tok: . . . t . . . ]) = . . .
functor parser : (S:[u: ? ]→ [u: ? =S.u,parser: . . . u . . . ]) = . . .
functor front end : (L:[t: ? ,get tok: . . . t . . . ],

P:[u: ? =L.t,parser: . . . u . . . ]→ . . . ) = . . .
structure l:>[t: ? = sym.t, . . . ]=lexer: . . . (sym: . . . )
structure p:>[u: ? = sym.t, . . . ]=parser: . . . (sym: . . . )
structure . . . = front end: . . . (l: . . . ,p: . . . )

Figure 10. Diamond import with functors

invoke (unit import [] export [sym t: ? ]. sym t = . . . ) as sym: . . .
sym unit: . . . = unit import [] export [t: ? =sym.sym t]. t: ? =sym.sym t
lexer: . . . = unit import [ti: ? ] export [te: ? =ti,get tok: . . . te . . . ]. . . .
parser: . . . = unit import [ui:? ] export [ue:?=ui,parser: . . . ue . . . ]. . . .
front end: . . . =
unit import [v: ? ,fget tok: . . . v . . . ,w: ? =v,fparser: . . . w . . . ]

export [ . . . ]. . . .
l: . . . = compound import [] export [te: ? =sym.sym t,get tok: . . . te . . . ]

link lexer:import . . . export . . .
sym:import . . . export . . .

where ti ← t
p: . . . = compound import [] export [ue:?=sym.sym t,parser: . . . ue . . . ]

link parser:import . . . export . . .
sym:import . . . export . . .

where ui ← t
invoke
(compound import [] export [ . . . ]

link l:import . . . export . . .
p:import . . . export . . .
front end:import . . . export . . .

where (v ← te) (fget tok ← get tok)
(w ← ue) (fparser ← parser)) as . . .

Figure 11. Diamond import with units

The key to this example is that the type sym .t is written down
at a single place, and the rest of the example systematically refers
to it using type equations. The same techniques apply to a corre-
sponding unit-based program (figure 11).

Without translucent type exports, the sym unit would have to
export t opaquely, leading l and p to export te and ue opaquely,
which would prevent them from linking with front end. The solu-
tion in such a system is to link lexer, parser, front end and sym all
in the same compound, so that the opaquely exported type from
sym is directly imported into each of the other units. Thus, the
present unit system provides an increase in expressiveness over our
previous work, which did not support translucency. In fact, units
can express not only diamond import patterns, but can also express
structures and functors directly.

4.2 Translating Structures and Functors
Figure 12 presents a structural translation from the language of
structures and functors to the language of modules and units. A
structure definition translates into two definitions, a module defini-
tion and a unit definition. The module for a definition is created by
invoking a unit whose exports are the same as the structure’s. By
going through a unit, the structure’s body is appropriately sealed—
using a module directly would allow the structure’s opaque type
definitions to escape. However, this unit cannot be used for functor
application, because the functor might expose the fact that one of its
imports refers to this structure in particular, such as the translucent
export of t in the lexer functor of figure 10.

A separate unit is built by the STRUCTUNIT function (figure 13)
for use in functor applications. The ΓTODS function constructs the
body of this unit from the export context by constructing, for each
binding, a definition that refers to the module. The unit’s export
context is created by STRENGTHEN which transforms opaque type

B′ =⇒ B∗

xi:Ty =⇒ xi:Ty ti:K =⇒ ti:K ti:K=Ty =⇒ ti:K=Ty

Γ′ =⇒ Γ1 M1 = Γ provide DOMρ(Γ1)
Γ2 = STRENGTHEN(mi, Γ1) M2 = Γ2 provide DOMρ(Γ2)

mi:Γ′
1 =⇒ mi:M1,m uniti:unitT exporti:M2 (ε→ export)

F′ =⇒ Ty

mi
1:F′ =⇒ m1 uniti:Ty

F′ =⇒ Ty

Γ′
1 =⇒ Γ1

Γ′
2 =⇒ Γ2 ns = DOMρ(Γ2) im = mi:Γ1 provide DOMρ(Γ1)

(mi:Γ′
1 → Γ′

2) =⇒ unitT im,Γ2 (m→ ns)

D′ =⇒ D∗

E′ =⇒ E

xi:Ty=E′ =⇒ xi:Ty=E ti:K=Ty =⇒ ti:K=Ty

Γ′ =⇒ Γ Ds′ =⇒ Ds
E = unit import ε export Γ. Ds D = STRUCTUNIT(mi, Γ)

structure mi:>Γ′=Ds′ =⇒ (invoke E as mi:(Γ)) D

Γ′
1 =⇒ Γ1 Γ′

2 =⇒ Γ2 F′ = (mi
2:Γ′

3 → Γ′
4)

Γ′
3 =⇒ Γ3 Γ′

4 =⇒ Γ4 im = mi:Γ3 provide DOMρ(Γ3)
IE1 = import [im] export Γ4 M = Γ2 provide DOMρ(Γ2)

IE2 = import ε export [exp modi:M]
D = STRUCTUNIT(mi

1, Γ1)
E = compound import ε export Γ1 link P2 unit:IE2 P1 unit:IE1

where mi
2 ← exp modi

structure mi
1:>Γ′

1=P1:F′(P2:Γ′
2) =⇒ (invoke E as mi

1:(Γ1)) D

F′ = (mi
2:Γ′

1 → Γ′
2) F′ =⇒ Ty Γ′

1 =⇒ Γ1

Γ′
2 =⇒ Γ2 Ds′ =⇒ Ds im = mi

2:Γ1 provide domρ(Γ1)

functor mi
1:F′=Ds′ =⇒

m1 uniti:Ty=unit import im export Γ2. Ds

Figure 12. Translation into units

definitions into translucent ones that refer to the given module.
This modification of the contexts corresponds to the notion of
strengthening found in manifest types.

The following example demonstrates the translation from a
structure to a module and unit.
structure m :> [t: ? ,x:t] =
t: ? =int
x:t=1
=⇒
invoke (unit import [] export [t: ? ,x:t]. t: ? =int x:t=1) as m:([t: ? ,x:t])
m unit: . . . =
unit import [] export [exp mod:([t: ? =m.t,x:t] provide x t)].

module exp mod provide x t =
t: ? =m.t
x:t=m.x
A functor definition translates into the definition of a unit whose

imports and exports correspond to the functor’s imports and ex-
ports. Because a functor imports a single structure that groups all
of its imported values and types, the unit imports a single module
that performs the same grouping. A functor application becomes a
compound unit that links the argument structure’s unit to the func-



ΓTODS : Pm × Γ→ D∗ STRENGTHEN : Pm × Γ→ Γ

STRUCTUNIT : mi × Γ→ D

Ds = ΓTODS(mi, Γ1) Γ2 = STRENGTHEN(mi, Γ1)
ex = exp modi:Γ2 provide DOMρ(Γ2)

M = module exp modi provide DOMρ(Γ1) = Ds
Ty = unitT ex (→ exp mod)

STRUCTUNIT(mi, Γ1) = m uniti:Ty=unit import ε export ex. M

Figure 13. Building the unit for a structure

tor’s import. The structure’s unit exports its bindings under the sin-
gle module named “exp mod” to facilitate functor application.
functor f (i:[t: ? ,x:t]→ [t: ? =i.ty:t]) =
t: ? =i.t y:t=x
structure s :> [t: ? =m.t,y:t] = f: . . . (m: . . . )
=⇒
f: . . . = unit import [i:([t: ? ,x:t] provide x t)] export [t: ? =i.t,y:t].

t: ? =i.t y:t=x
invoke (compound import [] export [y:t,t: ? =m.t]

link f:import . . . export . . .
m unit:import . . . export . . .

where i ← exp mod) as s:( . . . )
s unit: . . . = . . .
The functor application construct requires that the paths to the func-
tor and structure are annotated with their types. These annotations
are used to create the unit types in the link section of the com-
pound unit, and the functor’s parameter is further used in the link
clause, since unit linking is by name. The presence of the annota-
tions serves only to allow our translation to be a local translation.
Since structure and functor definitions are first order, the transla-
tion could instead record the types of the structures and functors
as it encounters their definitions. Then it could look up the types,
instead of relying on the annotations.

Theorem 1 states that if a structure and functor program has
a type, then the result of the translation =⇒ has a type that is
related to the original type by the translation. We assume that
source programs do not contain identifiers ending in “ unit”, and
we adopt the convention that for X in {Γ, B, D, F, . . .}, if X and
X ′ appear in the following, then X ′ =⇒ X .

Lemma 1 (Context translation). Γ′
1 ` Γ′

2 implies Γ1 ` Γ2, and
Γ′

1 ` Ty : K implies Γ1 ` Ty : K.

Lemma 2 (Translation subtyping). Γ′
1 ` Ty′

1 ≡ Ty′
2 implies

Γ1 ` Ty1 <: Ty2 and Γ′
1 ` Γ′

2 <: Γ′
3 implies Γ ` Γ2 <: Γ3.

Lemma 3 (Translation lookup). If Γ′
1 ` Pm 7→ mi:Γ′

2, andM =
STRENGTHEN(mi, Γ2) provide DOMρ(Γ2) then Γ1 ` Pm unit 7→
m uniti:unitT (exporti:M) (ε→ export)

Theorem 1. If Γ′
1 is well-formed (ε ` Γ′

1) then

1. Γ′
1 ` D ′

seq : Γ′
2 implies Γ1 ; ε ` Dseq : Γ2

2. Γ′
1 ` E ′ : Ty implies Γ1 ` E : Ty

Proof sketch. The proof proceeds by induction on the structure of
D ′

seq and E ′.
case xi:Ty=E′ D′

seq: By lemmas 1 and 2.
case ti:K=Ty D′

seq: By lemma 1.
case structure mi :> Γ′ = D′

seq1 D′
seq2: The invoke definition

types by lemmas 1 and 2. The other unit relies on the correctness
of STRENGTHEN and ΓTODS.
case structure mi :> Γ′

1 = P1:F′(P2:Γ′
2) Dseq: The compound

type checks by lemmas 1, 2, and 3.
case functor mi:F′=Dseq1 Dseq2: By lemmas 1 and 2.

MkHeap: . . . = unit import [tM: ? ,compareM:t → t → order]
export [h: ? ,item: ? =tM,insert:item → h → h]

h: ? =G(tM)
item: ? =tM
insert: . . . =λ . . . compareM . . .

Boot: . . . = unit import [hB: ? ,itemB: ? ,insertB:itemB → hB → hB]
export [t: ? =F(hB),compareB:t → t → order]

t: ? =F(hB)
compare . . . =λ . . . insertB . . .

Heap: . . . =
compound import [] export [h: ? ,insert:F(h)→ h → h]

link MkHeap: . . . Boot: . . .
where (hB ← h) (tM ← t) (itemB ← item)

(compareM ← compare) (insertB ← insert)

Figure 14. Bootstrapped Heap

4.3 Cyclic Linking Dependencies
Although ML’s functors do not typically support cyclic linking
dependencies (recursive linking), there are several proposals for
and implementations of recursive functor extensions [7, 26, 10].
Units avoid two significant problems faced by these extensions.

Avoiding Double Vision In his thesis, Dreyer describes a poten-
tially serious problem for recursive functors that he dubs the double
vision problem [10]; he also notices units avoid the problem. When
a functor imports a function whose type contains an abstract type
that is defined in the module itself, the type system needs to match
up the defined type with the import’s type. The inability to do so,
i.e. the double-vision problem, is illustrated by the following exam-
ple (which does not typecheck).
dv unit: . . . =
unit import [t: ? =int,x:t] export [u: ? ,y:u,f:int→ u]
u: ? =int y:u=1
f:int→ u=λ z:int. x+z

dv cmpd: . . . =
compound import [] export [u: ? ,f:int→ u]

link dv unit:import . . . export . . .
where (t ← u) (x ← y)

The intent is that the exported type u should be opaque to the out-
side, and that the imported type t should be known as an int inside
of the module. However, at the compound, u is opaque, and not
known to be an int. Changing t:?=int into t:?, would allow the
compound unit to check, but results in an ill-typed body of u. If we
use t: ? =u as the import instead of t: ? =int, the unit and compound
unit are both well-typed. An import referring to an export this way
is not supported by functors.

Bootstrapped Heap Bootstrapped heaps [25] are difficult to sup-
port with generative recursive functors. The core of bootstrapped
heaps as presented by Dreyer [9]—a simplified account of Russo’s
example [26]—translates easily into units. The key property of
bootstrapped heaps is that the type of elements contained in the
heap is defined in terms of the type of heaps themselves. We can
express this dependency directly by having a Boot unit export the
type of elements t and import the type of a heap hB (figure 14).
(Suppose that G(t) and F(t) are abbreviations for some type ex-
pressions involving t.)

A simple example from Russo’s work on recursive structures
illustrates what can go wrong with generative functors like Boot
and MkHeap. (The syntax has been slightly modified from his pa-
per to eliminate the nested structure). Suppose the NatFun functor
consumes a Bool structure and produces a Nat structure and the
BoolFun consumes a Nat structure to produce a Bool.
rec (Nat, Bool)

structure Nat = NatFun(Bool)

structure Bool = BoolFun(Nat)



This example produces a run-time error in Russo’s system because
the Bool structure is used before it is defined. The error arises even
if the functor bodies consist entirely of syntactic values, because
it arises from an ill-founded recursion at the structure-level. Russo
solves the problem using eta-expansions to delay the functor appli-
cations. Essentially, the production of a structure from a functor re-
quires an unwanted evaluation of the functor, which is delayed to an
appropriate time with an eta-expansion. Because unit compound-
ing does not create directly accessible bindings (e.g. in a module or
structure), there is no need to delay the creation of those bindings.

5. Toward a Practical Language
Our model of modules and units forms the basis of a ML-like
component-oriented programming language. The following addi-
tions to our model would make it a practical language.

Signatures Signature definitions enable re-use of import and ex-
port specifications for units and compound units. An ML-like sig-
nature facility would work with little modification, as long as a
where clause for an import signature can refer to bindings in the
export signatures, and vice versa.

Type Annotations The type annotations on value definitions and
function parameters should be optional and supplied by type infer-
ence. The context annotation on invoke and the import/export an-
notation on each sub-part of a compound unit could be relaxed to
simple lists of imported and exported identifiers, or they could be
supplied as signatures. However, annotations should not be omit-
ted entirely since they specify which names are introduced by the
invoke, and which names are available as linkages in a compound.

Linking Specifying a linkage for each import in a compound is
tedious in all but the smallest systems. Linkages should be specified
between signatures, which would denote linkages of all of their
components.

Renaming Our model uses stamps to differentiate between inter-
nal and external names. A practical system should provide mech-
anisms for explicitly managing the mapping between internal and
external names on unit imports and exports.

Sealing The translation from structures to modules gives a suit-
able semantic account of sealing for modules. A practical language
with support for structure-like sealing on modules could either use
the translation, or specialize semantically equivalent functionality.

Compilation Management Compilation management in this set-
ting entails searching the pool of top-level modules to find and
compile each of a module’s dependencies before compiling the
module itself. To make the search unambiguous, each module in
the pool must have a unique name, although in a practical setting
uniqueness might instead be required at the level of file paths or
URIs. This is most similar to Caml’s [21] compilation management,
which makes all definitions (excepting in the interactive environ-
ment) appear in a top-level structure whose name corresponds with
the name of the file containing it. (Top-level structures can be sealed
with signatures and used as functor arguments, just as other struc-
tures.) Haskell’s and PLT Scheme’s compilation management are
also based on top-level modules; however, dependencies are stated
explicitly by importing entire modules, instead of implicitly as the
heads of paths.

Top-level Components Often, when writing highly componetized
programs, top-level modules contain only the definition of a sin-
gle unit. Direct support for this idiom with a top-level component
construct that combines unit and module features could be imple-
mented with a combination of our modules and units.

σ : B ∪ D→ ident
the identifier defined by the binding

DOM : Γ ∪ DS→ ident∗ and DOMρ : Γ ∪ DS→ name∗
the set of identifiers or names bound by the context or definitions

DISTINCT ⊆ Γ and DISTINCTρ ⊆ Γ
ensures the context does not bind an identifier or name more than once

Γ ` P 7→ B
path lookup (see section 6.1)

Γ ` ident . B; Γ and Γ ` name . B; Γ
identifier and name lookup. The returned context is the prefix of the
input context where the binding was found.

PERM ⊆ Γ× Γ
ensures that the contexts are permutations of each other

INTERLEAVE ⊆ Γ× Γ× Γ
ensures that the third argument is an interleaving of the first two
·{ident← E | P(ident, E)}

capture-avoiding substitution of the expr./ident. pairs satisfying P
LIMPORTS : L∗ → ident∗

gets the left sides of linkages

Figure 15. Helper functions and relations

6. Type System
Figure 15 describes the helper functions and relations used by
the type system, and figure 16 presents the relations that define
well-formed contexts, bindings, and types (the rules for sum and
product types are omitted). These relations ensure that no identifier
shadows another, that each type path refers to a defined type, and
that module bindings and unit types are well-formed. The first
restriction is for the type system’s convenience; any otherwise well-
formed type can meet these restrictions with α-renaming of the
stamps on identifiers. The rule for module bindings (BMOD) ensures
that each provided name is defined in the module, and that no name
is multiply defined in a module’s body. The rule for units (KUNIT)
establishes that the lists of imported and exported names exactly
partition the unit’s context into imported and exported bindings.
The import context is not separated from the export context because
an import can refer to an exported type and vice versa.

The type rules for definitions produce bindings, and the type
rules for definition sequences produce contexts (figure 17). The def-
inition sequence rules build the context and ensure that no identifier
shadows another. They have an additional context argument that the
DS2 rule uses as a source for bindings. This additional context is ε
except when type checking the body of a unit, as discussed with
units below. The DVAL and DTYPE rules produce the specified type,
and ensure that the resulting binding is well-formed. The DINV rule
checks that its sub-expression has a unit type with no imports. The
expression’s type must be a subtype of the specified context, suit-
ably placed into a unit type. The DMOD1 and DMOD2 rules ensure
that the provided names are defined, and that no names are multi-
ply defined. Additionally, DMOD2 ensures that the module’s body
is consistent with the module expression’s declared context.

The type system for expressions (figure 18) is typical of typed
λ-calculi, but with the addition of the EUNIT and ECMPD rules.
Standard rules for sums and products are omitted from figure 18.
The IE rule builds a unit’s type from its declared imports and
exports, and it uses the KUNIT rule to ensure that the resulting
type is well-formed; in particular, the same name cannot be both
imported and exported. Interleaving allows imports to depend upon
types declared in the export portion. The EUNIT rule checks the
body of the unit, using the unit’s declared imports as the second
context of the declaration rule. Thus, the body is checked as though
the bindings of the unit’s import were interspersed in the body in
some order. The DROPBS function lets the EUNIT rule ignore un-
exported bindings (perhaps with duplicate names) when checking
that the unit’s body satisfies the unit’s exports.



Γ ` Γ

Γ ` ε
Γε

Γ1 ` B Γ1,B ` Γ2 σ(B) 6∈ DOM(Γ1)

Γ1 ` B,Γ2
ΓS

Γ ` B

Γ ` Ty : ?

Γ ` xi:Ty
BVAL

Γ ` ti:K
BTYPE1

Γ ` Ty : K

Γ ` ti:K=Ty
BTYPE2

Γ1 ` Γ2 names ⊆ DOMρ(Γ2) DISTINCTρ(Γ2)

Γ1 ` mi:Γ2 provide names
BMOD

Γ ` Ty : K

Γ ` int : ?
KINT

Γ ` Ty1 : ? Γ ` Ty2 : ?

Γ ` Ty1 → Ty2 : ?
KFUN

(Γ ` Pt 7→ ti:K) ∨ (Γ ` Pt 7→ ti:K=Ty)
Γ ` Pt : K

KPATH

Γ ` Γie names1 ∪ names2 = DOMρ(Γie)
names1 ∩ names2 = ∅ DISTINCTρ(Γie)

Γ ` unitT Γie (names1 → names2) : ?
KUNIT

Figure 16. Well-formed types

The following example demonstrates typechecking for units.
module unit example provide u ex =
u ex : unitT [t: ? ,v:t,w:t] (v → w t) =

unit import [v:t] export [t: ? ,w:t → t].
t : ? = int
w : t → t = λ x:t. x + v

The type of import v refers to the exported type t. When typecheck-
ing the body of the unit, the binding for v must be inserted after
checking the definition of t, but before the definition of w. In gen-
eral, each imported binding should be inserted at the earliest point
where it is well-defined to do so.2

The ECMPD rule also uses IE to build the result type, and uses
DROPBS to ignore unneeded exports from the sub-units when
checking the exports from the compound unit. However, the pro-
cess for creating the context for the compound unit’s body, Γ4, is
more involved than for non-compound units. The US check ensures
that the type of each sub-unit expression is compatible with the
corresponding import and export contexts. The DISTINCT check
ensures that there is no ambiguity in what each linkage refers to,
and the check involving LIMPORTS ensures that each sub-unit im-
port is linked to exactly once.

The substitution applies the linkages to the context of the sub-
units’ exports, redirecting type and module references from the
sub-unit’s import to the exported definition that satisfies the import.
The L rule ensures that the type of a linkage’s export is a subtype
of its import. Since the type of an import can refer to types and
modules defined in other imports (of the same sub-unit), the L rule

2 Modules provide a convenient mechanism for grouping imports and ex-
ports. However, they have limited flexibility for recursive dependencies,
because the entire module binding must appear atomically, which limits
interleaving. In the example, if t and w were grouped in a module, v could
not be interspersed. This restriction could be relaxed by letting the unit rule
split the module body’s context throughout its enclosing context, or by us-
ing a signature mechanism as mentioned in section 5 (instead of modules)
to group imports and exports.

Γ; Γ ` DS : Γ

Γ; ε ` ε : ε
DSε

Γ1 ` D : B
Γ1,B; Γi ` Ds : Γ2 σ(B) 6∈ DOM(Γ1)

Γ1; Γi ` D Ds : B,Γ2
DS1

Γ1,B; Γi ` Ds : Γ2 σ(B) 6∈ DOM(Γ1)

Γ1; B,Γi ` Ds : B,Γ2
DS2

Γ ` D : B

Γ1 ` E : Ty2 Γ1 ` Ty2 <: Ty1 Γ1 ` Ty1 : ?

Γ1 ` xi:Ty1=E : xi:Ty1

DVAL

Γ1 ` Ty : K

Γ1 ` ti:K=Ty : ti:K=Ty
DTYPE

Ty1 = unitT Γ2 (ε→ DOMρ(Γ2))
Γ1 ` Ty1 : ? Γ1 ` E : Ty2 Γ1 ` Ty2 <: Ty1

Γ1 ` invoke E as mi:Γ2 : mi:Γ2 provide DOMρ(Γ2)
DINV

Γ1; ε ` Ds : Γ2 names ⊆ DOMρ(Γ2) DISTINCTρ(Γ2)

Γ1 ` module mi provide names = Ds : mi:Γ2 provide names
DMOD1

Γ1; ε ` Ds : Γ2 Γ1 ` Γ3 names ⊆ DOMρ(Γ3)
DISTINCTρ(Γ2) DISTINCTρ(Γ3) Γ1 ` Γ2 <: Γ3

Γ1 ` module mi:Γ3 provide names =
Ds : mi:Γ3 provide names

DMOD2

Figure 17. Type system (definitions)

performs linkage substitution on the import before comparing it to
the corresponding export.

The following example (which includes the identifier stamps),
demonstrates typechecking for compound units.
module compound example provide =
u1 : unitT [t2: ? , w1:int→ t2] (t → w) =

unit import [t2: ? ] export [w1:int→ t2]. . . .
u2 : unitT [u4: ? =int] ( → u) =
unit import [] export [u2: ? =int]. . . .

u3 : unitT [w1:int→ int] ( → w) =
compound import [] export [w1:int→ int].

link u2 : import [] export [u4: ? =int]
u1 : import [t2: ? ] export [w1:int→ t2]

where t2 ← u4

The intermediate context Γ3 is [u4:?=int,w1:int→ t2], so that the
context after substitution is Γ′

3 = [u4: ? =int,w1:int→ u4].
The permutation of Γi,Γ′

3 allows the sub-units to have mutual
type dependencies while stopping short of supporting a true recur-
sive type environment, and equi-recursive types. In the following
interpreter-inspired example, suppose that the types of the two run
functions refer to the dec and exp types, and that these two types
depend on each other. Then in Γ4, the bindings for exp2 and dec1

must both precede the bindings for runD and runE.
exp u: . . . = unit import [dec:?,runD: . . . ] export [exp:?,runE: . . . ]. . . .
dec u: . . . = unit import [exp:?,runE: . . . ] export [dec:?,runD: . . . ]. . . .
run u: . . . =
compound import [] export [dec2: ? ,exp1: ? ,runE1: . . . ,runD2: . . . ]

link exp u:import [dec1: ? ,runD1: . . . ] export [exp1: ? ,runE1: . . . ]
dec u:import [exp2: ? ,runE2: . . . ] export [dec2: ? ,runD2: . . . ]

where (dec1 ← dec2) (runD1 ← runD2)
(exp2 ← exp1) (runE2 ← runE1)

If the exp and dec types were exported translucently, exposing the



Γ ` Γ DROPBS Γ
drop bindings from the middle context

Γ ` E : Ty

Γ ` Px 7→ xi:Ty
Γ ` Px : Ty

EPATH

Γ,xi:Ty1 ` E : Ty2

Γ ` Ty1 : ? xi 6∈ DOM(Γ)

Γ ` λxi:Ty1.E : Ty1 → Ty2

EFUN

Γ `P E1 : Ty2 → Ty3
Γ ` E2 : Ty4 Γ ` Ty4 <: Ty2

Γ ` E1 E2 : Ty3

EAPP

Γ1 ` import Γi export Γe : Ty
Γ1; Γi ` Ds : Γ2 Γ1 ` Γ2 DROPBS Γ3

DOM(Γ3) = DOM(Γi) ∪ DOM(Γe) DISTINCTρ(Γ3)
Γ1 ` unitT Γ3 (DOMρ(Γi)→ DOMρ(Γe)) <: Ty

Γ1 ` unit import Γi export Γe. Ds : Ty
EUNIT

Γ1 ` import Γi export Γe : Ty Γ1 ` Us : Γ2; Γ3

DISTINCT(Γi,Γ2,Γ3) PERM LIMPORTS(Ls) DOM(Γ2)
Γ′

3 = Γ3{id1 ← id2 | (id1 ← id2) ∈ Ls}
PERM (Γi,Γ′

3) Γ4 Γ1 ` Γ4

∀L.L ∈ Ls⇒ Γ1,Γ4; Γ2; Ls ` L Γ1 ` Γ4 DROPBS Γ5

DOM(Γ5) = DOM(Γi) ∪ DOM(Γe) DISTINCTρ(Γ5)
Γ1 ` unitT Γ5 (DOMρ(Γi)→ DOMρ(Γe)) <: Ty

Γ1 ` compound import Γi export Γe link Us where Ls : Ty
ECMPD

Γ ` import Γ export Γ : Ty

INTERLEAVE Γi Γe Γie

Ty = unitT Γie (DOMρ(Γi)→ DOMρ(Γe)) Γ ` Ty : ?

Γ ` import Γi export Γe : Ty
IE

Γ ` U∗ : Γ; Γ

Γ ` ε : ε; ε
USε

Γ1 ` import Γi export Γe : Ty1
Γ1 ` E : Ty2

Γ1 ` Ty2 <: Ty1 Γ1 ` Us : Γ2; Γ3

Γ1 ` (E:import Γi export Γe) Us : Γi,Γ2; Γe,Γ3
US

Γ; Γ; L∗ ` L

Γi ` id1 . B1; Γ′
i Γ ` id2 . B2; Γ′

B′
1 = B1{id1 ← id2 | (id1 ← id2) ∈ Ls} Γ ` B2 <: B′

1

Γ; Γi; Ls ` id1 ← id2
L

Figure 18. Type system (expressions)

mutual reference, no ordering would allow run to typecheck, since
exp would need to precede dec and simultaneously, exp would
need to precede dec.

6.1 Path Lookup
When looking up a path in a context (figure 19), any types in
the returned binding are lifted out of their scope. Paths that are
contained within the type itself, and that reference bindings in
their enclosing module, would then become free references, or get
captured by an intervening binding. The substitution prevents this
by changing these identifiers into paths to their original binding.
The substitution must use hatted names in the path, so the reference
can succeed even if the name is not provided. The definitions of
lookup for Pt and Px paths are similar.

cPm = Pmcmi = mi

P̂m.m = cPm.bm
P̂m.bm = cPm.bm
M` Pm 7→ B

Γ ` mi . B; Γ′

Γ ` mi 7→ B
PID

Γ1 ` P 7→ mi
2:Γ2 provide names2

m ∈ names2 Γ2 ` m . B; Γ′
2

Γ1 ` P.m 7→ B{mi
3 ←dP.m | mi

3 ∈ DOM(Γ′
2)}

PNAME

Γ1 ` P 7→ mi
2:Γ2 provide names2 Γ2 ` m . B; Γ′

2

Γ1 ` P.bm 7→ B{mi
3 ←dP.m | mi

3 ∈ DOM(Γ′
2)}

PHNAME

Figure 19. Path lookup

For example, with the following module definition the path
m1.n.v has type m1.bt→ m1.bn.bu, which is equal to int→ int.
module m1 provide n =
t2: ? = int
module n3 provide v =

u4: ? = int
v5:t2 → u4 = . . .

Without the hatted identifiers, the result type would be m1.t →
m1.n.u which refers to names that are not provided by the module,
and are hence inaccessible through the PNAME rule.

6.2 Subtyping
Subtyping is based on a simple structural subtyping relation (fig-
ure 20; not shown are the typical subtyping rules for sum, prod-
uct and function types). A context Γ1 is a sub-context of Γ2 if
each identifier bound in Γ2 appears in Γ1, bound to a sub-binding.
Binding subtypes make a transparent type binding a subtype of an
opaque type binding; however two transparent type bindings must
have equal types. This is because references to the transparent type
could occur in both co– and contra-variant positions. Sub-typing
for unit types is similar to context sub-typing, but based on the de-
fined names instead of identifiers. Unit sub-typing is contra-variant
in the imports and co-variant in the exports.

Type paths (P t) are structural subtypes only if they are equal,
but the general subtyping relations (Γ ` Ty <: Ty, Γ ` B <: B,
Γ ` Γ <: Γ) first allow type paths to be replaced with their
definitions, and then they check structural subtyping.

7. Operational Semantics and Type Soundness
We specify the operational semantics of units as a small-step re-
duction relation with call-by-value evaluation. Figure 21 presents
the values and evaluation contexts for programs (PV, PC ), mod-
ules (MV, MC ), definition sequences (SV, SC ), definitions (DC,
DV ), expressions (V, EC ), and the subexpressions of compound
(UC, UV ). The evaluation strategy accumulates evaluated modules
and definitions as it progresses through the program.

Figure 22 describes helper functions and relations used in the
operational semantics and soundness proof, and figure 23 presents
the single-step reduction relation  . The rules for projections,
function application, and case expressions are straightforward. Unit
invocation places the unit’s body into a module, and unit com-



Ty <: Ty

cPt1 = cPt2
Pt1 <: Pt2

names1 ⊆ names3 names4 ⊆ names2
names1 ⊆ DOMρ(Γ2) DOMρ(Γ1) ⊆ names4

∀n ∈ names1. (Γ1 ` n . B1; Γ′
1) ∧ (Γ2 ` n . B2; Γ′

2)⇒ (B2 <: B1)
∀n ∈ names4. (Γ1 ` n . B1; Γ′

1) ∧ (Γ2 ` n . B2; Γ′
2)⇒ (B1 <: B2)

unitT Γ1 (names1 → names2) <: unitT Γ2 (names3 → names4)

Γ <: Γ

DOM(Γ2) = ids ids ⊆ DOM(Γ1)
∀id ∈ ids. (Γ1 ` id . B1; Γ′

1) ∧ (Γ2 ` id . B2; Γ′
2)⇒ (B1 <: B2)

Γ1 <: Γ2

B <: B

ti1:K <: ti2:K ti1:K=Ty <: ti2:K=Ty ti1:K=Ty <: ti2:K

Ty1 <: Ty2

xi
1:Ty1 <: xi

2:Ty2

names2 ⊆ names1 Γ1 <: Γ2

mi
1:Γ1 provide names1 <: mi

2:Γ2 provide names2

Figure 20. Structural subtyping

PV = MV∗

MV = module mi provide name∗ = SV
| module mi:Γ provide name∗ = SV

SV = ε | DV SV | (rec SV) SV
DV = xi:Ty=V | ti:K=Ty |MV
V = Z | injl V | injr V | (V, V) | λxi:Ty.E

| unit import Γ export Γ. DS
UV = V:import Γ export Γ

PC = MV∗ MC M∗

MC = module mi provide name∗ = SC
| module mi:Γ provide name∗ = SC

SC = [] | DC DS | DV SC | (rec SC) DS | (rec SV) SC
DC = [] | xi:Ty=EC | invoke EC as mi:Γ |MC
EC = [] | injl EC | injr EC

| case EC of E + E | case V of EC + E | case V of V + EC
| (EC, E) | (V, EC) | π1 EC | π2 EC | EC E | V EC
| compound import Γ export Γ link UV∗ UC U∗ where L∗

UC = EC:import Γ export Γ

Figure 21. Values and evaluation contexts

pounding concatenates the bodies of the linked units into a single
unit body. Because unit linking can be recursive, the resulting unit
can contain recursive value, type, and module definitions.

The type system of section 6 does not support the recursive
definitions (rec), so we extend it in figure 24 to allow the result of
RCMPD to be well-typed. Any well-typed program in the system of
section 6 is also well-typed in the extension, since the extension just
adds new rules for the new construct. Thus, type soundness for the
extended system implies soundness for the original system in the
sense that a well-typed program will not become stuck. However,
the final result of evaluation might not be well-typed in the original
system, since it can contain rec statements introduced by RCMPD.3

3 We chose the system of section 6 to demonstrate that units can be type
checked without special support for either value or type recursion, other
than what the units provide themselves. In particular, units can be type

FLAT : PC× (DS ∪ D ∪ E)→ DS
flattens the evaluation context supposing that the second argument
would be used to fill the hole

DS ` Px 7→ D ∪ {error}
path lookup in a definition sequence. Returns error if the path goes
through an invoke definition.

CTXT : DS→ Γ and CTXT : PC× (Ds ∪ D ∪ E)→ Γ
get the definitions’ corresponding context. The necessary information
is syntactically available. The second version performs FLAT first.

Γ `R Γ and Γ `R DS : Γ
type checking for sequences that appear as the body of a recursive def-
inition sequence. Similar to the corresponding relations in figures 16
and 17, except these do not accumulate bindings for checking bind-
ings/definitions later in the sequence.

Figure 22. Operational semantics helper functions and relations

Prog Prog

names = DOMρ(Γ2) DISTINCTρ(Ds)

PC[invoke (unit import ε export Γ1. Ds) as mi:Γ2] 
PC[module mi:Γ2 provide names = Ds]

RINV

FLAT(PC, Px) ` Px 7→ xi:Ty=E E ∈ V
PC[Px] PC[E]

RPATH

FLAT(PC, Px) ` Px 7→ xi:Ty=E E 6∈ V
PC[Px] error

RERR1

FLAT(PC, Px) ` Px 7→ error
PC[Px] error

RERR2

PC[π1(V1, V2)] PC[V1] RPJ1 PC[π2(V1, V2)] PC[V2] RPJ2

PC[case injl V1 of V2 + V3] PC[V2 V1] RCASE1

PC[case injr V1 of V2 + V3] PC[V3 V1] RCASE2

PC[(λxi:Ty.E) V] PC[E{xi ← V}] RAPP

UVs = (E1:import Γ1,3 export Γ1,4) · · ·
∀j > 0.Ej = unit import Γj,1 export Γj,2. Dsj

∀j > 0.(DOM(Γj,1) ⊆ DOM(Γj,3) ∧ DOM(Γj,4) ⊆ DOM(Γj,2))
Ds′ = Ds1 · · · DISTINCT(Γ0,1,CTXT(Ds′))

Ds′′ = Ds′{id1 ← id2 | (id1 ← id2) ∈ Ls}
PC[compound import Γ0,1 export Γ0,2 link UVs where Ls] 

PC[unit import Γ0,1 export Γ0,2. rec Ds′′]

RCPD

Figure 23. One-step reduction

The path lookup function adds prefixes to the values it lifts out
of modules, just like the type system’s path lookup of section 6.1.
If evaluation encounters a non-value expression, it signals a run-
time error (RERR1 and RERR2). There are many proposals to catch
such ill-founded recursion errors at compile-time without restrict-
ing definitions to syntactic values [5, 8, 15, 16, 29]. Adapting these
proposals to component programming with units is future work.

Taking a closer look at the first compound unit rule, it requires
that the unit values’ imported and exported identifiers match up
with the ones specified in the import and export annotations, which
themselves correspond to the identifiers used in the linkages. Fur-

checked without encountering any of the difficulties presented by equi-
recursive types. The dynamic semantics must support evaluation of defi-
nition sequences that contain rec constructs, but the type checking of inter-
mediate steps in program execution is only needed for the inductive preser-
vation and progress proofs.



DS = (rec DS) DS | . . . Γ = Γ,rec Γ | . . .

Γ ` Γ

DOM(Γ2) ∩ DOM(Γ1) = ∅
Γ1,rec Γ2 `R Γ2 Γ1,rec Γ2 ` Γ3 DISTINCT(Γ2)

Γ1 ` rec Γ2,Γ3
ΓREC

Γ; Γ ` DS : Γ

Γ2 = Γi,CTXT(Ds1)
DOM(Γ2) ∩ DOM(Γ1) = ∅ DISTINCT(Γ2)

Γ1,rec Γ2 `R Ds1 : CTXT(Ds1) Γ1,rec Γ2; Γ′
i ` Ds2 : Γ3

Γ1; Γi,Γ′
i ` (rec Ds1) Ds2 : rec Γ2,Γ3

DSREC

Figure 24. Type system extension

thermore, the definitions inside the units must all have distinct iden-
tifiers. These conditions can be met through α-renaming.

Theorem 2 (Type Soundness). If ε; ε ` Prog1 : Γ, and Prog1 →→
Prog2 then either Prog2 = error, or ε; ε ` Prog2 : Γ and either

• Prog2 ∈ PV, or
• Prog2  error, or
• there exists a Prog3 such that Prog2  Prog3.

Lemma 4 (Value path lookup). If Γ = CTXT(PC, Px), and Γ `
Px 7→ xi:Ty then either

• There exists an E such that FLAT(PC, Px) ` Px 7→ xi:Ty=E, or
• FLAT(PC, Px) ` Px 7→ error.

Lemma 5 (Context lookup subtype). If ε ` PC[Px] : Γ2, and Γ1 =
CTXT(PC, Px), and PC ` Px 7→ xi:Ty1=E then Γ1 ` E : Ty2 and
Γ1 ` Ty2 <: Ty1.

Lemma 6 (Subtype substitution). If Γ ` ident1 . B1; Γ
′, and

Γ ` ident2 . B2; Γ
′, and Γ′ ` B2 <: B1 then Γ′ ` Ds{ident1 ←

ident2} <: Ds.

Definition 1. A recursive evaluation context is an evaluation con-
text of the form PC[(rec DV∗ [] DS) DS].

Lemma 7 (Progress).

1. If Γ; ε ` Ds1 : Γ1, and Γ = CTXT(PC, Ds1), and PC is not recursive,
then either Ds1 ∈ SV, or there exists Ds2 such that PC[Ds1]  
PC[Ds2], or PC[Ds1] error.

2. If Γ `R Ds1 : Γ1, and Γ = CTXT(PC, Ds1), and PC is recursive, then
either Ds1 ∈ SV, or there exists Ds2 such that PC[Ds1]  PC[Ds2],
or PC[Ds1] error.

3. If Γ ` D1 : B, and Γ = CTXT(PC, D1) then either D1 ∈ DV, or there
exists D2 such that PC[D1] PC[D2], or PC[D1] error.

4. If Γ ` E1 : Ty, and Γ = CTXT(PC, E1) then either E1 ∈ V, or there
exists E2 such that PC[E1] PC[E2], or PC[E1] error.

Proof sketch. Statements 1–4 are proved simultaneously by induc-
tion on the derivation that Ds1, D1, and E1 are well-typed.
case DINV: To apply rule RINV, the invoked unit’s body must
contain no duplicate names. The body of the unit can be α-renamed
to meet this. (Recall that the α relation can change the names of
definitions that are purely internal to a unit.)
case EPATH: By lemma 4.
case ECMPD: To apply rule RCPD, the various context domains
must match up, and the units’ bodies must not contain duplicate
identifier definitions among them. Since the ECMPD rule ensures

that all the context annotations meet these conditions, the unit
values can be α renamed to meet them.

Lemma 8 (Preservation).
1. Γ; ε ` Ds1 : Γ1, and Γ = CTXT(PC, Ds1), and PC is not a recursive

context, and ε; ε ` FLAT(PC, Ds1) : Γ, and PC[Ds1]  PC[Ds2]
implies Γ; ε ` Ds2 : Γ1.

2. Γ `R Ds1 : Γ1, and Γ = CTXT(PC, Ds1), and PC is a recursive
context, and ε; ε ` FLAT(PC, Ds1) : Γ, and PC[Ds1]  PC[Ds2]
implies Γ `R Ds2 : Γ1.

3. Γ ` D1 : B1, and Γ = CTXT(PC, D1), and ε; ε ` FLAT(PC, D1) : Γ,
and PC[D1] PC[D2] implies Γ ` D2 : B1.

4. Γ ` E1 : Ty1, and Γ = CTXT(PC, E1), and ε; ε ` FLAT(PC, E1) : Γ,
and PC[E1] PC[E2] implies Γ ` E2 : Ty2, and Γ ` Ty2 <: Ty1.

Proof sketch. Statements 1–4 are proved simultaneously by induc-
tion on the derivation that Ds1, D1, and E1 are well-typed.
case EPATH: By lemma 4, the fact that path lookup in a well-
formed context is deterministic, and by lemma 5.
case ECMPD: After RCPD converts a compound unit into non-
compound unit, the new unit’s body has a type because each of
the linkage substitutions replaces an identifier with one bound to
a subtype, as checked by the L rule. Thus lemma 6 applies. The
ordering of definitions in the body does not matter because they
are in a single rec definition. The context of the body’s definition
is a subtype of the export annotations’ associated contexts, and the
ECMPD rule checks that that context satisfies the resulting unit’s
export clause.

8. Related Work
Dreyer et al. [11] provide a definitive model of ML module sys-
tems, but it does not include support for cyclic dependencies. Type-
theoretic work on cyclic dependencies for ML has yielded the no-
tion of recursive dependent signatures [7] and an account of recur-
sive type generativity that resembles the backpatching semantics of
Scheme recursion [9]. Russo adapts the former to a practical exten-
sion of SML with recursive structures [26]; since functor linking re-
mains tied to functor invocation in this system, mutually-recursive
functions across functor boundaries work only with an eta expan-
sion, as discussed in section 4.3.

Dreyer’s dissertation [10] provides a critique of units in com-
parison to ML modules and approaches to recursive functors. His
comparison notes the problems with units that we address here with
the first-order module construct and translucent types, and he also
notes that units naturally avoid the “double-vision” problem. His
dissertation also contains a recursive module system that solves
these problems, but does not support separate compilation.

Harper and Lillibridge [14] introduced translucent sums at the
same time as Leroy’s manifest types [20]. These systems intro-
duced the kind of translucency added to units in this paper, but
neither system supports recursive linking. Harper’s system sup-
ports first-class functors that obey a phase distinction allowing type
checking to fully precede evaluation. Units are first-class values in
the same way as these functors; however, we require that each unit’s
imports and exports appear in the source program (possibly using
signatures), which mitigates the decidability problems encountered
in first-class translucent sums.

Mixin modules [12, 17, 22, 32] support the separation of mu-
tually recursive program values across modules. Like units, mixin
modules separate the composition operation from the invocation
operation. Ancona and Zucca define a core calculus for module
systems with higher-order and recursive features [3], and their line
of work has produced a module system for Java [2]. More recent
work on polymorphic bytecode [1] addresses both direct and indi-
rect references, much like structures and functors. This work is sim-
ilar in spirit to ours, but with no connection to SML-style concerns



such as translucency, sharing by specification, etc. Scala [24] sup-
ports component programming with a class-, object-, and mixin-
based approach that has a much different flavor than the ML/unit
approach.

Many programming languages have a module system that man-
ages a global namespace and supports direct reference among the
modules, including Haskell [18], Ocaml (top-level structures) [21],
and Java (called packages). Often read-eval-print-loop-based lan-
guages have module systems that support direct reference, but not
a global namespace. These languages include Bigloo Scheme [27],
Scheme48 [19], Chez Scheme[31], and structures in SML [23] (var-
ious extensions to SML add a global namespace of compilation
units [4, 6, 28]). Our work recognizes the importance of supporting
such a module system.

9. Conclusion
Our model of units and modules supports translucent and opaque
type imports and exports, independent unit compilation, and re-
cursive unit linking that avoids ill-founded recursive module def-
initions without requiring manual intervention (although recursive
value definitions could be ill-founded). We are unaware of any other
module system that satisfies these criteria.

Our model accounts for internal linking and external linking as
orthogonal concepts. Although external linking offers the greatest
flexibility for code re-use, programming without any internal link-
ing is infeasible. For example, the fully functorized style of ML
programming, which requires external linkages that are performed
by functor application, enforces a high overhead on the program-
mer in cases where parameterization is unnecessary. Furthermore,
the system that manages the externally linked entities must support
direct references and internal linking, so that the programmer can
refer to the particular components that he wishes to externally link.

The extent to which a practical language emphasizes internal or
external linking is an important design decision. In PLT Scheme,
top-level modules support compilation management and direct ref-
erences, and unit values can appear freely in the program. This al-
lows the programmer freedom in choosing the amount of either
style of linking. For cases when a heavily component-oriented style
is desired, we have implemented a top-level construct that is a com-
bination of both unit and module. We compile this construct into a
module that contains a unit, separating out its aspects into the (un-
typed version) of our model of modules and units.
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