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ABSTRACT

Domain-specific languages (DSLs) provide features such as notations, semantics, abstractions,

and more that help programmers solve domain problems in more direct, correct, or flexible ways

than using a general-purpose language. Embedded DSLs expand on the benefits of DSLs by pro-

viding an easier path to implementation, as well as better interoperability with a host language and

other DSLs embedded into the same host. However, embedded DSLs present additional challenges

for implementation, integration, and application.

This dissertation addresses various challenges of embedded DSLs. We address parsing em-

bedded domain-specific notations with a novel parsing algorithm. Our parsing algorithm admits

arbitrary, ambiguous, left-recursive, procedural parsers, advancing the state of the art for expressive

parsing. We address host language and DSL integration with the example of an embedded shell

language. This shell language demonstrates design for tight integration, allowing smooth growth

from interactions to programs. We address DSL application with the example of a DSL for creating

random program generators. This DSL allows fuzzers for programming language implementations

to be created quickly and with low effort.
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CHAPTER 1

INTRODUCTION

A domain-specific language (DSL) provides programmers with a framework for solving prob-

lems limited to a particular problem domain rather than being a general-purpose tool. A DSL may

provide domain-specific notations, semantics, data structures, or abstractions, or any combination

of these features. DSLs may be created for various purposes, such as to improve programming

convenience, program correctness, program legibility, programmer productivity, or accessibility to

domain experts who are not programming experts.

While DSLs may be written as stand-alone languages, DSLs often need to communicate with

general-purpose languages (GPLs) or rely on general-purpose features as part of the language such

as control flow or data structures. Embedded DSLs (EDSLs) solve this problem by being embedded

directly into a GPL. This embedding allows EDSLs to share components with the host GPL, easing

DSL development, communication between the DSL and the host, and even fine-grained mixing of

the DSL and the host within a single file, module, or expression. Because embedding eases these

concerns, it also allows multiple DSLs to be mixed together with much greater ease.

While EDSLs provide many benefits, they also pose some challenges. Parsing is more com-

plicated when dealing with the concrete syntax of a composite language with multiple notations.

Identifying useful domain targets, designing DSLs, and implementing them is a challenge requiring

expertise in problem domains as well as in programming language design and implementation.

Even when a good domain and language design are known, it can be challenging to design a good

embedding of a DSL within a host language.

This dissertation advances knowledge in language-oriented programming in the implementation,

integration, and application of domain-specific languages. We explore the implementation of DSLs

through a novel parsing algorithm that improves the expressiveness and flexibility in the concrete

syntax of DSLs. We explore the integration of DSLs through Rash, a command language that

allows shell commands and Racket functions to be mixed at the expression level. We explore the
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application of DSLs through Xsmith, a DSL for defining automatic program generators for testing

language implementations.

In our first project we design and implement a parsing system that allows improved expressivity

and compositionality of domain-specific and general-purpose programming syntax. While parsing

is a problem as old as programming, it still poses significant challenges for defining and mixing

domain-specific notations. Our algorithm is the first parsing algorithm to support arbitrary parsing

procedures, including left-recursive procedures, as parsing productions; to support data-dependent

and other context sensitive constructions; to support the full class of context-free grammars, includ-

ing ambiguous grammars; to support dynamic extensibility; and to support grammar definition and

composition with any mix of ad hoc procedures, parser combinators, and declarative formats like

Backus-Naur Form (BNF). Other algorithms lack support for many of these features, making the

definition and composition of many notations difficult, impractical, or impossible. Our algorithm

includes a novel method of handling the left-recursion problem in parsing by using first-class

delimited continuations. We implement this algorithm as a Racket library called Chido Parse.

Our second project, Rash, is a command language embedded in the general-purpose language

Racket. Command languages like the Bourne Shell provide users the ability to richly interact

with computing environments, and allow users to capture those interactions and convert them

into reusable programs. However, there are tensions between interactive conveniences and fea-

tures needed for reliable, maintainable programs. Typically, command languages allow convenient

interactions and growth to scripts that are near-literal transcriptions of interactions, but fail to

allow a gradual and full growth from these simple scripts to larger programs. Rash provides a

pipeline semantics that allows extensible, fine-grained mixing of operating system subprocesses and

Racket functions. Additionally, Rash provides a concrete syntax that allows the recursive mixing of

line-oriented shell-style code and Racket code. Rash allows a smooth path for interactions to grow

not only to simple scripts, but into full programs that can utilize all Racket features.

The goal of our third project is to develop a domain-specific language for programming language

implementation fuzzing. Fuzzers are helpful in finding bugs that developers, test suites, and type

systems have missed. However, many fuzzers can only find limited sets of shallow bugs, such

as crashing bugs in early stages of parsing or input analysis. Fuzzers that produce grammatically

and semantically valid inputs can find deep bugs that pass many layers of validation code, and

differential testing provides an oracle for a much broader class of bugs than simply detecting crash
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bugs. But fuzzers that produce tests to be useful in differential testing are difficult and expensive to

build. We propose a domain-specific language called Xsmith for building highly effective fuzzers

for programming languages. Xsmith allows users to specify their language’s grammar, type system,

and other rules to create a fuzzer that produces valid, deterministic programs. These fuzzers are

cheap to write with few lines of code, but are capable of finding deep bugs.

These projects advance the state of the art in the implementation, integration, and application of

embedded domain-specific languages. By admitting arbitrary, ambiguous, left-recursive, procedural

parsers, Chido Parse advances the state of the art for expressive parsing for embedded and mixed

notations. Rash demonstrates the design for tight integration of an embedded shell, allowing smooth

growth from interactions to programs. Xsmith applies EDSL techniques to allow fuzzers to be

implemented with low cost.



CHAPTER 2

EXPRESSIVE PARSING WITH DELIMITED

CONTINUATIONS

When creating embedded DSLs, any custom notation is constrained by parsing technology.

Different parsing technologies support different language classes, and provide different expressive

affordances to programmers. Different parsing systems also have very different attributes and

affordances when considering language composition. If a custom notation and the host notation

are to be mixed together, a composite parser must be created. While a single composite parser may

be written, it requires more effort than simply composing two parsers where possible. Also, writing

composite parsers from scratch rather than composing existing parsers does not scale to composing

several languages (all together or in pairs).

Recursive descent parsers can handle context-sensitive grammars, they can be written in a direct,

procedural style, and they can be extended easily with new parsing procedures—even dynamically.

However, recursive descent parsers do not support all context-free grammars, at least not in a direct

and extensible form, because they do not support ambiguous or left-recursive grammars.

Generalized parsing algorithms like GLL (Scott and Johnstone 2010), meanwhile, support all

context-free grammars, including ambiguous and left-recursive grammars, they allow for flexible

grammar composition, and they support declarative interfaces like Backus Naur Form (BNF) (Mc-

Cracken and Reilly 2003). Then again, GLL is limited to context-free grammars, while many

constructs used in programming languages are not context-free. While procedural recursive descent

and GLL offer complimentary strengths, they have not previously been composable due to the

left-recursion problem.

Our novel parsing algorithm in Chido Parse combines the benefits of recursive descent parsing

and GLL parsing. To handle left recursion and ambiguity with procedural parsing, the algorithm

captures and schedules delimited continuations to resolve dependency cycles and to explore alter-

native parses. Chido Parse supports the entire class of context-free grammars and beyond, while



5

allowing programmers to write and compose parsers using any mix of parser combinators, declar-

ative formats, and ad hoc procedures. The algorithm thus supports the entire class of context-free

grammars and beyond, while allowing programmers to write and compose parsers using any mix of

parser combinators, declarative formats, and ad hoc procedures.

2.1 Introduction
Procedural recursive descent parsing is a simple strategy that has many benefits. First, pro-

grammers use the parsing system by simply writing procedures in their programming language of

choice. Second, the parsing system can provide easy hooks for extension. For example, Racket’s

S-expression parser uses a readtable, which is a table mapping short character prefixes to parsing

procedures, and users can create new parsers by extending the current readtable with custom proce-

dures. Finally, procedural parsing systems can support dynamic extension. For example, Racket’s

default S-expression parser includes a #reader production, which causes the parser to dynamically

load a new module that is named by the next token; that module supplies a parsing procedure to

continue reading from the current input stream. Using this mechanism, programmers can extend

the grammar of their language on the fly, without needing to create separate modules for every

combination of parsers.

Although it has several benefits, classical procedural parsing also has significant limitations.

Procedural parsers are easy to compose in series, but they are difficult to compose as alternates;

some framework is required to determine which procedure is appropriate to use at a given point in

the input stream. This weakness is reflected in the traditional readtable API, which dispatches to a

parsing procedure based on a one- or two-character lookahead. A two-character lookahead is not

even good enough for Racket’s base syntax, which includes both #reader and #rx forms; parsers

for those forms must be implemented within a single procedure in Racket’s parser. Also, while

procedural recursive descent parsers can parse languages outside the formal category of context-free

grammars, they cannot parse all context-free grammars conveniently. Left-recursive grammars,

including grammars with the natural specification of infix operators, would cause infinite recursion

if they were expressed directly in recursive descent.

In contrast to recursive descent parsers, generalized parsing systems such as GLL (Scott and

Johnstone 2010) and GLR (Tomita 1985) support the full range of context-free grammars, including

ambiguous and left-recursive grammars. Additionally, because context-free grammars are closed
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under union, concatenation, and repetition, generalized systems based on context-free grammars

support rich composition capabilities. But while these systems support the entire set of context-free

grammars, they do not support context-sensitive grammars, which are needed by features of many

popular programming languages. For example, the off-side rule used by Haskell and Python and the

@-expression notation used in Racket’s documentation system are both context-sensitive. While

there are some extensions to GLL and GLR to support some context-sensitive languages, they also

do not support embedding existing or custom parsing procedures into a grammar, like the dynamic

grammar extension of Racket’s #reader.

Our new parsing system, Chido Parse, is organized as an extended GLL to combine the benefits

of GLL with the benefits of procedural parsing. It allows procedures as parser productions, and it

uses delimited continuations (Danvy and Filinski 1990; Felleisen 1988; Sitaram 1993) to detect

and manage left recursion in procedural sub-parsers. To handle ambiguity, parsers can return

multiple parse derivations, and a tentative result from a parsing alternative can be discarded if it

does not succeed in later sequential combinations. By admitting arbitrary, ambiguous, left-recursive,

procedural parsers, Chido Parse achives expressiveness beyond that of existing parsing systems.

Our main contributions are the following:

‚ A new method for allowing left recursion, including hidden left recursion, in procedural

parsing by using delimited continuations.

‚ A generalization of the recursive descent and GLL algorithms to allow grammar productions

to be defined by arbitrary procedures.

‚ A concrete implementation of this system as a library called Chido Parse.

‚ A demonstration that this new algorithm and library improve on the state of the art for the

creation of composable and extensible grammars for programming languages, discussed in

Section 2.6.1.

2.2 Motivating Examples
As a running example for this section, we will discuss an infix arithmetic expression grammar.

We will begin with just basic components, and eventually reach a language with the grammar shown

in figure 2.1, capable of parsing expressions such as 3*7^6+5.
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A recursive descent parser is a function from an input stream, which is called a port in Racket

terminology, to a parse derivation, typically an S-expression enriched with source-location infor-

mation in Racket. To fit into the Chido Parse framework, a parsing function must be wrapped

with proc-parser. Procedural parsers may dispatch to other parsers using parse*-direct,

and extract parse results from returned derivations using d-result. Parse derivation objects are

assembled with the d constructor, which accepts a semantic result as well as optional keyword

arguments for subderivations or derivation end locations using Racket’s #:keyword syntax.

(define plus
;; The functions `proc-parser`, `parse*-direct`, `d`, and functions
;; prefixed with `d-` are part of the Chido Parse API.
(proc-parser
(λ (in)
;; Parse an expression, an operator, and an expression in sequence.
(define l (parse*-direct in expression))
(define op (parse*-direct in "+"))
(define r (parse*-direct in expression))
;; The `d` function constructs a derivation, and optionally
;; includes sub-derivations with the `#:ds` keyword.
(d (list 'plus (d-result l) (d-result r)) #:ds (list l op r)))))

Note that throughout the chapter, we will insert snippets of Racket code to demonstrate parsing ideas

discussed. While the snippets of code use somewhat abbreviated names, the code is otherwise real

working code. Because working code often includes details unrelated to the discussion at hand, and

to help familiarize the reader with Racket code and the Chido Parse API, we include code comments

to help the reader understand the core ideas of each example. Instead of writing parsing functions

completely by hand, they can be constructed with combinators. Chido Parse provides combinators

such as sequence, repetition, alt-parser, not-parser (which succeeds when the parser

given to it fails), and peek-parser (which parses ahead but returns a derivation that consumes no

input).

;; The `alt-parser`, `kleene-plus`, and `char-range-parser` functions
;; are provided by Chido Parse.
(define expression (alt-parser plus number))
(define number (kleene-plus (char-range-parser "09")))

The above example is left recursive, because (parse*-direct in expression) leads back

to the plus parser via (alt-parser plus number). In a naïve implementation of procedural

parsing, this left recursion would cause an infinite loop. By capturing first-class delimited contin-

uations, Chido Parse detects the left-recursive dependency cycle, de-schedules the procedural plus
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parser, and schedules the number parser to resolve the cycle. When there is a cycle that can not be

broken, Chido Parse detects it and fails the cyclic parser, rather than looping indefinitely.

Even with left recursion handled automatically, the example expression parser has an issue:

it implements an ambigious grammar, because the plus operator can be treated as either left- or

right-associative. If we add other operators, we will add further ambiguity due to a lack of operator

precedence.

Chido Parse allows ambiguous grammars, and its parse* function returns a lazy stream of parse

results, so the example parser so far is not necessarily wrong. Usually a single result is desirable,

however, rather than a parse forest. Worse, ambiguous operator precedence and associativity makes

the number of parse results exponential in the number of operator uses! To have an efficient

parser that returns a single canonical result, Chido Parse lets a programmer filter ambiguity at its

source with disambiguation filter (Klint and Visser 1994) (Brand et al. 2002) combinators such as

derivation-filter:

(define filtered-plus
;; The `derivation-filter` function is a combinator from Chido Parse.
(derivation-filter plus
;; Filter to make a right-associative variant of `plus`.
;; This checks that the parser used to build the
;; leftmost subderivation was not the `plus` parser.
(λ (d) (not (equal? (d-parser (first (d-subderivations d)))

plus)))))

For many grammars, it is nice to simply write in a declarative notation like an extended Backus-

Naur form. Below is an example use of a BNF-in-S-expressions embedded DSL, where optional

#:keyword syntax allows declarative specification of precidence and associativity.

;; The `define-bnf` macro is provided by Chido Parse.
(define-bnf expression-grammar
;; This is an alternative definition of the `expression` parser
;; in a BNF-like form encoded in S-expressions.
[expression [number]

[expression "+" expression
#:associativity 'left]

;; Each clause here represents an alternate sequence,
;; with optional keyword arguments for disambiguation.
[expression "*" expression

#:associativity 'left
#:precedence-greater-than "+"]

[expression "^" expression
#:associativity 'right
#:precedence-greater-than "*"]])

Several non-procedural parsing systems, such as GLL and GLR, admit left-recursive, disambiguated

BNF-style declarations like this. However, they generally can not embed or create parsers for
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context-sensitive languages. Some extended systems, such as the extended Earley parser Yakker (Jim

et al. 2010) and the extended GLL parser Iguana (Afroozeh and Izmaylova 2015), can include data-

dependent parsing (Jim et al. 2010). Data-dependent parsing allows sequence parsers to capture

intermediate results and use arbitrary computation with those results to filter the overall result of

the sequence. With data-dependent parsing, Yakker and Iguana can parse some context-sensitive

languages, such as XML. But data-dependent generalized parsing systems such as the above still

can not embed arbitrary parsing procedures as grammar productions.

The above bnf-parser form is simply a composition of procedural and alternative parsers in

Chido Parse, wrapped in a macro to give it a declarative BNF feel. We can extend our bnf-parser

with arbitrary parsing procedures.

(define fancy-expression-grammar
;; The `extend-bnf` macro is provided by Chido Parse.
(extend-bnf
expression-grammar
;; Here we extend the BNF grammar from the previous code snippet
;; with three more alternates.
[expression [expression "/" expression

#:associativity 'left
#:precedence-greater-than "+"]

[procedural-complex-number-parser]
[dynamic-parse-loader]]))

(define procedural-complex-number-parser ...)
(define dynamic-parse-loader ...)

Of particular note is the above dynamic-parse-loader extension, which can dynamically

load parser modules while parsing. The dynamic-parse-loader allows fancy-expression-

grammar to be further extended dynamically within a module that uses fancy-expression-

grammar. An example of using a dynamically loaded parser is given in Section 2.5.4.

(define dynamic-parse-loader
;; This is a parser that loads extensions dynamically based
;; on the source code being parsed.
(proc-parser
(λ (in)
(define prefix (parse*-direct in "^"))
;; Read a module name as a symbol.
(define symbol (parse*-direct in symbol-parser))
(define dynamic-parser
;; Dynamically load a parser from the module specified.
(dynamic-require (syntax->datum (d-result symbol))

'dynamic-parser))
(define open-brace (parse*-direct in "{"))
(define dynamic-parse (parse*-direct in dynamic-parser))
(define close-brace (parse*-direct in "}"))
(d (d-result dynamic-parse)
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#:ds (list prefix symbol open-brace dynamic-parse close-brace)))))

2.3 Core Parsing Algorithm
We will describe our algorithm by describing a procedural recursive descent algorithm, then

generalizing it.

In our presentation of recursive descent, assume all recursive parsing goes through a parse

function, which takes a parser object and an input stream, which we will call a port using Racket

terminology, and returns a parse derivation object. A derivation object is a structure that contains

a start position, end position, and a semantic result for the parse. The most basic parser is a string,

representing a literal string to be parsed. The next parser object could be a function that takes a port

and returns a parse derivation.

(λ (in)
(define start (port-position in))
(define c (read-char in))
(d start (+ 1 start) c))

Note that our derivation constructor d used above and other parsing functions presented here are

simplified versions of those used in other sections of this chapter. Additionally, note that strings

as parsers are redundant, since parsers for literal strings may be defined as procedures. However,

literal string parsers both simplify our presentation and are convenient in practice.

A final parser object is an alternative parser, which stores a list of parsers that could be applied to

the port. How should the alternative parser choose which parser to execute? To solve this problem,

we modify our notion of procedural parsers. Rather than procedural parsers being merely a function

from port to derivation, they will be a structure containing such a function as well as a prefix. The

alternative parser can then choose a function based on longest prefix match.

(struct alt-parser (parser-list))
(struct proc-parser (prefix-string procedure))
;; The `d` struct will define a `d` constructor that takes
;; three arguments, one for each field.
;; The `d` constructor with optional arguments used
;; in the previous section is an extended wrapper for
;; this constructor.
(struct d (start end result))

This interface defines a simple procedural recursive descent parsing system where procedures

may recur by calling parse with either an alternative or a procedural parser. However, this system

displays some classic problems with recursive descent. First, if a procedure has the empty string as
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its prefix, it may “left recur” by calling parse at its starting position with itself or another parser that

is mutually left recursive with it. In a naïve implementation, this dependency loop causes infinite

recursion or, more practically, a stack overflow error. There are various proposed methods for

solving this left-recursion problem (Frost and Hafiz 2006). However, they all either greatly increase

computational complexity or require the parser to be rewritten in a way that obscures the parsing

logic. We propose a novel method for handling left recursion by using delimited continuations to

de-schedule left-recursive parsers.

2.3.1 Delimited Continuations

Before we describe our modified algorithm, let us review the core operations of delimited contin-

uations: call-with-continuation-prompt, abort-current-continuation, call-with-

composable-continuation, and application of captured continuations (illustrated in figure 2.2).

The call-with-continuation-prompt (call/prompt) function takes a thunk to run, a

prompt tag, and an abort handler function. It then installs a prompt (with the supplied handler) in

the current continuation and executes the supplied thunk.

The abort-current-continuation (abort/cc) function takes a prompt tag and a value

to pass to the prompt’s abort handler. It then aborts the current continuation up to the prompt,

replacing that section of the continuation with an expression that applies the prompt’s handler to the

given value.

The call-with-composable-continuation (call/comp) function takes a function of one

argument, in this case k, and a prompt tag. It captures the current continuation up to the prompt

with the matching tag, and executes the given function, passing the continuation in as k. When

applying a captured composable continuation k, the captured continuation frames do not replace the

current continuation stack, but rather are added to the end of the stack. In other words, the captured

continuation k behaves like a normal function.

2.3.2 Parsing With Delimited Continuations

To solve the left-recursion problem with delimited continuations, the parse function must

install a delimited continuation prompt around a call to a parsing procedure. When a recursive

call is made, the parse function can de-schedule the parent parser by capturing and aborting its

continuation delimited by the previous prompt. Using this method, we can view each call to parse

as a job that can be descheduled to resolve cyclic dependencies. When jobs are descheduled, the
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〈exp〉 ::= 〈exp〉 + 〈exp〉
| 〈exp〉 * 〈exp〉
| 〈exp〉 / 〈exp〉
| 〈exp〉 ^ 〈exp〉
| 〈nat〉

〈nat〉 ::= 〈digit〉+

〈digit〉 ::= 0-9

Figure 2.1: Arithmetic Grammar

(+ 3 [])

(* [] 7)

(call/prompt
 (λ () (- (foo) 9))
 prompt
 handler)

(+ 3 [])

(* [] 7)

prompt handler

((λ () (- (foo) 9)))

call-with-continuation-prompt

(+ 3 [])

(* [] 7)

prompt handler

(- [] 9)

(/ 3 [])

(call/comp
 (λ (k) body) prompt)

(+ 3 [])

(* [] 7)

prompt handler

(- [] 9)

(/ 3 [])

body

k = 
(- [] 9)

(/ 3 [])

call-with-composable-continuation

(+ 3 [])

(* [] 7)

prompt handler

(- [] 9)

(/ 3 [])

(abort/cc prompt v)

(+ 3 [])

(* [] 7)

(handler v)

abort-current-continuation

(+ 3 [])

(* [] 7)

prompt handler

(- [] 9)

(/ 3 [])

(k v)

k = 
(- [] 9)

(/ 3 [])

(+ 3 [])

(* [] 7)

prompt handler

(- [] 9)

(/ 3 [])

(- [] 9)

(/ 3 [])

v

apply composable continuation

In these diagrams, ovals represent continuation frames and [] represents the “hole” in a continuation
where a result will go. Continuation stacks grow down.

Figure 2.2: Delimited Continuation Operations
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continuations are stored in job records along with the job’s dependency. When a dependency cycle

can not be resolved, rather than looping indefinitely, the scheduler can simply return a parse failure

for the job that caused the cycle. While we will continue to explain the algorithm in prose here, those

desiring further clarity may wish to consult the appendix, which includes a model implementation

as a literate program.

Scheduling parse jobs begins with an original call into a parse function, and scheduling is

performed greedily to satisfy that root parse call. Each time a recursive call to one of Chido Parse’s

parsing functions is made, the current job is de-scheduled and a dependency is created linking the

de-scheduled job to the job for the recursive call.

Each parsing job contains dependency information, so we can traverse a graph of dependencies.

In particular, we can trace a path from the root job to any other parsing job. When a job J is

de-scheduled with a dependency on a job K that is already on the dependency path from the root

job to J, it indicates a left-recursive cycle.

When a left-recursive cycle is found between jobs J and K, it can potentially be resolved by

scheduling a different choice from any alternate parsers on the path between J and K (inclusive of J

and K). If all choices from alternates between J and K are stuck in cycles (or if there is no alternate

between J and K), then the cycle is broken by returning a parse failure result to job J. This situation

arises, for example, in an infix arithmetic parser when each infix operator alternate is waiting for

a parse of the left expression at a position when no non-infix expression can be parsed, or when a

series of successively larger infix expression parses finally matches the entire expression and can

not find any new ambiguous parse trees to be on the left-hand side.

The next problems with our system stem from ambiguity. Consider the following expression

grammar:

(define expression (alt-parser (list number plus)))
(define number (proc-parser "" (λ (in) #|parse a number...|#)))
(define plus

(proc-parser "" (λ (in)
(define start (port-position in))
;; Parse expression, op, expression in sequence.
(define l (parse in expression))
(define op (parse in "+"))
(define r (parse in expression))
(d start (d-end r)

(list 'plus (d-result l) (d-result r))))))

The intent of this parser is for the expression parser to return multiple results, first for a number,
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then potentially for an addition expression where the first number is its left argument. Additionally,

the grammar leaves the associativity of the plus operator ambiguous, meaning that there could be

several valid parse derivations for a series of plus operations. However, our current parse API

returns just one derivation per call! To fix this, we can instead define parse*, which is like parse

but returns a lazy stream of results, where getting the next value in the stream forces computation

back into the parsing system. This allows alternative parsers to return results from each of its

parsers, and even multiple results from each parser. Additionally, for ease of programming, we allow

procedural parsers to return a stream tree of results, which we (lazily) flatten into a single stream

to be returned from parse*. It should be noted that forcing computation from a stream of parse

results may trigger a left-recursive computation, so it is important that the stream implementation

wrap its computation with a continuation prompt as a parsing job.

We can now define a new version of plus that handles ambiguity:

(define plus
(proc-parser
""
(λ (in)
(define start (port-position in))
(for/stream ([l (parse* in expression start)])

;; For each ambiguous derivation from the previous parser,
;; use the next parser at the end point of the derivation.
(for/stream ([op (parse* in "+" (d-end l))])

(for/stream ([r (parse* in expression (d-end op))])
(parse-derivation start (d-end r)

(list 'plus (d-result l) (d-result r)))))))))

Note that the implementation is much more complicated due to ambiguity. Rather than working

with a single result from each parse*, we must account for the possibility of multiple results using

the for/stream form, which lazily loops over a stream, with the body returning once per stream

element. Since multiple derivations returned by parse* may have different lengths, we need to add

a third argument for the start location to the parse* function. Additionally, we need a rewindable

version of our input port object.

To return our implementation of plus to its former simplicity, we introduce parse*-direct,

which leverages delimited continuations to implicitly loop over a stream. The parse*-direct

function also has an associated continuation prompt that is installed each time a job is run, after

the job prompt. When parse*-direct is called, it captures its continuation up to its prompt, then

loops over parse*’s result stream by calling the continuation, wrapped in another parse*-direct

prompt, inside for/stream.
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(define (parse*-direct in parser position)
;; `call/comp` captures the continuation (without replacing it).
(call/comp (λ (k) (abort/cc parse*-direct-prompt

;; `abort/cc` replaces the continuation with this thunk.
(λ () (for/stream ([deriv (parse* in parser position)])

(k deriv)))))
parse*-direct-prompt))

By extending parse*-direct further to set the port location within the for/stream loop,

we can additionally make the start position argument optional. This allows us to write ambiguous,

left-recursive, procedural parsers in a direct style:

(define plus
(proc-parser ""

(λ (in)
(define start (port-position in))
;; Parse in series, like before, but implicitly
;; looping for each ambiguous result.
(define l (parse*-direct in expression))
(define op (parse*-direct in "+"))
(define r (parse*-direct in expression))
(d start (d-end r)

(list 'plus (d-result l) (d-result r))))))

To aid in understanding, figure 2.3 provides an overview of the Chido Parse API.

Ultimately, delimited continuations solve two problems: the left-recursion problem and the

problem of complicated, loop-filled code to handle ambiguity. Users of a parsing system that uses

this algorithm must know that their parsing code may run multiple times in an unspecified order, and

thus program functionally to avoid race conditions. Additionally, users should filter parse ambiguity

as close as possible to its source if they want to avoid exponential complexity, and must understand

the basics of the stream API. However, users do not need to understand the delimited continuation

API or the low-level details of the parsing algorithm to write parsers against it.

With the foundation of proc-parser and alt-parser, higher-level layers may be built and

composed. Parser combinators and disambiguation filters are straightforward to implement as

functions that construct proc-parsers, and declarative DSL interfaces like extended BNF can

also be constructed to desugar to calls to combinators and filters.

2.4 Applications
We have applied the Chido Parse library to a several practical problems in the Racket ecosystem.

While every feature of Chido Parse is not leveraged by every example, supporting the suite of

examples is not possible without support for arbitrary left-recursive procedural parsers, dynamic
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extensibility, context sensitivity, and composability.

2.4.1 Readtables and S-Expressions

Much of the motivation of this parsing project was to improve the status quo for creating parsers

for DSLs in Racket. Many Racket languages use a readtable, which is a dispatch table for parsers

that are written separately and then composed together. However, readtable-based composition is

limited and brittle.

A readtable has a table mapping of single-character prefixes to parsing procedures. When a

readtable is used to parse, the first character of the input is matched against the table. If a mapping

is found, the mapped procedure is applied. If no mapping is found, a built-in symbol parser is

applied. Prefix characters in the table have not only a parsing procedure, but also a flag to indicate

whether symbol parsing should stop at that character. The extra flag for symbol parsing frees users

from needing to craft an appropriate identifer parser when extending a readtable.

Setting the current-readtable parameter installs a modified readtable, and by convention

each parser in a readtable should use current-readtable for recursive parsing. This convention

allows each parsing procedure to access a customized readtable to apply or further extend for its

own recursive calls without needing to know anything about the other extensions in the readtable.

Readtable extension also lends itself to Racket’s “meta-language” protocol that allows users to com-

pose parser extensions. For example, the at-expmeta-language extends the current-readtable

with the Scribble documentation notation (prefixed with the @ character). So, a user may write a

module in #lang at-exp racket to use the Racket language extended with Scribble notation.

In happy cases where extension prefixes do not conflict, multiple such meta-languages may be

composed together.

The single-character prefix of readtables, however, is very limiting to Racket DSL developers.

For example, a readtable extension can not define a dollar-prefix parenthesis grouping $( ... )

that behaves different from normal parenthesis grouping ( ... ) without blocking other exten-

sions that begin with the dollar sign or making the dollar sign unusable as a character in symbols.

The limitation is so great that Racket’s readtable includes a one-off hack, making the hash (#)

character be the prefix of a second dispatch table. While the extra dispatch mode allows limited

use of two-character prefixes, there is a clear desire for longer prefixes. In fact, Racket’s default

prefix for regular expression literals is #rx, and Racket’s default prefix for dynamic parser module



17

loading is #reader. Because they both begin with the prefix #r, the #rx and #reader parsers

must be built together as a single procedure that dispatches on the extended prefixes, erroring when

none of the known prefixes match. Adding another alternate that begins with the prefix #r cannot

be done compositionally.

Thus, while readtables are useful for building parsers for certain languages, they disallow lo-

cal ambiguity, left-recursion, infix operators, and postfix operators. Languages that require these

features must be built using different parsing tools and can not share extensions or use the same

meta-language protocol as readtable languages.

Using the Chido Parse library, we have implemented a readtable-like parser constructor, called

chido-readtables. Like Racket’s readtables, chido-readtables include a default symbol parser that

can be automatically affected by extensions. Chido-readtables additionally use a similar convention

of referring to a dynamic current-chido-readtable parameter so that extensions can refer to a

fully customized table without information about the customizations. However, chido-readtables

allow arbitrary length prefixes, parsers with no static prefix, left-recursive parsers, and mixfix

operators with declarative associativity and precedence.

The following code creates three increasingly customized readtables. To create rt1, the current

readtable is accessed and extended with the “at-reader,” a parser for the context-sensitive Scrib-

ble (Flatt et al. 2009) notation. This extension automatically makes the built-in symbol reader stop

when encountering @ characters, disallowing them from symbols. This first extension matches the

capabilities of Racket’s core readtable interface.

(define rt1
;; extend to support Scribble @-reader
(extend-chido-readtable (make-at-reader-parser #:prefix "@")

(current-chido-readtable)))

;; read `$(a b c)` as `(#%dollar-paren a b c)`
(define rt2 (chido-readtable-add-list-parser "$(" ")" rt1 #:wrapper '#%dollar-paren))

;; read `a $+$ b $+$ c` as `($+$ ($+$ a b) c)`
(define rt3 (chido-readtable-add-mixfix-operator "_$+$_" rt2 #:associativity 'left))

However, the extensions applied to build rt2 and rt3 are possible only with the more powerful

Chido Parse readtable interface. The rt2 readtable is extended with a new list parser that begins

with the multi-character string "$(". While this extension automatically disallows symbols from

containing the string "$(", it does not disallow dollar signs in symbols generally, or prevent other

extensions prefixed with the dollar sign. In fact, rt3 extends rt2 with the infix operator $+$. Using
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rt3, users may embed Scribble documentation in their code, and code escapes inside the Scribble

documentation can still include $() lists and infix $+$ operations. Chido-readtable extensions may

always be added compositionally, although some compositions may ultimately create parsers for

ambiguous languages.

The chido-readtable abstraction is useful especially for extended s-expression languages, and

because Racket programmers are already comfortable using the similar readtable abstraction. Be-

cause they are simply Chido Parse parsers, chido-readtables are easily composable with other Chido

Parse parsers, giving Racket language designers extra flexibility to design and compose different

language components each with the interface that makes the most sense for that component.

2.4.2 Declarative Parsers

Grammars are often written in a declarative fashion using notations such as Backus-Naur Form

(BNF). These notations are popular because they are machine readable but also easy for humans to

read and reason about. However, it is often the case that a grammar written for humans will include

a simplified, ambiguous BNF grammar along with side-conditions that disambiguate the grammar.

Many parsing systems only allow basic BNF grammars, or even a limited subset of them due to a

lack of support for all context-free grammars. Some parsing systems such as SDF3 (Brand et al.

2002) support BNF with extensions that allow machine-readable specification of disambiguating

side conditions like operator precidence. A few systems such as Iguana (Afroozeh and Izmaylova

2015) support a BNF format extended to handle extra binding and computation clauses to implement

context-sensitive features such as off-side indentation rules in Haskell and Python, or tag matching

in XML.

Chido Parse allows users to write arbitrary procedures and consult arbitrary data structures to

perform parsing, to compose parsers, and to build parsing abstractions. In particular, this flexibility

allows users to build parser constructors that read BNF or other formats. We have included with

Chido Parse an extended BNF DSL that supports regular right-hand sides, capturing intermediate

results for data-dependent parsing, referencing procedural parsers as BNF productions, and declar-

ative specification of operator precedence and associativity disambiguation. Our initial BNF is

implemented as an s-expression-based DSL as demonstrated in Section 2.3. However, we have

also used that DSL in s-expression notation to construct a parser to enable a more traditional BNF

notation.
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Here is an excerpt of an XML parser written using our declarative BNF-style DSL and notation.

Extra annotations, including %, @, and /, specify details about how the semantic parse result is

constructed, such as whether to include the name of the alternate in the result, where to splice

list elements, and whether to omit elements. Because XML requires opening and closing tags to

match, it is not a context-free language. While this XML parser is mostly declarative, it includes an

escape to use a disambiguation combinator to perform data-dependent filtering of parse results.

Specifically, it captures the result of the starting tag STag into a variable, then references that

variable to ensure that the ending tag ETag matches.

#lang chido-parse/bnf-syntactic
...
% element : @EmptyElemTag

| open = @STag
;; The Start Tag is captured as the variable `open`.
@content
;; Parse an End Tag, but filter to only tags that
;; match the Start Tag.
/$(derivation-filter

ETag
(λ (close) (equal? (derivation->tag-name open)

(derivation->tag-name close))))
...

2.4.3 Composition

In today’s polyglot programming landscape, many programmers want to (and do) mix multiple

languages in a single file. This is particularly visible in web programming, where there is a profusion

of HTML templating languages, JavaScript and CSS embedded in HTML, and bits of HTML and

SQL embedded in strings of front-end and back-end languages.

However, language embedding and composition are often rife with problems. Embedding

and interpolating bits of language syntax in strings for later interpretation commonly suffers from

security problems, in addition to irritating string escaping. Constructing a parser that can statically

parse the mixed languages often involves writing a complex, monolithic parser that encapsulates the

grammars of all mixed languages.

With Chido Parse we can write language parsers in a modular fashion and easily compose

disparate parsers. Resulting parsers allow a mixed-language file to be parsed in one pass and are not

vulnerable to injection attacks. For example, the following example combines our XML parser with

our readtable-based S-expression parser into a parser for ParenHP, a web preprocessor language

inspired by PHP (PHP: Hypertext Preprocessor 2020):
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(define parenhp-s-exp
;; hash-tag-parser uses parenhp-parser to parse tags
(extend-chido-readtable hash-tag-parser basic-readtable))

(define parenhp-parser
(extend-bnf xml-parser

[element ["<¿" parenhp-s-exp "¿>" #:result/stx (λ (l m r) m)]]))

The composite parser returns racket syntax objects where the XML portions represent expres-

sions that generate racket x-exprs, an s-expression encoding of XML data used by Racket’s web

server modules. Using this parser and some macro definitions, a user may produce a quick dynamic

web page that displays the client’s IP address and query parameters with the following code:

#lang chido-parse/demo/parenhp
<html>

<h1> Hello to <¿(request-client-ip (current-request))¿> </h1>
<p>Query parameters:
<¿(append #<ul/>

(for/list ([b (request-bindings (current-request))])
#<li><¿(car b)¿> is <¿(cdr b)¿></li>))¿>

</p>
</html>

2.4.4 Parser Profusion and Dynamic Extension

While we can create a composite parser in the manner of ParenHP by using a parsing module that

composes a set of parsers we care about, there are potentially very many interesting language combi-

nations. For example, a user might want to embed SQL queries, shell pipelines, logic programming

relations, user-defined data literals, and more, each with its own syntax. It would be impractical to

create such a module for each member of the (ever growing) superset of DSL notation parsers. It is

more tenable to allow users to create ad hoc composite languages with dynamic extension loading

and composable meta-languages.

One approach to notation mixing in macro-extensible languages like Racket is to embed DSL

code in strings and parse them during macro expansion. This approach is optionally used by some

Racket-based DSLs such as Rash (Hatch and Flatt 2018).

(require rash)
(for/list ([x (list "earth" "mars")])

;; Use the `echo` unix program, pipe its output to
;; the Racket `string-append` function.
(rash "echo hello |>> string-append _ x"))

This delayed-string approach does not suffer from common issues with run-time code string

interpolation, because the strings are parsed as part of macro expansion during compilation, and the

approach can be used with any parsing technology. However, this approach is not well composable
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with common “quasiquoting” macros, such as Racket’s syntax form used to instantiate syntax

templates. In the following example, the syntax-parse form matches the syntax object for

the string "world" as the pattern variable x. The syntax form on the right-hand side eagerly

substitutes all instances of x in its template with the syntax for "world". But because the x on

the right hand side is inside a string that has not yet been parsed, the substitution will be missed,

resulting in an unbound variable error—or, worse, an unintentional capture of a different variable

named x.

(require rash syntax/parse)
(syntax-parse (syntax "world")

[x (syntax (rash "echo hello |>> string-append _ x"))])

By dynamically loading parser extensions in a procedural parser like Chido Parse, embedded

notations can be parsed together in one parsing phase before macro expansion, sidestepping issues

with delayed string parsing. In the below example, we assume a module parser that includes a

parser like the dynamic-parse-loader defined in Section 2.3. The module parser does not

include any built-in support for parsing Rash code, but it can be dynamically included using the

dynamic-parse-loader. In this manner, the module parser can provide dynamic, extended

language support without delaying any parsing to expansion time.

(require rash syntax/parse)
(syntax-parse (syntax "world")

[x (syntax ^rash-parser{
echo hello |>> string-append _ x

})])

While the features of the applications above can be implemented in isolation with other parsing

systems, Chido Parse enables these and other applications to be implemented and composed all

together in a single system.

2.5 Evaluation
We evaluate Chido Parse by considering aspects of its utility for parsing, including expressive-

ness, static analyzability, failure reporting, algorithmic complexity, and performance.

2.5.1 Expressiveness

The main goal of designing Chido Parse was to create a maximally expressive and flexible

parsing system. In particular, we had the goal of supporting several specific features required to

support all the applications listed in Section 2.5:
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‚ Support for constructing and composing parsers using any mix of ad hoc procedural parsers,

declarative formats like BNF, and parser combinators.

‚ Support for dynamic parser extensibility.

‚ Support for ambiguous and left-recursive grammars.

‚ Support for the entire class of context-free grammars.

‚ Support for context-sensitive grammars, including but not limited to data-dependent gram-

mars (Jim et al. 2010).

As shown in figure 2.4, Chido Parse is the first system to accomplish all of these goals.

While figure 2.4 demonstrates Chido Parse’s expressiveness, the rest of the evaluation section

focuses on aspects of parsing where Chido Parse has room for improvement.

2.5.2 Static Analysis

For various applications it is important to statically analyze a parser. Chido Parse allows the

embedding of arbitrary parsing procedures, and even dynamic extensibility, and is therefore not

well suited to these static analyses. Other, more limited parsing systems can afford much simpler

and more effective static analyses for optimization or making guarantees about a grammar.

2.5.3 Ambiguous Failure Messages

Generalized parsing systems that allow ambiguity, including Chido Parse, can follow several

paths to multiple successful parse trees. However, when a parse is unsuccessful, multiple paths

lead to multiple failure locations and messages. These ambiguous failure messages make it much

harder to design clear and precise failure reporting. This is an active research topic, and we leave

an optimal solution to future work.

2.5.4 Computational Complexity

Some generalized parsing algorithms can achieve a cubic worst-case complexity by using a

compact parse representation like SPPF (Tomita 1985) in which interior ambiguity is represented

by shared nodes. Because our procedural parsers can inspect intermediate results to make branching

decisions, we can not rely on a method for compacting ambiguous internal nodes to reduce complex-
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ity, allowing ambiguous parsers to exhibit exponential worst-case complexity. To demonstrate this

complexity, we performed an experiment parsing the following ambiguous expression grammar:
〈exp〉 ::= 〈exp〉 + 〈exp〉

| x

Because the grammar does not specify an associativity for the + operator, the number of parse

trees for an expression is exponential in the number of + instances. We benchmarked parsing on

expressions with different numbers of + instances, as shown in Figure 2.5 and Figure 2.6. Figure 2.5

shows that the time to parse the first result of the ambiguous stream seems nearly linear, but

Figure 2.6 shows that the time to process the entire stream of results is exponential. Additionally,

since procedural parsers may dynamically and arbitrarily construct and apply new parsers and do

any computation, our system may exhibit super-exponential complexity or may not terminate.

However, in the common case where disambiguation filters are used and exponential computa-

tion is not performed in parsing procedures, our system in practice enjoys near-linear complexity.

To demonstrate, we generated random s-expressions, printed them with Racket’s pretty printer, and

parsed them with our s-expression parser. Figure 2.7 shows parsing time by number of characters

in the textual s-expression representation. Figure 2.8 shows the same parse times compared to the

number of elements in the parsed tree representation. Both figures show time to exhaust the parse

stream, which in each case only contains one element.

All benchmarks were run single-threaded on an AMD FX-8350 processor, with 24GB of RAM,

using Nixos version 21.05 and Racket version 8.3cs.

2.5.5 Performance

Chido Parse is very expressive, but achieves expressiveness with some performace cost. While

computational complexity is near-linear for language parsers we have implemented, our current

implementation in Racket is not sufficiently performant to provide drop-in replacements for com-

mon parsing tasks. Our current implementation of a flexible, extensible s-expression parser runs

about 100 times slower than Racket’s default s-expression parser using Racket 8.0. This speed

may be acceptable for certain domain-specific languages where file sizes are small and flexibility

in concrete syntax is of the utmost importance, but not for the majority of Racket languages and

programs. However, we do not believe there is an inherent obstacle preventing significant perfor-
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mance optimizations. With approximately one order of magnitude improvement, it would cease

to be the slowest component in the compilation of common Racket modules and would become a

viable, practical tool for many DSL and extensible language projects.

2.6 Related Work
We compare Chido Parse to related parsing systems. In particular, we discuss left recursion,

context-free grammars, parser combinators, parser extensibility, and delimited continuations.

2.6.1 Left Recursion for Procedural Parsers

Various methods have been proposed to support left recursion in top-down procedural parsers,

including several listed by Frost and Hafiz (2006). Most of these methods either obscure the

resulting parser, fail to support some grammars, or result in exponential complexity.

Warth et al. (2008) describe a method for Packrat parsers to handle left recursion. This method

starts by seeding the Packrat memo tables with an initial failure result, causing left-recursive parsers

to fail. After an alternative parser succeeds, the modified Packrat parser re-runs the left-recursive

parser with the new results, called “growing the seed.” Additionally, the modified Packrat parser

keeps track of the stack of parsers to identify indirect left recursion and rerun parsers appropriately.

This modified version of the Packrat algorithm does not preserve the linear-time guarantee of the

original Packrat algorithm, but it increases the algorithm’s supported set of grammars to a superset

of PEG (Ford 2004) grammars. However, the extension does not add support for ambiguous

grammars.

Frost et al. (2007) describe a method to support left recursion by passing an extra parameter

when recurring to count the number of recursions. When the number of recursive calls to a given

procedure exceeds the remaining input length, recursion is curtailed. While this method is appli-

cable to any style of top-down parsing, it requires knowledge of the input length and can increase

algorithmic complexity by a large factor. In its original presentation in a memoized combinator

system without arbitrary parsing procedures, the system achieves an overall worst-case complexity

of O(n4). However, if arbitrary procedures are allowed, a naive implementation of this method of

left-recursion handling increases complexity by a factor of the grammar size raised to the power of

the input length, since each left-recursive alternate could run at each recursion depth.

Another method to achieve left recursion with procedural parsers is by explicit transformation
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to continuation-passing style (CPS) and memoization (Johnson 1995). The Meerkat (Izmaylova et

al. 2016) parsing system provides a parser combinator system that implements the memoized CPS

strategy together with the GLL parsing algorithm. Users could add custom parsing procedures to

Meerkat by extending its undocumented AbstractParser class. However, custom parsers in Meerkat

and other systems using this method for left recursion must be manually converted to continuation-

passing style, which is very cumbersome and obfuscates the resulting code.

Our method for handling left recursion can be used without prior knowledge of the input length

and only recurs into procedures that can make progress. While our overall parsing system ex-

hibits super-exponential worst-case performance, it is not due to the method of handling left-

recursion via delimited continuations. Our method achieves similar complexity to memoized ex-

plicit continuation-passing style, but because our method captures continuations automatically,

custom parsing procedures may be written in a direct style without manual CPS conversion.

2.6.2 Context-Free Grammars and Beyond

There are various generalized algorithms that support the entirety of the class of context-free

grammars, including GLL (Scott and Johnstone 2010), GLR (Tomita 1985), and Earley (Earley

1970) parsing. These algorithms are limited to context-free grammars, but support all context-

free grammars, including grammars with ambiguity and left-recursion. These algorithms admit

grammars in a form amenable to analysis and optimization. Unlike proper subsets of context-

free grammars such as LR and LL, the full set of context-free grammars is closed under union,

concatenation, and repetition, allowing the grammars supported by these generalized systems to be

composed with ease.

There are extensions to some of these algorithms that extend their power. The Syntax Definition

Formalism SDF3 uses an extended SGLR parser that allows some context-sensitive languages,

including indentation-sensitive languages that use the off-side rule, to be parsed with declarative

rules (Erdweg et al. 2012) (Amorim et al. 2018). Yakker (Jim et al. 2010) is an extension of

the Earley algorithm that allows intermediate results to be captured and used in computation of

side conditions for terminal and nonterminal productions. Additionally, Yakker supports blackbox

procedural parsers. Iguana is an extended GLL that similarly supports data-dependent parsing.

While computation in side-conditions allow Yakker and Iguana parsers to support context-sensitive

grammars, they do not allow arbitrary procedural parsing of the input stream. Yakker’s blackbox
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parsers allow limited procedural parsing, but blackbox parsers may not recur back into the Yakker

parsing system.

Chido Parse supports context-sensitive grammars by allowing arbitrary procedural parsing, in-

cluding predicate side-conditions. Procedural parsing also enables parse-time grammar extension by

using dynamic module loading. However, full static analysis of procedural parsers is undecidable,

so a procedural parsing system may not enjoy the same static optimizations that can be employed

in more limited systems.

2.6.3 Parser Combinators

Parser combinator systems, such as Parsec (Leijen and Meijer 2001), allow grammars to be

built by composing parser objects. Primitive parser objects in combinator systems may limited to a

particular set of parser or grammar objects, such as with Binsbergen et al. (2018), or the primitive

parser objects may be arbitrary parsing procedures (Wadler 1985). When arbitrary procedures

are allowed, these systems generally either execute infinite recursion when given a left-recursive

grammar or have exponential computational complexity in both the worst case and common case

for left-recursive grammars.

A noteworthy point in the design space is described by Danielsson (2010). In this system,

parsing procedures may be composed and proved to terminate, and some forms of left-recursion are

allowed. However, the system is limited to procedures and parsers that can be proven to terminate

within the dependently-typed logic of its implementation language.

Our system implements combinators that accept arbitrary parsing procedures while automati-

cally handling left-recursion by capturing delimited continuations. While our system has worst-case

super-exponential complexity, it enjoys near-linear complexity in common practical cases.

2.6.4 Language Workbenches and Extensible Grammars

Language workbenches and related systems such as SDF (Visser 1997), Metaborg (Bravenboer

and Visser 2004), Spoofax (Kats and Visser 2010), Rascal (Klint et al. 2009), and Racket (Flatt and

PLT 2010) rely on extensible parsing systems to provide re-usability and composability of language

components. Language workbenches are limited in the languages they can effectively support by

the power and expressiveness of the parsing systems they use. Empowering language workbenches

to support a broader set of languages while also supporting more flexible ways of specifying parsers

for those languages is the primary goal of Chido Parse.
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Many advances in powerful and expressive parsing systems have been designed for use in

language workbenches, such as SGLR (Visser 1999), Iguana (Afroozeh and Izmaylova 2015),

and Meerkat (Izmaylova et al. 2016). These and similar parsing systems allow a direct encoding

of ambiguous patterns such as infix operators with annotations to encode disambiguation filters.

Generalized systems like GLR admit the entire class of context-free grammars, allowing grammars

to be composed. SGLR further improves composability by removing a dependence on separate,

non-composable lexical analysis stages. While the original formulations of GLL, GLR and SGLR

are restricted to context-free grammars, Meerkat and Iguana improve parsing power by extending

beyond the set of context-free grammars by introducing data-dependent parsing.

However, these systems do not support other context-sensitive grammars beyond context-free

or data-dependent grammars. Also, these systems do not allow writing parsers in a mixture of

BNF, combinator, and procedural styles, and generally do not support dynamic parser extension.

In addition to supporting context-free and data-dependent grammars, Chido Parse supports other

context-sensitive grammars, allows any mixture of ad hoc procedural parsers, combinators, and

BNF specifications to be composed, and allows dynamic parser extensibility.

2.6.5 Delimited Continuations in Parsing

Kiselyov (2009) shows that delimited continuations can be used to make a parser incremental

and restartable. Chido Parse does not use delimited continuations to provide incrementality, but

rather to solve the left-recursion problem.

2.7 Conclusion
We have demonstrated various limitations of the expressiveness and convenience of extant

parsing technology. We have presented a novel parsing algorithm that combines the benefits of GLL

and ad hoc procedural parsing to overcome those limitations, as well as a novel method for handling

left-recursion in procedural parsers that enables this combination. Our system allows users to write

and compose parsers, including for ambiguous, left-recursive, and context-sensitive grammars, and

allows parsers to be written and composed using declarative abstractions like BNF, using parser

combinators, or in a direct, procedural style. We have given examples that demonstrate how this

algorithm solves problems in creating extensible and composable languages.
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‚ parse* :
Contract: input-port? parser? [optional (or/c int? parse-derivation?)]
-> (stream-of parse-derivation?)

Note: The normal empty stream at the end of a derivation stream may be replaced by a parse-
failure object

‚ parse :
Contract: input-port? parser? [optional (or/c int? parse-derivation?)]
-> (or/c parse-derivation? parse-failure?)

Note: If parse* would have returned a stream of more than one result, a failure is returned.
‚ parse*-direct :

Contract: input-port? parser? [optional (or/c int? parse-derivation?)]
-> (or/c parse-derivation? parse-failure?)

Note: While a single result is returned to the continuation where parse*-direct is used, the
continuation may be invoked multiple times. Effectively, use of parse*-direct turns the
outer parser procedure into a loop instead of requiring the user to write a loop.

In the contract notation used above, or/c indicates that any of the included options are valid. The
notation [optional contract] used in procedure contracts indicates an optional argument.

Figure 2.3: Overview of Chido Parse API
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Chido Parse ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Exponential †2

GLL ✓ ✓ ✓ ✓ ✓ ✓ ✓ Cubic

GLR ✓ ✓ ✓ ✓ ✓ ✓ Cubic

Earley ✓ ✓ ✓ ✓ ✓ ✓ Cubic

CYK (Younger 1967) ✓ ✓ ✓ ✓ ✓ Cubic

Parsing With Derivatives †6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Cubic

Yakker ✓ †3 ✓ ✓ ✓ ✓ ✓ Cubic if limited to CFG †2

Iguana ✓ ✓ ✓ ✓ ✓ ✓ Cubic

Meerkat ✓ †4 ✓ ✓ ✓ ✓ †4 ✓ ✓ Cubic †2

Packrat †5 ✓ ✓ ✓ Linear

Parsec ✓ ✓ ✓ ✓ ✓ †2

Frost et al. 2008 ✓ ✓ ✓ ✓ ✓ ✓ ✓ n4

Procedural Recursive Descent ✓ ✓ ✓ ✓ ✓ †2

LR ✓ ✓ ✓ Linear

Rows for algorithms imply the basic version of the algorithm, while rows for implementations
generally imply an extended version of one of the algorithms.
:1 By “Purely declarative”, we mean that a system lacks a Turing complete component, allowing
more opportunities for static analysis.
:2 Parsing systems that admit arbitrary procedures may exhibit arbitrarily large complexity or non-
termination based on the procedures used.
:3 Yakker (Jim et al. 2010) allows “blackbox” parsing procedures to be used as nonterminals, but
they can’t recur back into the Yakker system.
:4 The Meerkat (Izmaylova et al. 2016) implementation supports custom procedural parsers in an
undocumented way, but not in the public interface.
:5 The original formulation of PEG (Ford 2004) and Packrat (Ford 2002) parsers does not support
left-recursion, but (Warth et al. 2008) describes a memoization technique for Packrat parsers to
support left-recursion. This modification increases the computational complexity of the parser,
however.
:6 (Might et al. 2011) (Adams et al. 2016)

Figure 2.4: Comparison of Parsing Algorithms and Frameworks
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Figure 2.5: Ambiguous operator parsing, time to first result
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Figure 2.6: Ambiguous operator parsing, time to stream end
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Figure 2.7: S-expression parsing by string length
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Figure 2.8: S-expression parsing by parsed tree size



CHAPTER 3

RASH: FROM RECKLESS INTERACTIONS TO

RELIABLE PROGRAMS

Embedded DSLs offer the possibility of both easier implementation, due to re-use of host

language features, and of greater expressiveness, due to integration with the host language and other

DSLs embedded into the same host. However, for an embedded DSL to maximize its expressive

power compared to a stand-alone DSL, it requires careful design to accommodate tight integration

between the DSL and its host.

This chapter discusses Rash, a command shell language embedded in Racket. It provides an

example of design for tight integration of EDSLs. Specifically, it is designed by decomposing

the notational and semantic requirements, and designing both the notation and semantics of the

DSL to integrate tightly, at the expression level, with the host language. This design allows fine-

grained, recursive nesting of the shell DSL and the host. Additionally, Rash provides an example of

exposing and extending the host language features that allow an embedded language to be built by

providing access to Racket’s macro system and specific new families of macros within the embedded

language. This enables new DSLs to be embedded even within the DSL, such as an example make-

like language embedded in Rash.

Rash captures the features of command languages like the Bourne Shell that make it useful for

interactive and exploratory programming, and for automation via copying interactions into scripts.

However, unlike common shell languages, Rash scales beyond small scripts because Rash programs

can have an arbitrary mix of shell-like code and general-purpose Racket code. Thus Rash provides

a gradual scale between shell-style interactions and general-purpose programming.

This chapter is a reprint of Hatch and Flatt (2018).

3.1 Impulsive Introduction
Programmers often write prototypes, quick solutions, or exploratory programs, then later edit or

rewrite them to move them along a spectrum of program maturity and scale. Moving code along
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this scale is often viewed as a transition from “scripts” to more mature “programs,” and current

research aims to improve that transition, especially through gradual typing (Siek and Taha 2006;

Tobin-Hochstadt and Felleisen 2006). In this paper, we address a point in the spectrum that precedes

even the “script” level of maturity: command sequences in an interactive shell.

Different features and aspects of programming languages are well suited to different stages of

program maturity. For example, static types are clearly useful for ensuring and maintaining software

correctness, but types are often seen as burdensome or obstructive when writing scripts, so many

scripting languages eschew types. Programmers want brevity and even less formality in interactive

settings, so read-eval-print loops (REPL) often have relaxed rules on object mutability and

introspection, and Unix shells offer especially terse notations.

Tailoring a language to a specific point in the spectrum has obvious advantages, but serving dif-

ferent points in the spectrum through wholly distinct languages creates new problems. Developers

may be forced to choose between maintaining a program in a language that is no longer suited to

the program’s evolution, or rewriting the program in a new language. We should instead make lan-

guages adapt and interoperate along the maturity spectrum, providing a smooth path from one end to

the other. Gradual typing systems like TypeScript (Microsoft 2018), Reticulated Python (Vitousek

et al. 2014), and Typed Racket (Tobin-Hochstadt et al. 2008) are the most prominent efforts toward

this alternative, but they start at the “scripts” point in the spectrum.

To support graduality between shell-style interactions and general-purpose programs, a language

must be general-purpose while also supporting domain-specific features of a shell, such as process

and file manipulation. Additionally, there is tension between optimizations for programmatic and

interactive settings, such as optimizing notation for variables or literal data, and optimizing for

legibility or terseness. The key challenge of graduality between interactions and programs is to

support a seamless mixture of general-purpose and command notation.

Rash is a command language embedded in the general-purpose Racket language.1 Rash supports

lightweight syntax and programming patterns similar to popular command languages, like Bash and

PowerShell, but Rash and normal Racket code can be embedded within each other at the expression

level. Rash also interoperates with other Racket-based languages, including Typed Racket. With

these features, Rash affords easy and gradual movement along the spectrum from interactions to

1http://rash-lang.org

http://rash-lang.org
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scripts to programs, and it allows programmers to combine modules that inhabit different stages of

the maturity spectrum.

Rash is organized into two subsystems which embody the contributions of this paper. The first

subsystem is Linea, which provides a line-oriented syntax suitable for terse interactions. Linea

maintains interoperability with other Racket dialects by leveraging Lisp’s traditional separation

of read and macro expansion phases. Linea’s reader accepts a mixture of line-oriented and S-

expression notation and produces output suitable for macro expansion. Linea also introduces line

macros, a customization in the macro-expansion phase allowing programmers to add user-defined

keywords and block semantics. The second subsystem is a domain specific language (DSL) for

pipelining, which generalizes Unix-style pipelines to support arbitrary objects in addition to byte

streams, similar to PowerShell’s (Snover 2002) pipelines. Both subsystems are libraries that can be

used on their own to provide part of the convenience of a shell language within conventional Racket

programs, but their benefits synergize to form the Rash language.

3.2 Impetuous Overview
A programmer reading Rash code should understand four main points:

‚ Rash is primarily line-based. Lines within a program or block are evaluated in series from top

to bottom.

‚ The meanings of lines are determined by line macros.

‚ The default line macro is run-pipeline, which implements the pipelining DSL. Pipelines

may be composed of subprocesses that communicate using byte streams or Racket functions

that communicate using arbitrary Racket objects.

‚ Despite being primarily line based, users can embed S-expressions and blocks of lines within

each other by using parentheses () and braces {}, respectively.

To clarify these points, as well as to demonstrate the benefits of embedding a command lan-

guage inside a general-purpose language, we discuss an example REPL session. Suppose that

Alyssa P. Hacker wants to look at some of her spending habits over the last year. Each month,

Alyssa’s bank gives her a CSV file detailing her debit card purchases. Alyssa stores this file

as „/records/year/month/purchases.csv in her computer, with year and month substituted

appropriately. She starts a Rash session and types:
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cd records
ls 2017/*/* | grep purchases

Many of Rash’s cues for the syntax of commands and the inclusion of command pipelines come

directly from existing shell languages such as Bourne shell (Bourne 1978). The above commands

work as a Bourne shell user would expect: First the cd line changes the current working directory,

then the ls and grep pipeline is executed. Output from the ls subprocess specified on the left

of the | operator becomes the input to the grep subprocess specified on its right, and the pipeline

prints a listing of Alyssa’s purchases.csv files.

Alyssa made various purchases at Computer Store throughout the year, and would like to see a

summary of them. She types:

in-dir 2017/* {
echo summary of (current-directory)
grep -i "computer store" purchases.csv

}

to see a quick report for Computer Store purchases every month. This example shows several Rash

features:

‚ Parentheses in a command line escape to Racket. In the expression echo summary of

(current-directory), one of the arguments to the echo subprocess is computed by the

Racket function current-directory.

‚ The in-dir identifier is a line macro. Line macros are keywords that, when placed at the

start of the line, determine the meaning of that line. The in-dir line macro performs glob

expansion on its first argument and executes its second argument once for each directory

matched. It also parameterizes each execution of the second argument so that (current-

directory) returns the matched directory.

‚ Braces read a block of code in line mode. Braces can be used in line mode as this example

shows, or they can be used inside parenthesised S-expressions to escape back to line mode.

Braces implicitly act like Racket’s begin form, which evaluates its sub-forms, in this case,

lines, sequentially.

‚ While logical lines in Rash are usually the same as physical lines, there are ways to combine

multiple physical lines into one logical line. Newline characters are treated as normal whites-

pace if they are escaped by putting a backslash in front of them, if they are inside a multiline
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comment, or if they are inside parentheses. If newlines are inside a curly brace block, they

delimit the lines of an embedded line-mode context, all of which is part of one logical line in

the outer context. The example above takes advantage of the behavior of braces to give the

in-dir line macro a multi-line body.

‚ The echo and grep lines in the loop body aren’t obviously using a line macro like in-dir,

but every line that doesn’t explicitly begin with a line macro has a default inserted. While

users can configure different default line macros for different lexical regions of code, the

run-pipeline line macro is used as the default throughout this paper (with the exception

of Section 3.4.2). The echo and grep lines shown above are technically pipelines, although

they are degenerate pipelines of only one command each.

Alyssa then wants to know how much she spent in total in December. She runs:

cat 2017/12/purchases.csv |> csv-file->dicts \
|> map (λ (t) (hash-ref t "amount")) \
|> map (λ (n) (string->number n)) |> apply +

Rash’s pipeline DSL supports two types of pipeline segments: subprocess segments, which commu-

nicate using byte streams, and function segments, which communicate using Racket objects. The

|> operator used above sends the result of the previous pipeline segment to a Racket function. The

|> operator builds its function by using all the forms to its right until the next pipeline operator,

using the _ identifier as the name of the argument it gets from the previous pipeline segment. If the

_ identifier is not explicitly present in one of the argument forms, the |> operator appends it to the

end of the list. So |> a b will use the function (λ (x) (a b x)) while |> a _ b will use the

function (λ (x) (a x b)).

When a Racket function segment follows a subprocess segment, such as csv-file->dicts

following cat, the subprocess output stream is passed to the function as a Racket port object, which

is Racket’s encapsulation of a byte stream. If a subprocess segment follows a function segment,

the return value of the function is printed to the stdin of the subprocess. To prevent blocking, all

adjacent subprocess pipeline segments, as well as the first function segment following them, if any,

are run in parallel, while function segments are executed from left to right sequentially.

The above pipeline uses the function csv-file->dicts to parse the CSV contents and return

a list of one hash table per purchase, using the fields of the CSV header line as keys. The pipeline

then uses more functions to extract and sum the dollar amounts of the purchases.
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It is somewhat implausible that someone would frequently type examples like the previous one

in an interactive shell. Instead of the above example, Alyssa can also get the same result by running

this simplified version:

|> csv-file->dicts "2017/12/purchases.csv" \
=map= hash-ref _ "amount" \
=map= string->number |> apply +

Pipeline operators are user-definable macros, so users can create new operators that simplify the

notation for their commonly used patterns. For example, users may define operators for mapping

over or filtering lists or other data structures, operators for chaining object method or monad function

calls, or operators that determine their behavior based on context, such as an operator that behaves

like |> when its first argument is bound as a Racket function and otherwise behaving like |. In

the example above, Alyssa uses a custom =map= pipeline operator which simplifies and flattens the

common pattern of mapping over a list. The =map= operator, like the |> operator, automatically

places the _ identifier if it is not explicitly written, but it uses the _ identifier as the argument for

iterations of the map loop rather than the entire list received from the previous pipeline segment.

In this example, the |> operator is used at the beginning of the pipeline as a prefix operator. All

pipelines start with a prefix operator, but a default is inserted automatically when none is specified

explicitly. The default prefix operator throughout this paper is the | operator, which specifies a

subprocess pipeline segment, but it can be customized for different lexical regions of code. The |>

operator has no pipeline argument to pass to the csv-file->dicts function when it is in prefix

position, so the _ argument is not inserted, and explicit use of it would raise a compilation error.

Here, the csv-file->dicts function is given a literal name of a file to open rather than receiving

a port from a previous pipeline stage.

Alyssa decides she wants to save the results of some computations to variables. She types:

(define n-hardware-purchases
(string->number
(with-rash-config

#:out (compose string-trim port->string)
{grep -i "computer store" 2017/*/purchases.csv \
| wc -l})))

def month-list in-dir 2017/* {
|> csv-file->dicts "purchases.csv"

}

This example highlights more language features:
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‚ If a line starts with an open parenthesis, line macro insertion is skipped, and the line is read

as a normal Racket form.

‚ At the top level of the REPL and of modules written in #lang rash, pipeline input and out-

put are connected to Racket’s current-input-port and current-output-port, which

are generally connected to stdin and stdout. Sections of Rash code can be wrapped with

the with-rash-config macro, which accepts optional arguments to parameterize behaviors

for the code region, including the default line macro, the default pipeline input and output

ports, and the default prefix operator. Instead of a port, the output can be set to a function that

accepts a port to convert subprocess output into Racket objects.

‚ Rash lines are expressions that can return values. The in-dir line macro returns a list of

results from the executions of its body. The def identifier is a line-macro version of define

that is modified to better support line macros within a definition.

Use of the with-rash-config macro above is unwieldy, and the definition of n-hardware-

purchases in this case can be shortened to:

(define n-hardware-purchases
(string->number
#{grep -i "computer store" 2017/*/purchases.csv \

| wc -l}))

The #{} form implicitly sets subprocess input to an empty port, converts subprocess output to a

string, and trims trailing whitespace from it.

Alyssa is curious how much her spending varies from month to month. She runs:

(require math/statistics)
(stddev (for/list ([m month-list])

{|> values m =map= hash-ref _ "amount" \
=map= string->number |> apply +}))

The (require math/statistics) form makes the stddev function available. Rash users can

require modules written in any Racket dialect, such as #lang typed/racket, #lang lazy,

and, of course, #lang rash. Users can seamlessly switch between using S-expressions and line-

oriented code, or between using subprocesses or functions and macros from their favorite Racket

libraries.

As Alyssa runs all of these commands, she copies some of her favorites into a file. She puts the

line #lang rash at the top of the file to signify that they are in the Rash dialect of Racket. As long
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as she does not skip interactions that create intermediate definitions that are used later, a verbatim

copy of Alyssa’s interactions makes a working program.

When Alyssa is finished running commands and copying the relevant ones to her script file, she

has a program for summarizing her finances, but it summarizes only her 2017 finances. To make her

script more useful, she must make her script more general by making changes like replacing literals

with variables and adding error-handling code. She may also extend her script over time with

new features, such as creating graphs about her financial data. As she generalizes and extends her

program, she has access to all of Racket, such as the racket/cmdline DSL to specify command-

line parsing to set initial variable values, and the plot library for generating graphical plots.

This introductory example of Alyssa analyzing banking data demonstrates the strengths of

Rash’s “interactions to scripts” approach. At the beginning, Alyssa explored the filesystem and

examined files in her banking directory using programs such as cat and grep. These operations

are convenient in traditional shells like Bash (Free Software Foundation 2018b), but they are cum-

bersome in scripting languages like Python or Racket. Later Alyssa analyzed CSV data by parsing

it with a Racket function, then mapping and filtering over the data with more Racket functions.

These operations passed structured lists of objects and used mathematical functions like stddev,

and they are easy to accomplish in general-purpose languages like Python or Racket. Operating over

structured data, in contrast, is very difficult in shell languages like Bash without access to programs

that can do the work, each one deserializing the data and then serializing it again in a format

recognized by the next program. In the common case, structured data in shell scripts is handled

with ad-hoc, error-prone parsing of lines of text. Traditional shell languages and general-purpose

languages each handle half of the problem well, but the other half poorly. By embedding a shell

language within a general-purpose language, Rash fits both aspects of the problem well.

3.3 Incautious Examples
To further demonstrate how embedding a shell language within a general-purpose language sup-

ports a broader part of the interactions-to-programs spectrum, we present the following examples.

3.3.1 Error Handling

During an interactive session a user manually executes most control flow and decides how to

handle errors after seeing them. Once interactions are turned into scripts, control flow and error
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handling need to be explicitly added. Since they are not part of the domain of interactive command

execution, shell languages often have only rudimentary control-flow and error-handling support.

By embedding a command language within a general-purpose language, the command language

can inherit fully featured control and error handling forms.

As an example of a common type of error handling that can be done in Rash scripts, consider a

script that uses the pdflatex command to generate pdf files. The pdflatex command generates

various intermediate files that clutter the file system, so our example runs pdflatex in a temporary

directory. We do not want to leave temporary files, so we want to remove the directory whether pdf

generation is successful or not.

(define here (current-directory))
mkdir my-tmp-dir
try {
in-dir my-tmp-dir {
pdflatex $here/example.tex &< /dev/null
mv example.pdf $here/

}
} catch err {

(raise err)
} finally {

rm -rf my-tmp-dir
}

Since cleaning up a temporary directory even in the presence of errors is a common problem

in shell scripts, it may be convenient to simplify the pattern with a custom line macro. The in-

tmp-dir line macro used below encapsulates directory creation and removal as well as the try and

in-dir line macros used above.

(define here (current-directory))
in-tmp-dir {
pdflatex $here/example.tex &< /dev/null
mv example.pdf $here/

}

3.3.2 Make

Building software is another case where a program — specifically, a build script — needs to

accomplish something that parallels a programmer’s interactive commands. Often this is done using

the make program, which accepts makefiles written in a language that specifies build targets, their

dependencies, and their build recipes. The recipes in makefiles are written in shell language, but

the targets and dependencies can be specified using only a limited language specific to the make

program. We have written a make replacement that allows Rash and ordinary Racket code in recipe
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bodies as well as in target and dependency lists.

Here is an example in our make language that builds a “hello” program with a version-specific

file name and makes a symbolic link to it with the generic “hello” name:

#lang rash/demo/make
(define version #{cat version.txt})

hello : (string-append "hello-" version) {
ln -sf (current-dependencies) hello

}

hello-$version : hello.c version.txt {
gcc -o (current-target) hello.c

}

The #lang line sets the reader and available identifiers of the file to those provided by our

rash/demo/make module. The rash/demo/make module configures the file to have the same

reader as normal Rash modules and makes all the same identifiers available. However, the

rash/demo/make module provides extra definitions, including the current-dependencies and

current-target functions, as well as the make-target line macro. The rash/demo/make

language sets make-target as the default line macro at the top level of the module. The make-

target line macro accepts lists of target and dependency files as well as a a recipe body to be

executed when a target is built. The targets and dependencies can be listed literally, computed

with string interpolation using dollar escapes, or computed with normal Racket code by escaping

with parentheses. The make-target line macro sets run-pipeline to be the default line macro

within its body and parameterizes the current-target and current-dependencies to return

its target and dependency lists appropriately. The rash/demo/make language also automatically

inserts code to handle command line arguments and build any specified targets.

Complicated target names, dependency names, or build recipes, such as dependencies whose

names must be computed dynamically, can benefit from a full, general-purpose programming lan-

guage. Meanwhile, straightforward build instructions benefit from being written as closely as

possible to how the programmer writes them interactively.

3.4 Temerarious Lines
Lisp systems break up the process of turning program text into executable code into distinct

passes, including read, macro expand, and compile. By separating reading and expansion stages,

Lisps allow programmers to create macros to extend the language while reasoning about trees and
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identifiers rather than at the level of byte stream parsing. The macro expander can also manage scope

automatically during expansion, which is crucial to making macro-based extensions composable.

While the separation of reading and expanding has primarily been used by S-expression-based

languages, some languages with algebraic syntax like Honu (Rafkind and Flatt 2012) have also

found it effective.

The read stage plays a role similar to the lexer in traditional languages. It transforms sequences

of characters into numbers, symbols, string, etc. Lisp readers differ from traditional lexers, however,

in that rather than producing a flat sequence of tokens, they produce a tree by grouping elements

between parentheses. Linea extends the read stage with a reader function that transforms a line-

oriented concrete syntax into a syntax tree.

The expand stage walks over the tree produced by the read pass. As it traverses the tree, the

expander detects macro use-sites and invokes the code bound to each macro. Macros transform sub-

trees, and can be seen as mini compilers, since they successively compile macro-enriched language

variants into simpler languages until arriving at a core language. This core language can finally be

interpreted or compiled to machine code. Linea extends the expand stage with the notion of line

macros, which allow users to extend or replace the semantics of lines or blocks of code.

3.4.1 Reading Lines

As the reader layer for Rash, Linea was designed primarily with two goals: allowing convenient

live interactions, and mixing seamlessly with normal Racket code. To enable users to simply type

commands like ls /etc, line breaks are used to determine basic grouping. To enable seamless

mixing, parentheses switch the reader to (mostly) traditional S-expression reading while braces

switch the reader back into line mode.

While users can escape to Racket by using parentheses within a line, it is sometimes convenient

to bypass the line reader and its line macro insertion to use plain Racket with S-expressions. Linea

detects when lines start with an open parenthesis, and it uses only the traditional S-expression reader

on them instead of grouping based on newlines. To allow the macro expander to distinguish between

groupings derived by lines or by top-level S-expressions, all forms are implicitly wrapped with an

extra symbol. Lines are prefixed with the #%linea-line symbol, and top-level S-expressions are

wrapped with the #%linea-s-exp symbol. Implicit #% symbols are discussed further in section

Section 3.5.2.
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Top-level S-expression detection leads to an idiosyncrasy. A user may want the first argument

of a line macro to be a parenthesised form, such as:

run-pipeline (if use-llvm? 'clang 'gcc) program.c

If this example is written without the explicit run-pipeline line macro name, it becomes

(if use-llvm? 'clang 'gcc) program.c

which starts with a parenthesis and thus would trigger top-level S-expression reading instead of line

reading.

While it may seem that Linea without the top-level S-expression escape would be a more

consistent system, and the reader can be configured to behave as such if desired, the escape embodies

an important principle in Rash. Linea with the escape enabled is a near superset of S-expressions

and Linea without the escape. The parts removed in this combination, specifically top-level non-

parenthesised forms from pure S-expressions and #%linea-lines that start with a parenthesised

form in pure Linea, are not frequently used. Allowing the common cases of both notations together

greatly increases convenience, while requiring the uncommon cases to be written in a more round-

about way is only little inconvenience. The interactive focus of Rash and Linea drive design to

be maximized for convenience over conceptual simplicity, and adding the top-level S-expression

escape is a trade-off similar to the added complexity of grouping by line and then by parentheses

instead of just by parentheses.

Because Linea with top-level S-expression detection is a near-superset of S-expressions, most

programs written in #lang racket/base can be switched to #lang rash without changing

meanings. With this design line-based interactions can be recorded and saved to a script or inserted

into an existing program, and then can be changed gradually as desired into the S-expression format

more commonly used for general Racket programming features.

3.4.2 Linea Grammar

The grammar of Linea is as follows:

〈linea-program〉 ::= 〈nl〉* 〈linea-form〉+ [〈last-linea-line〉]
〈linea-form〉 ::= 〈linea-line〉

| 〈linea-s-exp〉
〈linea-s-exp〉 ::= 〈paren-form〉
〈linea-line〉 ::= 〈line-mode-form〉+ 〈nl〉+

〈last-linea-line〉 ::= 〈line-mode-form〉+

〈paren-form〉 ::= ( 〈nl〉* 〈s-exp-mode-form〉* )
| ( 〈nl〉* 〈s-exp-mode-form〉* 〈nl〉*

. 〈nl〉* 〈s-exp-mode-form〉 〈nl〉* )
〈brace-form〉 ::= { 〈nl〉* 〈linea-form〉* [〈last-linea-line〉] }
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〈hash-brace-form〉 ::= #{ 〈nl〉* 〈linea-form〉* [〈last-linea-line〉] }
〈line-mode-form〉 ::= 〈line-mode-number〉

| 〈line-mode-symbol〉
| 〈string〉
| 〈paren-form〉
| 〈brace-form〉
| 〈hash-brace-form〉
| 〈hash-form〉

〈s-exp-mode-form〉 ::= 〈number〉 〈nl〉*
| 〈symbol〉 〈nl〉*
| 〈string〉 〈nl〉*
| 〈paren-form〉 〈nl〉*
| 〈brace-form〉 〈nl〉*
| 〈hash-brace-form〉 〈nl〉*
| 〈hash-form〉 〈nl〉*

The following points clarify the grammar:

‚ Non-newline whitespace is implicitly allowed between nonterminals and repetitions in the

grammar. Since newlines are different from other whitespace in Linea, however, the grammar

makes explicit where newlines are allowed and required with 〈nl〉.

‚ There are differences between 〈line-mode-symbol〉 and 〈line-mode-number〉 in line-mode and

〈symbol〉 and 〈number〉 in S-expression mode. For instance, -i is a 〈line-mode-symbol〉,

but as an 〈s-exp-mode-form〉 it is a 〈number〉, specifically the complex number 0-1i. Ad-

ditionally, the period character produces a symbol in line mode but is treated specially in

S-expression mode to produce an improper list.

‚ The 〈paren-form〉 can also be substituted for a 〈bracket-form〉, which reads identically to the

〈paren-form〉 except that parentheses () are replaced with square brackets [].

‚ 〈hash-form〉s are various forms prefixed with the # character, and include boolean literals #t

and #f. The 〈hash-form〉s are taken directly from Racket’s reader, and they are primarily for

literal data such as hash tables and structs. The one exception is 〈hash-brace-form〉, which

Rash treats differently than Racket.

Reading a program produces a list much like reading normal S-expressions, but a few implicit

symbols are added by the reader function.

‚ Each list produced by reading a 〈linea-line〉 is prefixed with #%linea-line.

‚ Each list produced by reading a 〈linea-s-exp〉 is wrapped in another list prefixed with #%linea-

s-exp, such that the result is (#%linea-s-exp 〈list-as-read〉).

‚ Each list produced by a 〈brace-form〉 is prefixed with #%linea-expressions-begin.
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‚ The 〈hash-brace-form〉 produces the same result as a 〈brace-form〉, except that it is wrapped

in a list prefixed with #%hash-braces.

‚ When a Racket file is read, it must produce a module form with the name of a module to

import identifier from, a name for the new module, and the code of the module within a

#%module-begin form.

As an example, following Rash program:

#lang rash
echo (+ 1

#{(+ 2 (* 3 4))})
echo goodbye

assuming it is in a file named bye.rkt, produces the same result that a traditional S-expression

reader would produce if given this:

(module rash bye
(#%module-begin

(#%linea-line
echo
(+ 1

(#%hash-braces
(#%linea-expressions-begin
(#%linea-s-exp (+ 2 (* 3 4)))))))

(#%linea-line echo goodbye)))

Racket has a convention of prefixing identifiers with #% when they are added implicitly, includ-

ing #%app and #%datum, which the macro expander implicitly adds to every function application

or literal data form it encounters, respectively. These identifiers are used as extensibility hooks for

language implementors to change the semantics of implicit forms for modules in their languages.

Linea provides #% identifiers as extension hooks to follow the convention.

Similar to S-expressions, the Linea reader does not provide any initial meaning for code aside

from determining the tree shape. Just as S-expressions can be used to encode languages with many

different execution models (such as Typed Racket and the logic programming language Parenlog),

Linea syntax can be used to encode many different line-oriented languages. However, the Linea

package provides default meanings for its implicit identifiers for use in languages like Rash, which

are described in Section 3.5.4.

3.4.3 Embedding Lines

Racket and many of its dialects use a read function that can be customized by an object called

a readtable. Linea provides a function to add an escape to line mode with braces (or other desired
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delimiters) to any language that uses Racket readtables, providing a convenient way to embed Rash

into other languages. The #lang rash language enables braces that escape into a line-mode block

in both line mode and S-expression mode by default.

Additionally, Rash code can be embedded within languages that do not support readtable cus-

tomization by using the the rash macro, which accepts a literal string of Rash code during macro

expansion, such as (rash "ls -l"). Essentially, the code string and the rash macro are used

together to delay a portion of the read stage of compilation until the macro expansion stage. Because

the rash macro reads the string during macro expansion time, no run-time string evaluation is

performed. Racket’s macro system also carries hygiene and source location information with

identifiers and other syntax objects, and the rash macro uses this information from the string to

produce output whose identifiers have proper scope and location reporting information.

The rest of Section 3.5.3 is an aside that discusses trade-offs between these two methods of

embedding Rash code. It demonstrates interesting points about embedding multiple languages

within the same file that are highlighted by Rash, but it does not contain information necessary

to understand the Rash language.

Reading strings at expansion-time with the rash macro adds flexibility, since it allows Rash

code to be embedded within languages that do not support readtable modification. However, em-

bedding with strings and reading at macro expansion time causes problems with string escaping and

macro inspection.

The first and more shallow problem is that nesting traditional string notation requires escaping

various characters with backslashes. One solution to the backslash explosion problem is to use the

at-reader provided by the Scribble (Flatt et al. 2009) documentation language. While this is an

improvement, care must be used to invoke the at-reader in a way that does not allow any of its own

escaping or eager reading of the inner strings. To ease the nesting of code strings, we created a new

notation using «» (guillemet) quotation marks. Guillemet strings include all characters literally with

no escaping, and they balance the guillemet delimiters inside the string. So «a \ «b» ««c»»» is

read the same as "a \\ «b» ««c»»". Guillemet strings allow easy nesting of code strings to

arbitrary depths without escaping and are easy to implement and add to a language.

While guillemet strings fix the notation problem of nesting strings, a further issue is that delaying

reading to expansion time makes less of the program tree available to macros. Most macros only

shallowly inspect their subtrees, since the meaning of deeper subtrees can be changed by deeper
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macros. However, some macros, notably the syntax macro that instantiates syntax templates, do

dig deeper. The syntax macro takes a template and replaces pattern variables at arbitrary depths

within the template with bindings created by macros such as syntax-case.

(syntax-case (syntax (first second third)) ()
[(a b c) (syntax ((one a) (two b) (three c)))])

The above example matches the pattern (a b c) to the input (first second third). In the

right-hand-side of the match, the syntax macro replaces the pattern variables a, b, and c with

first, second, and third respectively, producing the output ((one first) (two second)

(three third)).

In the following example using the rash macro, one would expect the x in the pattern to be

substituted with the literal string "world":

(syntax-case (syntax "world") ()
[x (syntax (rash «echo hello |>> string-append _ x»))])

Because the x in the template is inside a yet-unread string, the substitution is missed and an unbound

variable error, or worse, the capture of some other x variable, occurs. If we change the example

to use braces, which do not delay the reading of the sub-form until macro expansion time, the

substitution happens as expected.

(syntax-case (syntax "world") ()
[x (syntax {echo hello |>> string-append _ x})])

While reader delaying with the rash macro can be useful for embedding Rash code within

languages that do not support readtable extensions, it is not always composable with other macros.

Fixing the syntax template problem by using a readtable extension that does all embedded line

reading up-front strengthens the idea of the separate read, expand, compile pipeline.

3.4.4 Line Macros

After the read phase, Racket’s macro expander determines the meaning of identifiers based on

the language used for a module as well as definitions and imports found during expansion. Linea

provides its #% identifiers with the following default meanings that are used in Rash:

‚ #%hash-braces parameterizes the default input, output, and error redirection for the run-

pipeline macro and executes its sub-form.

‚ #%linea-expressions-begin desugars to Racket’s begin form, which evaluates sub-

forms in series.
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‚ #%linea-s-exp is simply a pass-through macro, so (#%linea-s-exp (+ 1 2)) desug-

ars to (+ 1 2)

‚ #%linea-line detects whether a line starts with a line macro name and either passes through

to the specified line macro or inserts a default when one is not given explicitly. (#%linea-

line a b c) desugars to (a b c) if a is a line macro. Otherwise it desugars to (lm a b

c), where lm is the default line macro based on the lexical region containing the line.

Line macros are used to provide an extensible set of keywords for Rash lines. Most line-oriented

languages have keywords like for and if that give special meaning to a line or block of code.

Generally, languages have a fixed set of keywords that provide special meaning, and even language

authors can not easily extend the set unless they have set aside a large supply of reserved words in

advance. Rash uses line macros to provide an extensible set of keywords that change the meaning

of the line, and it relies on Linea’s reading of subforms with parentheses and braces to provide

blocks for “line macros” that need multi-line bodies. With line macros, Rash programmers can use

standard control flow forms like loops, conditionals, and try/catch forms that look much like they

do in popular line-oriented languages, and also define new ones to taste.

in-dir /tmp {
for f in (directory-list) {
try {

rm -rf $f
} catch e {

echo An error occured!
echo $f could not be deleted!

}
}

}

Line macros enable different line-oriented languages based on Linea to share special forms like

control flow and definition forms, and they enable languages to embed just one line of another line-

oriented language by prefixing the line with its line macro name. Following the vein of interactive

convenience, if two line macros both implement languages that are desireable as a default and that

can be distinguished by some heuristic, a user can set the default to a line macro that applies that

heuristic and defers to the appropriate macro. For instance, a line macro might apply a heuristic to

determine whether to behave like a desktop calculator or a subprocess pipeline.

pipeline-or-math 5 + 10 * 3 ;; returns 35
pipeline-or-math ls -l ;; prints a file list
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The pipeline-or-math line macro above simply checks whether the first argument is a

number, applies the infix-math macro if it is, and applies the run-pipeline macro otherwise.

If pipeline-or-math is set as the default, the example can be simplified to this:

5 + 10 * 3
ls -l

One may wonder why only macros specifically tagged as line macros are used to bypass the

default behavior rather than allowing any macro to do so. A macro use may include other macro

names as arguments, including as the first argument. For example, the first argument in a use

of the run-pipeline macro could be the name of a macro that implements a command. If the

command macro were to override the run-pipeline default line semantics, then it could not be

pipelined together with other commands without explicitly writing run-pipeline at the start of

the line.

3.5 Precipitate Pipelining
The primary domain of most command languages is subprocess creation and composition.

Thousands of programs have been written to be used as commands in shell languages like Bash,

and many programmers use them as their primary means of system interaction and automation. We

designed Rash to support this style of programming and system interaction as a first-class citizen.

At its core, Rash’s pipelining library includes a module that provides a simple function for

pipelining processes. It provides functionality similar to DSL libraries like Scsh (Shivers 1994) and

Plumbum (Filiba 2018) that provide functions or macros for pipelining processes in the syntax of

their host language. Rash’s core subprocess pipelining function can be used like this:

(run-subprocess-pipeline '(ls)
'(grep rkt)
'(wc -l))

The simplest line-macro language that we could define for use as a command language might

be ordinary Racket with a layer of parentheses removed. However, the above example, even with

the outer parentheses removed, still requires balancing several pairs of parentheses. To implement a

flatter language, with less syntactic nesting and balancing required, we have designed the pipelining

DSL with infix operators. Beyond providing the semantic meaning of an operation, infix operators

are parsed to create groupings that appear flat in the source syntax.
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While the pipelining DSL includes infix operators, it does not include variable precedence or

associativity rules. Left-to-right pipelining is less powerful than other infix operator schemes that

allow different precedence and associativity rules, but the simplicity of left-to-right pipelines is

helpful in an interactive setting. The left-to-right flow of data is easy to read and reason about,

and it also often matches the thought process of users as they write pipelines from left to right.

Left-to-right pipelines also make it easy to make the most common edits to commands. Languages

with precedence rules for infix operators frequently require edits to several parts of an expression

to balance or add new parentheses when adding a new operator with higher precedence. With

left-to-right processing, adding new stages to a pipeline requires only appending to the right side of

the command. If a user appends an incorrect pipeline stage to a correct prefix, the command can

be fixed by only editing the end of the command line. These right-side-only edits require less text

editing sophistication to perform with speed and convenience than edits that change several parts of

a command buffer.

Beyond providing easy process pipelining, we designed Rash to support similar pipelining

notation for Racket functions and objects. Command languages like PowerShell (Snover 2002) have

shown that pipelines communicating with objects provide a much richer interface than pipelines

communicating with byte streams. For instance, users can more easily filter based on object at-

tributes or compute on tree or graph data in pipelines without intermediate serialization and deseri-

alization steps between processes.

To increase convenience, Rash allows users to define new pipeline operators. Users can write

pipeline segments more succinctly with operators tailored for different method calls, and operators

can be defined to map or filter over sequences or treat a list as a single object. Custom operators

also allow users to customize behavior of common operators, such as customizing the | operator to

use different policies for automatic globbing or string interpolation.

3.5.1 Pipeline Specification

The grammar of the run-pipeline line macro is as follows:
〈invocation〉 ::= run-pipeline 〈option〉* 〈start-op-expr〉

〈op-expr〉* 〈option〉*
〈option〉 ::= &in 〈port-expression〉

| &< 〈filename〉
| &out 〈port-expression〉
| &> 〈filename〉
| &>> 〈filename〉
| &>! 〈filename〉
| &err 〈port-expression〉
| &bg
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| &pipeline-ret
| &strict
| &permissive
| &lazy
| &lazy-timeout 〈number-expression〉

〈start-op-expr〉 ::= [〈pipeline-operator〉] 〈pipeline-argument〉*
〈op-expr〉 ::= 〈pipeline-operator〉 〈pipeline-argument〉*

The run-pipeline line macro desugars to an invocation of a pipelining function, with the

pipeline operator expressions providing the specifications for the pipeline stages. The start-op-expr

may omit its operator, in which case a lexical default is substituted.

The 〈option〉 arguments may be written at the beginning or end of the macro invocation for

convenience, and influence various aspects of pipeline evaluation.

‚ The &in, &out, and &err options take an argument expression that should produce a port for

the default stdin, stdout, or stderr of subprocesses in the pipeline.

‚ The &>, &>>, and &>! options are shorthands for &out that accept a file name as an identifier

or a string and open it in write, append, or truncate mode, respectively.

‚ If the &pipeline-ret option is given, an object representing the pipeline is returned and

can be inspected with functions like pipeline-success?.

‚ If the &bg option is given, the &pipeline-ret option is implied, and the pipeline object is

returned immediately rather than waiting for the pipeline to terminate. The pipeline object

returned is a Racket evt, which can be combined with other evts in complex synchronization

patterns in the manner of Concurrent ML (Reppy 1999). As a simple example, passing the

pipeline object to the sync function causes the current thread of execution to block until the

pipeline terminates.

‚ If neither &bg nor &pipeline-ret is given, the run-pipeline macro returns the value re-

turned by the last stage of the pipeline or raises an exception if the pipeline was unsuccessful.

Pipeline success is determined by subprocess return codes and whether function segments raise

exceptions. A pipeline is always unsuccessful if a function segment raises an exception. The

handling of subprocesses is determined by the &strict, &permissive, and &lazy options.

‚ A &permissive pipeline is not considered unsuccessful if subprocesses that aren’t the last

segment of the pipeline return unsuccessful codes. Permissive pipelines kill any subprocesses
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that haven’t finished before the last pipeline segment does. Permissive pipelines match the

behavior of pipelines in common shells like Bash.

‚ A &strict pipeline is unsuccessful if any subprocess returns an unsuccessful return code.

Strict pipelines require that all subprocesses terminate before the pipeline is considered fin-

ished. Strict pipelines prevent silent failures in intermediate pipeline stages, but can not be

used with infinitely running subprocesses without causing the host script to run indefinitely.

‚ A &lazy pipeline strictly checks the return code of all subprocesses that have terminated

before the last pipeline segment, or within a timeout period afterward, but assumes any

subprocesses that have not terminated by the timeout to be successful and kills them. The lazy

mode is a compromise between strict and permissive pipelines to allow infinite subprocesses

while catching most failures in intermediate pipeline stages.

Each pipeline operator is itself a macro that is invoked with all arguments to its right up to the

next operator, and must desugar to an expression that returns a pipeline segment specification. For

example, in this pipeline:

echo hello |> string-append _ " world"

The |> operator is invoked with the syntax list (|> string-append _ "world"), and returns

code to generate an object specifying an object pipeline segment containing the function (λ (x)

(string-append x " world")). The implicit | operator receives the syntax list (| echo

hello), and returns code to generate an object specifying a subprocess pipeline segment using the

argument list ’("echo" "hello"). Objects specifying subprocess segments include an argument

list and an optional redirection port for stderr. Objects specifying function segments include a

function that accepts one or zero arguments. Compound segments can also be returned, and contain

a list of specification objects. Since pipelines starting with a function segment pass no argument to

the function, pipeline operators may provide two transformer functions instead of one: the first is

invoked when the operator is in starting position, the second is invoked otherwise.

3.6 Risky Review of Related Work
Rash is not the first attempt to serve a broader portion of the spectrum by embedding a shell into

a general-purpose language or by adding general-purpose features to a shell. We discuss related

systems in the following subsections, but none of them seamlessly cover the full spectrum from one-
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off interactions to a pervasively extensible programming ecosystem (with hundreds or thousands of

libraries and packages) like Rash on Racket.

3.6.1 Object Pipelines

PowerShell (Snover 2002) is an object-oriented shell language created by Microsoft. PowerShell

aims to replace operating system processes and byte streams with cmdlets, which are .Net CLR

classes designed to be run as commands, and object streams, respectively. External processes can

be used as well as cmdlets, with their output treated as .Net strings. Using .Net objects allows the

language to have rich inspection and interactions with objects returned by cmdlets. Due to its use

of the .Net CLR, it has rich communication with other CLR languages like C#, and a PowerShell

interpreter class can be loaded by other CLR languages to evaluate strings of PowerShell code

dynamically.

Like PowerShell, Rash provides a convenient means of using object-oriented system administra-

tion commands and pipelines. Rash improves upon the ability to combine and even mix shell-style

code with other languages. By leveraging the Racket macro system, Rash expressions can be

embedded into files written in other Racket languages and still enjoy the benefits of compilation

and static error checking rather than being only dynamically evaluated.

3.6.2 Stand-Alone Shells

Several projects including Oil Shell (Chu 2018) and Elvish (Xiao 2018) are attempts to build

command languages that serve a broader section of the maturity spectrum. These stand-alone shell

languages improve upon older shells such as Bash by using more composable and reliable general-

purpose language constructs. While they serve a broader part of the spectrum than many other

shell languages, as stand-alone languages they impose much more implementation and maintenance

burden on authors than an embedded shell like Rash. Because of this, stand-alone shells often lack

advanced general-purpose language features. Stand-alone shells also tend to have few third party

libraries compared to general-purpose languages.

By embedding itself within the general-purpose Racket language, Rash inherits advanced fea-

tures such as a hygienic macro expander, multi-threading, and delimited continuations, as well as

automatically supporting Racket’s catalog of third party libraries.
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3.6.3 Process Pipelining Libraries

There are many projects that aim to provide a natural means of composing external processes

within the syntax of a general-purpose language. These include Scsh (Shivers 1994) for Scheme,

Caml-Shcaml (Heller and Tov 2008) for Ocaml, Turtle (Gonzalez 2018) and Shelly (Weber and

Rockai 2018) for Haskell, Plumbum (Filiba 2018) for Python, and many more. Most of these

provide means of mixing host-language code in pipelines, such as by inserting a function that reads

and writes bytes into a subprocess pipeline. Some include creative and useful ways of integrating

the process and byte-stream model into the host language. For instance, Caml-Shcaml provides

adaptors to give various types to byte streams and allows rich interaction within Ocaml code while

preserving the original text of lines for programs later in the pipeline to process the lines unchanged.

These pipelining libraries are designed for creating scripts and not to provide a syntax for convenient

interactive use of processes or functions for system administration. The shell-pipeline library within

Rash provides similar functionality to these, and Rash combines it with syntactic changes to add a

focus on interaction.

3.6.4 Shells Embedded in General-Purpose Languages

Eshell (Free Software Foundation 2018a) embeds a Bourne-like shell in Emacs Lisp. It allows

program arguments to be computed with Eshell expressions, it allows lines of parenthesised elisp

to be used in place of lines of shell code, and it implements many commands as Eshell functions.

Scripting with Eshell is possible but discouraged, and scripts must be executed within an instance

of Emacs. Eshell’s shell pipelines are character oriented, and communication occurs by placing

command output into an emacs buffer. Eshell does not have a facility such as line macros to

customize the meaning of its line-oriented syntax or provide custom keywords for different block

constructs.

Xonsh (Scopatz 2018) is a language built using a superset of the Python grammar that includes

Bourne-shell-like syntax for subprocess pipelines. To resolve ambiguities in the combination of

grammars, it uses heuristics such as whether names are bound as variables, generally preferring

the interpretation of the standard Python grammar over its alternative Bourne-style grammar. It

also includes syntax for explicitly switching between Python and shell code, and allows Python

functions with appropriate interfaces to be used in place of processes in byte-stream pipelines.

It includes import hooks to allow Python files to be imported by Xonsh files and vice versa. It
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has many features to provide a convenient and useful interactive shell for system administration

and general computer use. Xonsh does not have tools to allow Python functions that accept and

return arbitrary objects to be used for system administration with the same ease and convenience as

external processes, syntactic support for shell-style pipelines of objects like PowerShell and Rash,

or a macro system for user-defined syntax extensions.

Ammonite (Haoyi 2018) extends Scala with things like top-level expressions for easier use in

writing small scripts. It provides a library of functions for shell-style file system manipulation, and a

shell-style REPL for live interaction. It does not provide any extra support for running or pipelining

external processes, but rather focuses on object-oriented shell scripting using scala functions. The

interactive REPL uses a syntax that includes many elements that may be considered heavy for daily

interactive use, particularly by programmers used to the light-weight Bourne shell syntax.

Neugram (Crawshaw 2018) is similar to Ammonite in that it provides a more scriptable layer

on top of a general-purpose language, in this case Go. It provides a method of embedding process

pipelines in shell syntax. It can be used interactively but doesn’t emphasize use as an interactive

shell.

There are various other efforts attempting to mix process pipelining and shell-style programming

with more general-purpose languages. Salient examples include Zoidberg (Berger 2018) (based on

Perl) and Closh (Dundalek 2018) (based on Clojure). They generally include a syntax modified to

be easier to use in an interactive command line, subprocess pipelines, and a way to switch between

code in the host syntax and the shell syntax. These languages usually have limited compatibility

with their host languages, for instance not being able to provide functions as a library to programs

written in the host language. Many of them focus on interactive use, with little or no support for

scripting. Rash differs from other shells embedded in general-purpose languages by having full

compatibility with other Racket languages, supporting pipelines of objects as well as byte streams,

allowing racket functions to be used as interactive commands that have syntactic convenience equal

to that of subprocesses, and enabling user extensibility with hygienic macros. These features allow

rash to more fully enable interactions and scripts to advance along the maturity spectrum.

3.7 Hasty Conclusion
Programmers want to use highly dynamic, terse languages specialized for system administration

and other interactive tasks, but they would also like to automate these tasks by transforming their
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interactions into scripts. We have demonstrated how Rash’s approach of embedding a shell language

within a general-purpose language allows programmers to work in a suitable command language

while also growing their scripts gradually into mature programs using general-purpose language

features and libraries. Rash accomplishes this by including a terse line-oriented syntax, by allowing

its line notation and Racket’s notation to be nested together, by preserving and expanding on

Racket’s pervasive extensibility, and by providing a pipelining DSL that generalizes Unix pipelines.
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CHAPTER 4

GENERATING CONFORMING PROGRAMS

WITH XSMITH

Fuzz testing is an effective tool for finding bugs in software, including programming language

compilers and interpreters. Advanced fuzz testers like Csmith can find deep semantic bugs in lan-

guage implementations through differential testing. However, input programs used for differential

testing must not only be syntactically and semantically valid, but also be free from nondetermin-

ism and undefined or unspecified behaviors. Developing a fuzzer like Csmith that produces such

programs can require tens of thousands of lines of code and hundreds of person-hours. Despite this

significant investment, fuzzers designed for differential testing of different languages include many

of the same features and analyses in their implementations.

To make the implementation of language fuzz testers for differential testing easier, we introduce

Xsmith. Xsmith is a Racket library and domain-specific language that provides mechanisms for

implementing a feature-complete fuzz tester in only a few hundred lines of code. By sharing infras-

tructure, allowing declarative language specification, by allowing procedural extensions, Xsmith

allows developers to write correct fuzzers for differential testing with little effort. Using Xsmith,

fuzzers have been developed for a variety of languages.

Xsmith’s domain of differential test-case generation is a good application for an embedded DSL.

While much of each Xsmith fuzzer is written declaratively, mature fuzzers take advantage of the

opportunity to use arbitrary Racket code to extend Xsmith with generation rules that are specific to

the target language of the fuzzer. A stand-alone DSL would necessarily either omit this capability,

or implement a set of general-purpose programming features alongside the core domain-specific

concerns of the language.

4.1 Introduction
The effectiveness of random testing, or “fuzzing,” is determined both by the chosen input

generation strategy and the method used to detect failing tests, or test oracle. The generation or
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mutation of test cases using random bytes can in theory generate any test and therefore cover any

code path, but typically exercises only “shallow” code in parsing and input validation stages of a

program. Meanwhile, grammar- and type-aware input generators can exercise “deep” code paths

that pass these initial validation steps. The test oracle of detecting crashes can be used with any

test case generator, but can only find obvious errors such as memory or assertion violations, and

not subtle semantic bugs. Property-based testing can find semantic bugs, but requires users to write

invariant properties of test results or side effects, which is expensive.

The test oracle of interest for this chapter is differential testing (McKeeman 1998), where the

same input is given to multiple implementations of a system—in our case, a programming language

implementation. If the multiple implementations are correct, then giving them all the same input

program (and executing the returned output if the implementation is a compiler) should produce

the same result. When there is a difference in program output, a bug has been found. While

differential testing can find subtle semantic bugs without writing extra properties, there is a catch.

If the input program relies on any behavior that is not guaranteed to be the same between multiple

executions and multiple implementations of the language, differences in output do not necessarily

indicate a bug. Therefore, differential testing requires programs that conform strictly to the language

specification, including avoiding undefined, implementation-defined, or nondeterministic behavior.

We call such inputs conforming inputs.

One notable generator of conforming programs is Csmith (Yang et al. 2011). Csmith success-

fully identified hundreds of bugs in mainstream C compilers, including LLVM and GCC. However,

the development of Csmith took hundreds of person-hours and resulted in nearly 40,000 lines

of code. Although practically any language could benefit from such a program generator, it is

impractical for most language developers to write a variant of Csmith targeting their own language.

To ease the development of fuzzers that generate conforming programs, we created Xsmith.

Xsmith is a domain-specific language (DSL), implemented as a Racket library, that allows for the

rapid and concise implementation of conforming program generators for arbitrary programming

languages.1

The primary contributions of this chapter are:

‚ A domain-specific language for creating conforming program generators.

1Xsmith is open source, with code available at https://gitlab.flux.utah.edu/xsmith/xsmith/

https://gitlab.flux.utah.edu/xsmith/xsmith/
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‚ A generic framework for declaring type and effect systems for program generation used in

the DSL implementation.

‚ Several example fuzzers implemented using the DSL, some of which have been used to find

bugs in language implementations used in production.

‚ An analysis of the effectiveness and cost of the example fuzzers.

4.2 Design
Because Xsmith is intended to support the specification of fuzzers for a wide range of program-

ming languages, its design and implementation are complex. In this section we describe the overall

design of Xsmith at a high level. Throughout the section, we develop a simple fuzzer for a small

toy calculator language (named calc) as an example. The grammar of this language is shown in

Figure 4.1.

Xsmith fuzzers generate program trees by starting with a “hole” node for the top-level pro-

duction of the grammar. Xsmith iteratively fills hole nodes in the tree with nodes corresponding

to appropriate grammar productions, which may themselves have holes as children, as shown in

Figure 4.2. A fuzzer author provides Xsmith with a grammar declaration that determines the

grammar of program generation. The grammar used by an Xsmith fuzzer is generally an abstract

grammar that matches the logical structure of the language or a subset of the language. This abstract

grammar is necessarily the same as the grammar that might be used for parsing the language or the

grammar of a compiler’s AST representation.

The declared grammar is compiled to generate an object-oriented attribute grammar specifi-

cation for the RACR attribute grammar library (Bürger 2015). The generated attribute grammar

matches the input grammar but adds a hole production as an alternative for each user-provided pro-

duction. While Xsmith program generation is grammar-driven at its core, generation of conforming

programs requires many considerations beyond the grammar. To enable filtering and probability

weighting based on these many other considerations, the grammar is also compiled into a set of

choice classes, one for each given production. When the generation algorithm selects the next hole

to fill, a choice object is instantiated for each production that could be used to replace the hole, and

the resulting list of choice objects is used to make the decision.

Below is an example Xsmith specification that implements the grammar of the calc language.
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Each arm of the add-to-grammar form contains the name of a production, the supertype of that

production, and a list of fields for that production. The Add and Div productions each have two

children, and these children must themselves be Exp (expression) productions. These Exp children

will be instantiated as Exp holes. The Int production specifies an integer literal, whose val child

may contain arbitrary Racket data. In this example, val is initialized to a random integer between

1 and 100. (This random selection occurs each time an Int hole is filled.)

(add-to-grammar calc
[Exp #f ()

#:prop may-be-generated #f]
[Add Exp ([lhs : Exp]

[rhs : Exp])]
[Div Exp ([lhs : Exp]

[rhs : Exp])]
[Int Exp ([val = (random 1 100)])])

In addition to writing a grammar, a fuzzer author can declare various properties of each grammar

production. Properties are used to specify semantic details of grammar productions, such as their

types and binding structure. Each property has its own form, potentially accepting declarative data,

arbitrary user-provided Racket code, or some mix of the two. In the following code, choice-

weight of the Div and Int nodes is adjusted to change their generation probabilities.

(add-property calc choice-weight
[Div 10]
[Int 5])

Properties are compiled into attributes — methods for attribute grammar nodes — or choice

methods — methods for choice classes. Internally, an Xsmith-based fuzzer uses attributes to com-

pute information about the program being generated and its constituent nodes. For example, the

xsmith_type attribute computes the type of a node, and the _xsmith_visible-bindings

attribute computes a list of bindings available for reference at a given point in the tree. Choice

methods are used to compute details for potential choices. For example, the _xsmith_satisfies-

type? choice method is used to filter out choices with invalid types, the _xsmith_wont-over-

deepen method is used to make choices that will keep the generated program size bounded, and the

_xsmith_fresh choice method determines how a chosen node is initialized.2

2Because attribute and method names are bare symbols without namespacing, we use the xsmith_ prefix by
convention for names defined by Xsmith itself, and we use a leading underscore by convention for private attributes
and methods intended for use only in Xsmith’s implementation.
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Attributes may query other attributes during computation, while choice methods may query

both attributes and other choice methods. Custom attributes and choice methods may be defined

directly, but must be written in a procedural style. The majority of attributes and choice methods

are compiled from properties, since they allow users to declaratively specify details at a high level.

These include semantic details such as whether a grammar node represents a definition, whether a

node causes a read or write to a variable, or whether a node’s children have a specified execution

order. Users may additionally define custom properties with their own compilation transformers to

abstract patterns between fuzzers, although Xsmith is designed to support the majority of properties

most languages’ fuzzers would need out of the box.

When a tree with no holes is finally completed, it must be converted to text for program-

ming language implementations to consume. The xsmith_render-node attribute, defined by

the render-node-info property, is used to convert the tree into text or an intermediate represen-

tation to facilitate pretty-printing, such as s-expressions or document objects from Racket’s pprint

library. When an intermediate representation is used, a final text converter must be specified as well.

Below is an example renderer for our calc language.

(define (render-infix operator)
(lambda (n)

(format "(„a „a „a)"
(att-value 'xsmith_render-node

(ast-child 'lhs n))
operator
(att-value 'xsmith_render-node

(ast-child 'rhs n)))))
(add-property calc-grammar render-node-info
[Add (render-infix "+")]
[Div (render-infix "/")]
[Int (lambda (n)

(number->string (ast-child 'val n)))])

4.3 Cost Reduction Features
Xsmith has many features that work together to make the creation of conforming program gener-

ators inexpensive. These features include forms for declaring grammar, types, and name scoping and

resolution, as well as a “canned components” library to encapsulate language similarities, features

for undefined behavior handling, and so on. In this section we give an overview of these features,

discussing their usage and design.
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4.3.1 Grammar and Syntax

The first step to generating programs that are conforming is to follow a grammar. Xsmith

generates program trees according to an abstract grammar provided by the user.

Usage. A user can define an abstract grammar for their generator by using the add-to-

grammar form. Each grammar production is declared as a subtype of another grammar production

(including the abstract base grammar production, #f). Grammar productions may have any number

of children, which can be specified as either being grammar productions (of a given type) or storage

locations for arbitrary Racket data. Children may be annotated with a Kleene star to indicate

repetition (zero or more repetitions). Below is an example of a partial grammar definition.

(add-to-grammar js-component
[ArrayLiteral Expression ([elem : Expression *])]
[IntLiteral Expression ([value])])

Design and Implementation. Xsmith’s grammar and AST data structures rely on the RACR (Bürger

2015) attribute grammar library. RACR allows Xsmith grammar nodes to include dynamically

calculated attributes that can depend dynamically on attributes or data from parent or child nodes.

As an AST grows, RACR automatically keeps track of which attributes need to be recomputed.

Xsmith relies on grammars to help users more easily define and re-use language components. To

transform the AST into an input that is valid for a compiler or interpreter, Xsmith includes a multi-

step render phase. The goal of the render phase is to produce a program string that can be output to

a file. However, rather than defining a transformation from each grammar node to a string, it can be

easier to have pleasantly formatted output by using an intermediate format. For example, Lisp code

can be rendered more easily and legibly by transforming the abstract tree first into s-expression

data structures, then pretty printed by Racket’s s-expression pretty-print function. For more

line-oriented languages like JavaScript, more readable printing can be achieved by rendering to

the data structures of Racket’s pprint pretty-printing library, then finalizing the string conversion

using the library’s pretty-format function.

4.3.2 Types

Generators of conforming programs need to produce well-typed code to pass the type-checking

stage of programming language implementations. The requirement for type-correct code is perhaps

less strict for dynamically typed languages than for statically typed languages. However, if code

for dynamically typed languages is generated without regard to types, most expressions will raise
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run-time type errors. Xsmith includes a type system framework that allows fuzzers to generate

well-typed code for a variety of languages.

Usage. The type system used by a fuzzer is defined by the type-info property. This property

is two-armed. The first arm specifies the types a grammar node can inhabit. The second arm is a

function that receives a tree node of the specified production and its type and returns a dictionary of

types for the node’s children. In the code below, the LiteralString and StringAppend produc-

tions are declared to always have type string, while the VariableReference is declared to use

a type variable that can be unified with any type. The LiteralString and VariableReference

productions have no children, but the StringAppend production constrains its children to inherit

its type.

(define no-child-types (lambda (n t) (hash)))
(add-property
js-component
type-info
[LiteralString [string no-child-types]]
[StringAppend [string (lambda (n t) (hash 'l t 'r t))]]
[VariableReference [(fresh-type-variable) no-child-types]])

Design and Implementation. Xsmith allows its user to specify type systems that contain base

types, function types, product types, generic types (such as lists and arrays), nominal records, and

structural records. Xsmith supports less expressive type systems than some other tools do, such as

PLT Redex (Felleisen et al. 2009). Some of these tools support the programmer writing arbitrary

type judgments that are compiled to first-order logic and subsequently used for type checking and

generating random terms (Fetscher et al. 2015). However, Xsmith has more constraints on generated

programs than merely being well-typed, and other analyses—such as those for the effect system—

require the analysis of types. Therefore, we have built a more limited type definition framework that

allows this cross-analysis. Despite these limitations, Xsmith’s type checking framework is sufficient

to support fuzzing most features of popular programming languages.

Type systems specified in Xsmith may also support subtyping. During type checking, Xsmith

performs subtype unification between the types that a tree node declares that it supports, the types

provided by its parent node, and any types declared by relevant definition nodes for references. Sub-

type unification, like traditional variable unification during type inference, mutates type variables

to indicate relationships between type variables and between type variables and concrete types.

However, unlike traditional unification, subtype unification reflects the asymmetric relationship of

subtyping. Type variables in subtype relationships form a lattice of related types, where (subtype-
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unify! a b) relates a as a subtype of b, placing a below b in the lattice. Symmetric unification

in this model is implemented merely as two subtype unifications:

(define (unify! a b)
(subtype-unify! a b)
(subtype-unify! b a))

When a type variable a is already related as a subtype to type variable b and (subtype-unify! b

a) is executed, the relationship lattice is squashed such that a, b, and all variables between them in

the lattice are unified into a single type variable.

While it is well known that unification-based type inference is incompatible with subtyping for

type checking of existing programs, Xsmith can use unification because it type checks program

fragments while generating a fresh program. Thus, Xsmith can always choose a term for any hole

that will satisfy the type checker, assuming the type system specification is correct.

4.3.3 Language Similarities

Many programming languages have similar language features. To help Xsmith users avoid

implementing these features afresh for each language they write an Xsmith fuzzer for, Xsmith

provides a library of “canned components” that automatically define the necessary grammar nodes

and properties.

Usage. The main forms provided by the library are the add-basic-statements and add-

basic-expressions macros. Each of these has a variety of optional keyword arguments and

extends a grammar with forms specified by those arguments. These productions include literals,

accessors and mutators for mutable arrays and dictionaries, and function application and definition.

The code below demonstrates how many standard productions can be added to a grammar, with

appropriate type rules and other properties, with a canned-components macro.

(add-basic-statements js-component
#:Block #t
#:ReturnStatement #t
#:IfElseStatement #t
#:AssignmentStatement #t
...
)

The canned-components library also provides the add-loop-over-containermacro, which

has various keyword arguments allowing a user to specify whether the loop form is a statement or

an expression, which types of containers it can loop over, and the type of the loop’s result. These

productions are added with all relevant properties for the type and effect systems, name analysis,
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etc. The only non-optional property that the user must add is the render-node-info property.

The code below demonstrates how a loop form can be added to a grammar.

(add-loop-over-container js-component
#:name ForLoopOverArray
#:loop-ast-type Statement
#:body-ast-type Block
#:collection-type-constructor
(λ (elem-type) (mutable (array-type elem-type)))
...)

Design and Implementation. The canned components are implemented as a library of macros

that generate the most common patterns of grammar and property definitions. The canned-components

library reduces the amount of code required to write a new fuzzer, and it reduces the duplication of

tedious and error-prone type rules and other properties that are easy to get slightly wrong.

4.3.4 Unspecified and Implementation-defined Behavior

For practical reasons, some programming languages leave the semantics of certain constructs

either up to individual implementations or completely undefined. A generator of conforming pro-

grams must avoid every type of unspecified or non-deterministic behavior in the programs that it

generates. One common unspecified behavior concerns the order of evaluation of subexpressions,

such as multiple arguments in a function call. While the evaluation order is unimportant in the

evaluation of purely functional code, effectful code that assigns variables or mutates values requires

a consistent ordering to be conforming.

Usage. To avoid generating code with an unspecified effect order, a user simply annotates which

nodes include different effects, such as reading and writing to variables. This is demonstrated in the

following code.

(add-property js-component reference-info
[Reference (read)]
[Assignment (write)])

Design and Implementation. Xsmith includes an effect analysis that enumerates the possible

effects of code evaluation and conservatively avoids ordering conflicts. Tracked effects include

variable reference and assignment, projection and mutation of values like arrays, and higher-order

function application. Whenever a potential conflict arises, such as referencing a variable in one

function argument while assigning to the same variable in another argument, Xsmith filters out the

choices that would lead to the generation of offending programs. A user may annotate grammar
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nodes that impose a specified ordering on their children, such as block and sequence constructs,

with the strict-child-order? property.

Besides effect ordering, programming languages have a wide and inconsistent variety of features

that cause undefined, or at least unhelpful, behavior. For example, out-of-bounds array access is an

undefined behavior in C, while in many other languages it is defined to raise an exception. Although

a raised exception is well defined and potentially an interesting part of the language API to fuzz test,

in typical fuzz testing an array access exception is likely not a useful behavior. For example, because

the set of possible values of type int in a given programming language is likely much larger than

the set of usable array sizes, array access with approximately uniformly generated int values will

raise exceptions much more often than it will yield values. For both defined and undefined semantics

of array access, it is usually best to generate code that wraps such accesses to convert the index to a

number within bounds or provide a fallback result value.

Because these undefined or unhelpful behaviors are language-specific, each fuzzer needs some

amount of unique attention to them. The common pattern used in our example fuzzers is to include

program header text that defines safe wrapper functions for potentially problematic functionality,

possibly including extra fallback arguments (e.g., for accessing an empty list). The grammar can

then target the safe wrappers instead of the raw unsafe operations. Some of these behaviors are

fairly common and have been captured in the canned-components library.

4.3.5 Name Scoping and Resolution

Generators of conforming programs need to produce programs where variables referenced are

defined in scope. Xsmith includes a generic analysis to ensure that variables are well scoped. If a

reference is generated in a position where no appropriately typed variable is in scope, Xsmith will

automatically add an appropriate definition node into a scope that is visible to the new reference.

Usage. Users can annotate which grammar nodes bind and reference variables using the binder-

info and reference-info properties, such as with the following code.

(add-property js-component binder-info
[Definition ()]
[FormalParam (#:binder-style parameter)])

However, common patterns for binders and references have also been captured in the canned-

components library, so most users do not need to interact with these properties directly.

Design and Implementation. Our resolution system is based on scope graphs (Néron et al.
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2015), which is a generic system for representing variable scoping in programming languages.

Based on user-provided annotations, Xsmith will generate scope graph models for generated pro-

grams, and use them to find which variables that are in scope at any position.

4.3.6 Language-Specific Analyses

While Xsmith includes several generic analyses, an advanced fuzzer may benefit from a language-

specific analysis. Because they are language-specific, such analyses can not reasonably be included

in the Xsmith framework. However, Xsmith provides several features that aid a user in writing their

own custom analyses.

Usage. Users can directly write custom attributes with the add-attribute form, and add

custom choice methods with the add-choice-method form. The following code defines a custom

choice-method that can be added to the set of generation filters to prevent variable references

from being generated as the direct children of Division nodes.

(add-choice-method js-component allow-ref
[VariableReference
(λ () (not (eq? (ast-node-type

(ast-parent (current-hole)))
'Division)))])

Additionally, users may define custom Xsmith properties, essentially making a mini-DSL to compile

declarative data into attributes and choice methods. Defining custom properties requires familiarity

with Racket macro writing techniques, and we will leave discussion of custom properties to the

Xsmith documentation. Finally, users can leverage Xsmith’s generic analyses as dependencies of

their analyses, such as by querying a node’s type during a custom analysis.

Design and Implementation. Xsmith uses the RACR attribute grammar library (Bürger 2015)

to implement its attribute system, and uses the Racket class library to define choice classes. Prop-

erties are a syntactic form specific to Xsmith. Properties each have a syntax transformer function

that accepts the syntax fragments from each place add-property was used with that property.

Each property requires a specification of which attributes, choice methods, and other properties will

be generated. Additionally, properties may specify other properties whose syntax fragments they

may read in in their transformation function. All properties used in an Xsmith fuzzer have their

transformers run in an ordered based on read and write dependencies.

Ultimately, custom properties, attributes, and choice-methods provide a way for Xsmith users

to extend Xsmith with arbitrary Racket code. This allows Xsmith fuzzers to include features never
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imagined by Xsmith’s authors.

4.3.7 Making Decisions

Xsmith includes features for both filtering potential decisions and for adjusting the probability

of different choices when filling holes in the generated AST.

Usage. A user can add custom choice methods as filters by using the choice-filters-

to-apply property. The following code applies filter choice-method defined above to restrict

VariableReference generation.

(add-property choice-filters-to-apply js-component
[VariableReference (allow-ref)])

A user can adjust the frequency of different grammar node choices with the choice-weight

property, shown below.

(add-property choice-weight js-component
[IfStatement 50]
[AssignmentStatement
(λ (hole) (if (eq? (ast-node-type

(ast-parent hole))
'IfStatement)

20
30))])

The choice weight may be given a positive integer value or a function that returns a positive integer

based on an analysis of the tree.

Design and Implementation. When filling a hole, Xsmith instantiates one choice object with

the appropriate class for each subtype of the required node type. For example, in a hole of type Ex-

pression, Xsmith will instantiate a choice object for each of IntegerLiteral, VariableRef-

erence, Addition, and so on. Each of these choices is filtered based on the specifications given to

the choice-filters-to-apply property, including default filters such as type satisfaction. After

a list of valid choices has been filtered, each remaining choice has its choice-weight computed.

A choice is then randomly made, with each choice having probability choiceWeight / weightSum.

4.3.8 Refinement

For some language features, you may wish to modify a complete program using whole-program

analysis. For example, a generator may include a value analysis that can prove that no undefined or

non-conforming behavior can happen at a given program node. That node can then be transformed

to use a raw “unsafe” operation instead of a safe wrapper version.
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Usage. Refinement is run after a complete tree is generated. A refiner is defined as a series of

predicates to test nodes of the tree for relevance, and finally a transformer for nodes that match the

criteria. Refiners walk over the tree finding nodes that can be transformed, and execute until the tree

reaches a fixpoint.

Design and Implementation. Refinement uses essentially the same algorithm as generation.

The differences are that refiners use custom predicates instead of simply checking for holes, and use

custom transformers instead of the standard node generation function.

4.3.9 Parametric Generation

The Zest fuzzer (Padhye et al. 2019) introduced the concept of parametric generation of test

inputs. Parametric generation allows a generative fuzzer to be feedback directed.

Usage. When generating a program using Xsmith’s command line, users may provide optional

flags to configure parametric generation.

Design and Implementation. Xsmith uses the Clotho (Darragh et al. 2020) Racket library to

interpose on pseudo-random number generation with a byte vector parameter when given, or to

save a vector of pseudo-random bytes used. Instead of a call to a random function producing a

pseudo-random 32-bit integer, it returns the next 32-bit slice of the input parameter. By mutating

the byte vector parameter, a random generator can preserve the structure of some choices while

changing others. If a byte vector parameter is too short to make all choices, part of the vector can

be used to seed future pseudo-random number generation. Future pseudo-random numbers can be

saved to append to the longer byte vector, allowing the full choice history to be saved for future

modification.

When fuzzing, feedback direction, such as line coverage of the system under test, can be used as

an indication of whether a given test candidate is “interesting” even if it has not directly uncovered

a bug. If a recording is made of the byte vector used to make choices when generating an interesting

candidate, it can be modified to create different but similar test cases. Mutant byte vectors may lead

to test cases that preserve the coverage (or other interesting aspects) of a previous test while finding

more coverage.

The Zest fuzzer found parametric generation to be useful for finding more bugs with generative

fuzzers. However, we have not yet built test environments for using our fuzzers that can capture

feedback data such as line coverage from instrumented compilers, or extended our test harness to



76

collect parameters, identify interesting test cases, and create mutant parameters. Thus we have not

evaluated feedback direction with Xsmith.

4.3.10 Automatic Test-Case Reducer

When a generated test case triggers a bug in a language implementation, it is not always obvious

what the bug is, or what the aspects of the program triggered the bug. Yang et al. (2011) found that

bugs tended to be found more frequently with relatively large programs, meaning that generating

programs likely to find bugs implies generating programs where the specific bug is hard to see. In

practice, test cases must be minimized to find a small, understandable test case that still triggers the

bug.

There are reducers for specific programming languages, such as C-Reduce (Regehr et al. 2012)

for C. Sometimes they include fairly generic passes that work reasonably well for other languages,

for example C-Reduce has been used successfully for programs in various languages. However, C-

Reduce can not effectively use its semantics-aware passes on languages that differ from C, and even

its relatively generic passes struggle when a language’s syntax differs significantly from C. Xsmith

includes a generic, built-in test case reducer that operates on the generated AST of a program.

Usage. When generating a program using Xsmith’s command line, in addition to flags for

specifying a specific seed and configuration, a user may provide the optional --reduction flag.

The flag takes as an argument a path to a script to run on each reduction candidate. The script should

exit with status 0 when the candidate exhibits the interesting behavior of the original, and exit with

nonzero status otherwise.

Design and Implementation. Xsmith’s reducer performs a series of simple reductions to the

generated AST while maintaining correctness guarantees. These reductions include replacing AST

nodes with atomic literal nodes, replacing variable references with references to the outermost

variable of the appropriate type, removing unreferenced definition nodes, and removing optional

repeated elements in a grammar.

At each step, the program is re-rendered and sent to the reduction script to check whether

the reduction preserves the interesting behavior. When a node is considered for replacement, it

is tentatively replaced by a hole node, and fresh choice objects are generated. However, only

choices fitting a specific replacement strategy are considered, and if no valid choice is relevant

to the criteria or successfully passes the script test, the replacement is undone. Deleting optional
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repeating elements in a grammar, such as elements in a list literal, is done by simply removing

the node from the AST and testing with the script. To preserve program correctness, a property

annotation (reducible-list-fields) is required to specify which repeating fields are actually

optional.

Xsmith’s built-in reducer only generates reduced versions of test cases that are valid and could

in principle have been generated by Xsmith. Additionally, Xsmith doesn’t reduce any literal code,

such as wrapper definitions for preventing undefined behavior, that are included with the renderer.

Thus, Xsmith’s reducer can not reduce test cases to truly minimal examples. However, it can

quickly perform a variety of possible minimization steps while preserving semantic guarantees

for differential testing. Reduced output from Xsmith can be further reduced by hand or by a

secondary automatic reducer, such as C-Reduce. Our experience so far has shown that Xsmith’s

built-in reducer is useful and effective despite its simplicity and limitations, and that a secondary

manual reduction pass to eliminate rendering boilerplate is relatively easy.

4.3.11 Command-Line Interface

Xsmith automatically generates a command-line interface for fuzzers. The command-line in-

terface includes flags for configuring standard options, such as maximum depth, generation seed

(or parametric generation byte vector), single-run or server mode, and options for printing debug

info. The command line can be arbitrarily extended with fuzzer-specific flags that can be queried

throughout the fuzzer. In particular, grammar productions can be labeled with feature properties,

and the command-line interface can be declaratively extended to include optional flags with default

values for including or excluding each of those features.

Usage. Each Xsmith fuzzer uses the define-xsmith-interface-functions form that

compiles the specification and defines a function that parses a command line and runs the fuzzer.

The following code compiles the grammar definition and properties, and runs the command-line

code when its containing file is run as a program.

(define-xsmith-interface-functions [js-component]
#:fuzzer-name simple-javascript
;; Optional arguments may add command-line options.
...)

(module+ main (simple-javascript-command-line))
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4.3.12 Modularity

Xsmith fuzzers may be declared in a modular fashion. Grammar productions, properties, and

other aspects of fuzzers are added to fuzzer components, which can be composed when defining a

complete fuzzer. Fuzzer components can be split between multiple files, and even shared between

multiple fuzzers. A family of related fuzzers can be defined as extensions to the same base fuzzer.

4.4 Example
To give a sense of what a small but still featureful Xsmith fuzzer looks like, we present a small

JavaScript fuzzer. Figure 4.3 is an abbreviated example of a simple JavaScript fuzzer, with elided

code sections marked by “...”. A full version of this example is included in the Xsmith source

repository. While the full version is longer, it is still only 412 lines as measured by the wc utility.

This example demonstrates a fuzzer that takes advantage of the canned-components library

to generate conforming JavaScript programs that may utilize arrays, first-class functions, objects

(encoded in Xsmith as structural record types), if statements, and loops. The largest amount of code

elided from the full version is in program rendering. The rendering step tends to be verbose and

varies by language, but is not complicated or difficult to code.

This example uses a safe_divide function, defined in a header, to avoid issues that arise from

dividing by zero. Similarly, the full version defines more safe wrappers for array reference and

assignment. While these operations are not undefined or even necessarily troublesome behavior in

JavaScript, we use them to avoid having values collapsing to JavaScript’s undefined value, which

would otherwise be overwhelmingly common. This demonstrates a common pattern used when

creating fuzzers with Xsmith to avoid undefined behavior or the raising of common exceptions.

This example also does not directly use any add-to-grammar forms, because the entire ab-

stract grammar used is provided by the canned components library. A larger fuzzer will generally

include canned components as well as add-to-grammar forms that add various built-in functions

specific to the language.

4.5 Evaluation
We evaluate Xsmith by considering a set of fuzzers built with Xsmith as well as bugs found with

those fuzzers. We assess the difficulty of creating fuzzers with Xsmith and the number and quality

of bugs found. In particular, we examine a particular case study of fuzzing Dafny.
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4.5.1 Fuzzers

Generators of conforming programs typically require a lot of effort to create. Csmith, a prede-

cessor to Xsmith and its major inspiration, required hundreds of person-hours and tens of thousands

of lines of code. Xsmith fuzzers require substantially less effort and code. Figure 4.4 compares

sizes of a selection of conforming program generators in terms of code size.

While the implementations of Xsmith-based fuzzers are significantly smaller than similar con-

forming program generators like Csmith (Yang et al. 2011), Verismith (Herklotz and Wickerson

2020), and SQLSmith (Seltenreich 2020), they still produce programs that are syntactically and

semantically valid as well as free from undefined or nondeterministic behavior. Additionally,

Xsmith fuzzers can be featureful, generating correct code for conditionals, rich types, variable

references, and so on.

Xsmith is not the only generic framework for creating programming language fuzzers. Other

generic frameworks include Polyglot (Chen et al. 2021) and StarSmith (Kreutzer et al. 2020). While

Xsmith has the greatest focus on differential testing compared to other generic frameworks, it

compares well in terms of implementation effort per fuzzer, as shown in Figure 4.5.

Some StarSmith line counts are approximate, because for SQL and SMT their repository con-

tains multiple versions of each fuzzer with various modifications. The size of the Polyglot frame-

work is difficult to ascertain, as the bulk of its implementation is a modification to AFL, and the

Polyglot authors keep the entire modified copy of AFL in their source tree. Polyglot grammar

specifications are given with a mix of JSON specification, Python code, and other formats that are

specific to Polyglot.

4.5.2 Fuzzing Dafny

In the summer of 2021, a collaborator began a project using Xsmith to fuzz Dafny (Leino 2010),

a verification-aware programming language. He was experienced with Racket but had no previous

experience with Xsmith. In about a week, he prototyped his Xsmith-based Dafny generator. During

a three-month period, he improved his fuzzer and found 28 Dafny bugs. His fuzzer implementation

has 1,666 lines of code, as well as differential testing and verification testing code totaling 722 more

lines.

While Dafny fuzzing primarily used differential testing (comparing different Dafny compiler

back ends) and compiler error detection, it also included a verification oracle that found one bug.
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Additionally, one bug was found as a side-effect of writing the fuzzer. While the author was trying

to determine the proper type constraint to write for one feature of the fuzzer, he decided to manually

test violations of the constraint, and found a bug.

This experience shows that Xsmith can be utilized to write an effective fuzzer in a small time

period with a small amount of code.

4.5.3 Summary of Bugs Found

We have found bugs using Xsmith fuzzers for various programming languages, listed in Fig-

ure 4.6. All reported bugs are unique.

Aside from one Racket bug that had been fixed before we found it, all bugs listed are new

(not publicly reported or fixed before we discovered them through fuzzing). All Racket bugs were

confirmed by Racket’s maintainers, and all but one have been fixed. All Dafny bugs and issues were

confirmed by Dafny maintainers, and 6 have been fixed. All of the WebAssembly and Standard ML

bugs we found have been confirmed and fixed.

We have written fuzzers for various other languages besides those in the bug table, such as

Python, JavaScript, and Lua. However, we have not performed extensive fuzzing with them or with

the WebAssembly or Standard ML fuzzers. These less-used fuzzers likely all need at least minor

improvements to be effective at finding bugs.

Approximately half of the bugs found by Xsmith-based fuzzers so far have been semantic errors

detected by differential testing. These bugs can effectively only be found by program generators

that reliably generate conforming test cases. Otherwise, if semantically valid but non-conforming

(or semantically invalid) programs are regularly generated, differential testing oracles would be

overrun with false positive results, and would be practically useless.

Similarly, approximately half of the bugs found could only effectively be found by generators of

semantically correct (though not necessarily conforming) program generators. Bugs characterized

by valid programs failing to compile would have too many false positives if tested using a generator

that does not reliably generate semantically valid test cases. Some bugs found were characterized

by a “successful” compilation that produced ill-formed output. Testing for ill-formed output when

the compiler is successful could reasonably be performed with generators of semantically or even

syntactically invalid code, but such bugs would likely be difficult for such generators to trigger.

In our experiments, Xsmith program generators have not found any crash bugs, the bug class
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most commonly found by fuzz testing. Differential fuzz testing with Xsmith appears to be very

complementary to other fuzzing practices, such as fuzzing with generators of random bytes such as

AFL (Zalewski 2020). Xsmith seems well suited to finding a different class of bugs than tools like

AFL, and Xsmith does not effectively stress early compiler stages such as parsing.

4.5.4 Bug Discussion

We present and discuss a small selection of bugs found. The code snippets presented are

simplified presentations to illustrate the bugs, not the actual code generated by Xsmith.

4.5.4.1 Racket and Chez Scheme Float Modulo Bug When using a large floating point

number, Racket CS (Racket built on Chez Scheme) would give wrong answers to the modulo

operator. The bug was found through differential testing.3

#lang racket/base
;; This number is big enough that despite
;; the .1 it passes `integer?`.
(define num

5842423430828093674811510424315205562331463211094477254417232.1)
(println (integer? num)) ;; Prints true
;; But modulo doesn't stay in bounds of the divisor.
(println (modulo num 10)) ;; Prints a number greater than 10

It was determined that it was actually a bug in Chez Scheme itself, and was fixed.4

4.5.4.2 Racket BC GCD bug This is an example of a bignum boundary bug. The bug was

determined to be at least 20 years old, and included in the oldest repository import to CVS. The bug

was found by differential testing.5

#lang racket/base
(define num -4611686018427387904)
;; The gcd function should always return non-negative
;; numbers, but RacketBC returns a negative number.
(gcd num num)

4.5.4.3 Racket Serialization Bug Besides differential testing, some bugs are found with

various properties. For example, our Racket fuzzer was designed to produce code that does not

raise exceptions. Thus, a program that raises an exception is evidence of a bug (in Racket or in our

3This bug was submitted as https://github.com/racket/racket/issues/3469.

4The Chez Scheme bug was fixed in https://github.com/cisco/ChezScheme/pull/537.

5Reported as https://github.com/racket/racket/issues/3484.

https://github.com/racket/racket/issues/3469
https://github.com/cisco/ChezScheme/pull/537
https://github.com/racket/racket/issues/3484
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fuzzer). This bug was present in both Racket BC (the old C back end for Racket) and Racket CS

(the new Chez Scheme back end), and was found with an interesting property.

The write and read functions are primitive serialization and deserialization functions in Racket

and Scheme. In version 7.9, the latest release at the time of fuzzing, the handling in the read

function for Unicode character U+FEFF, the byte-order-mark, was changed. However, the write

function was not changed. Thus, data could be altered in a round-trip between the read and write

functions.

When printing generated Racket programs, our Racket fuzzer pretty prints them using a function

that ultimately uses the write function. When compiling our generated programs, the Racket

compiler uses the read function. The bug was found because the compiler was rejecting ill-formed

programs that were mangled between generation and compilation by the write and read mis-

match.6 We found multiple write and read mismatch bugs in this manner.

4.5.4.4 Dafny Bugs Related to Zero Multiplicity This class of bugs was found with dif-

ferential testing. Internally, the multiset data structure in Dafny is implemented as a dictionary

mapping from elements to the multiplicity. Many multiset operations assumed the invariant that the

multiplicities will always be positive. However, this invariant in fact did not hold, as the multiplicity

changing operation can break the invariant. The following code would produce true false when

compiled to C#, false true when compiled to Go, true true when compiled to JavaScript, and

false false (which is the correct output) when compiled to Java.7

method Main ()
{

var a := multiset{12}[12 := 0];
var b := multiset{42};
print 12 in a, " ", a == b, "\n";

}

4.5.4.5 Dafny Bug Found by Verification Testing In addition to differential testing, gen-

erated Dafny programs were also used for verification testing, which aims to find soundness and

precision issues in the Dafny verifier. Additionally, it is useful for finding discrepancies of the

underlying semantics between the verifier and the compilers. Given a generated Dafny program

with print statements, verification testing compiles and runs the program, and correlates print

6This bug was reported as https://github.com/racket/racket/issues/3486.

7These bugs were reported as https://github.com/dafny-lang/dafny/issues/1359 and https://github.com/dafny-
lang/dafny/issues/1361.

https://github.com/racket/racket/issues/3486
https://github.com/dafny-lang/dafny/issues/1359
https://github.com/dafny-lang/dafny/issues/1361
https://github.com/dafny-lang/dafny/issues/1361
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statements with their outputs. The program is subsequently transformed to turn the print state-

ments into assertions. In the most basic form of verification testing, we expect that these assertions

should be verified by the verifier. These assertions therefore test the Dafny verifier’s ability to

predict the output emitted by the compiled program.

In the following bug, all compiled Dafny programs returned the same incorrect answer, so the

bug could not be discovered by differential testing. Yet, it was determined to be incorrect by

the verification testing. The problem was that the superset operation was compiled into a subset

operation.8

method Main ()
{
var a := {1};
var b := {1, 2};
print a > b;

}

4.6 Discussion
We discuss a qualitative comparison of Xsmith to other systems for creating programming

language fuzzers, and discuss Xsmith’s limitations.

4.6.1 Comparison to Polyglot

Polyglot (Chen et al. 2021) is a generic language processor that can be configured to produce

programs in different languages by providing configuration in a custom format. Polyglot has been

very effective at finding crash bugs, finding over 100 bugs in implementations of 9 programming

languages. Polyglot uses constrained mutation and a semantic validation step that improves its prob-

ability of generating semantically valid programs. These features prevent Polyglot from generating

programs with problems such as references to undefined variables, and prevents many type errors.

However, these steps do not guarantee semantic correctness. In their evaluation of Polyglot, Chen et

al. show that none of their generators produces semantically valid test cases more than 60% of the

time. This rate of producing semantically invalid test cases renders it ineffective as a generator for

oracles that consistently require semantically valid test cases to prevent false positives, including

differential testing.

8This bug was reported as https://github.com/dafny-lang/dafny/issues/1357. Because the output of the print
statement is incorrect, when it is turned into an assertion the verifier detects that the assertion is violated, thus revealing
the bug.

https://github.com/dafny-lang/dafny/issues/1357
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4.6.2 Comparison to StarSmith

The StarSmith (Kreutzer et al. 2020) program generator is a generic framework for generating

semantically correct programs. It is configured using a DSL called LaLa, in which users specify

the grammar and other rules for program generation, similar to Xsmith. While StarSmith has no

built-in or default steps to prevent undefined or other behaviors that are unsuitable for differential

testing, users may write custom LaLa code to prevent some such behaviors. For example, the

StarSmith authors created a Lua fuzzer that includes a filter preventing the generation of any events

in positions where the order of operations is not guaranteed.

While LaLa makes it possible to create a fuzzer for differential testing, it does not encapsulate

common patterns to make it easy. If StarSmith users want to make a similar fuzzer that prevents

unspecified effect ordering, they would need to write a similar filter. Additionally, this filter is

stricter than Xsmith’s generic effect analysis, which can still allow non-conflicting effects when

evaluation order is unspecified.

Aside from this observation about encapsulating patterns, it is difficult to compare the suitability

of Xsmith and StarSmith for differential testing, since StarSmith’s authors expressed a lack of con-

fidence that their programs were actually free of undefined behavior. They reported total instances

of test cases uncovering a bug, from fuzzing with conforming configurations, rather than unique

bugs found or confirmed as they did for other generators. This makes it difficult to know if they

found many bugs or few bugs repeated many times. However, they did report unique bugs for their

differential testing of SQL, in which they found 11 semantic bugs and 13 segfault bugs among 3

SQL implementations using a SQL generator of approximately 3500 lines of code in their LaLa

DSL. This generator was significantly larger than their other generators. Creating specifications

for StarSmith to create conforming program generators is possible, but its focus appears to be on

program generators for crash fuzzing.

4.6.3 Limitations of Xsmith

While Xsmith inhabits a new and useful point in the space of fuzzing tools, it has various

limitations.

4.6.3.1 Type System Xsmith’s type system is flexible but not comprehensive. For example,

Xsmith can not currently generate functions with parameters that can be multiple different types

but that are not fully generic enough to allow any type, such as a function that accepts either a
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string or an integer but no other type. Additionally Xsmith can not generate functions with optional

arguments or other forms of variadic functions. Built-in functions with such types can be specified

as productions in an Xsmith grammar, allowing Xsmith to generate calls to them. However, for

sufficiently complicated types, multiple grammar nodes may need to be specified to allow Xsmith

to generate uses of all potential types of a function.

The type system also lacks a notion of classes or objects. While we have implemented structural

records with subtyping and nominal records, which can be used to represent some aspects of

object-oriented languages, we have not yet decided on a generic system of encoding the semantics

of classes and objects that will be well-suited to a variety of programming languages. Because

classes, objects, and methods have widely varying semantics in different languages, it is difficult to

determine what essential features such an encoding should have.

Another limitation of the type system currently is a lack of “negative types” to constrain type

variables. There are often situations where one or more particular types are disallowed but where

any other type is allowed. An example situation is a position where functions are disallowed,

but base types like int and string are allowed, as well as composite types such as list and

dictionary composed of other allowed types (perhaps recursively). Rather than allowing users

to specify that function types are disallowed, users must enumerate all allowed types. Since the set

of allowed types may be infinite, users must realistically only enumerate a small subset of allowed

types.

4.6.3.2 Probabilities Xsmith follows a long history of using weight specifications to de-

termine the probability of generating any given grammar production (Sirer and Bershad 1999).

Besides weights, the probability of generating any given production is also affected by filters that

consider the type system, the effect system, AST depth, and other factors. While Xsmith’s weighting

system is flexible and allows for dynamic weight determination, it is difficult to determine how any

weighting scheme will ultimately affect the probability of generating a particular production or

combination of productions.

Xsmith provides a logging mechanism to view the frequency at which different productions

were generated or under consideration for generation. However, logging does not provide a guide to

understand how to improve a weighting scheme to achieve a more desired probability distribution,

nor does it provide insight into what distributions would be effective at finding bugs.
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4.6.3.3 Effects The generic effect analysis in Xsmith is both conservative and fairly limited.

Because it is conservative, limiting generation to only programs that are guaranteed to be free of

unspecified effect ordering, Xsmith filters out many choices that would lead to generating valid,

conforming programs. This limitation particularly affects higher-order values. For example, Xsmith

has no analysis to determine whether two container values (such as arrays) are the same, so it

conservatively assumes that any mutation to a particular container type may conflict with any other

access or mutation of that same container type. Because the effect analysis must be generic enough

to analyze programs in many languages with varying semantics (most of which is unspecified within

an Xsmith fuzzer), the analysis is very limited. Therefore the set of rejected programs is very large,

and has great potential to include many interesting and bug-inducing programs.

Xsmith could potentially include a more precise effect analysis by including a way for users to

specify language-specific value- and control-flow analyses. However, that would greatly increase

the difficulty of writing a new fuzzer, and it is unclear how much it would improve a fuzzer’s

bug-finding capabilities.

4.7 Related Work
We compare Xsmith to related systems. In particular, we discuss conforming program genera-

tors, program generator generators, and grammar-directed fuzzers.

4.7.1 Conforming Program Generators

Some random testers for programming languages generate conforming programs, or programs

that are syntactically and semantically valid as well as being free from nondeterminism, unde-

fined behavior, and unspecified behavior. An early major conforming program generator was

Csmith (Yang et al. 2011). Similar systems include Verismith (Herklotz and Wickerson 2020) and

SQLSmith (Seltenreich 2020). Yarpgen (Livinskii et al. 2020) statically generates programs that are

free from undefined behavior with no dynamic checks. Csmith and other conforming program gen-

erators have been very successful at finding bugs in programming language implementations. These

bugs include semantic bugs found with differential testing that can not be found by more common

crash oracles. However, conforming program generators like Csmith require much programmer

time and tend to be tens of thousands of lines of code to implement.

Xsmith is a DSL and library for building conforming program generators like Csmith, but with
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less time and code. Xsmith eases development of conforming program generators by providing a

declarative DSL, along with generic analyses, generation strategies, and other tools as a library.

Thus Xsmith allows users to build conforming program generators at a fraction of the cost of stand-

alone generators like Csmith.

4.7.2 Program Generator Generators

Polyglot (Chen et al. 2021) is a framework that takes a language specification in a custom

format and produces random programs. Polyglot includes a semantic validation step that improves

the percentage of syntactically and semantically valid test cases generated. However, programs

generated by Polyglot are not guaranteed to be syntactically or semantically correct, or to be

conforming. Polyglot has been successfully used to find well over 100 bugs in implementations

of at least 9 programming languages. However, it is not a suitable system for finding semantic bugs

via differential testing.

StarSmith (Kreutzer et al. 2020) is a framework that takes a language specification in a DSL

called LaLa and produces random programs. StarSmith generates programs that are syntactically

valid and well-typed. Some StarSmith generators have been further crafted to generate programs

that are free of unspecified behavior for differential testing. StarSmith generators that have filters

to generate only conforming programs must individually be constrained to not generate offending

code. For example, the StarSmith authors created a Lua generator that included custom code to

prevent any effects when the order of evaluation isn’t guaranteed. Such code would need to be

repeated for each generator in StarSmith for languages without guarantees of evaluation order.

PLT Redex (Felleisen et al. 2009) is a framework that allows users to specify a semantics

for a programming language. It includes a testing feature that generates random well-typed pro-

grams (Fetscher et al. 2015). However, it does not generate programs that are free from undefined

behavior. This is useful in Redex, since it helps users to find where undefined behavior exists in

their semantics definitions, however it limits its use as a generator for differential testing.

Xsmith has been designed to generate programs suitable for differential testing. Xsmith fuzzers

generate programs that are syntactically and semantically valid, in addition to being free from

undefined or nondeterministic behavior. Xsmith includes generic effect analyses for the common

case of unspecified order of evaluation, allowing programs to include effects while still preserving a

well-defined relationship between effects. While some unspecified behaviors need to be handled on
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a language-per-language basis, Xsmith’s canned components library is helpful with some common

patterns.

4.7.3 Grammar-Directed Fuzzers

Some fuzzers, such as Lava (Sirer and Bershad 1999) and Yagg (Coppit and Lian 2005), are

grammar-directed (Beyene and Andrews 2012; Godefroid et al. 2008; Hanford 1970; Maurer 1990),

meaning they only building program trees that match a given grammar. These fuzzers are useful

because they can generate syntactically valid test cases that pass early stages of a compiler or other

language processor, allowing fuzzing to exercise deeper code paths. However, grammar-directed

fuzzers, without other guidance, do not guarantee that their outputs semantically correct or con-

forming. Thus they can not reliably be used to find semantic bugs through differential testing.

Some grammar-directed fuzzers such as Grimoire (Blazytko et al. 2019) automatically learn a

grammar instead of taking a user-supplied grammar is input. While this automatic learning step

means that the fuzzer requires less up-front effort to craft a grammar specification, it provides even

weaker guarantees about the syntactic and semantic validity of produced outputs.

Xsmith is grammar-directed in addition to being directed by other analyses, such as type and

effect analyses. These analyses constrain program generation to produce conforming programs that

are useful for finding semantic bugs.

4.7.4 Parametric Generation

The Zest (Padhye et al. 2019) fuzzer is a grammar-based generative fuzzer that introduces

parametric generation. Parametric generation is generation based on a parameter vector. The

parameters used to generate an interesting test case may be mutated to cause different but similar test

cases to be produced in subsequent generation. Parametric generation provides a way for generative

fuzzers to enjoy some benefits of mutational fuzzers, such as feedback-directed guidance. Xsmith

also allows Zest-style parametric program generation, though we have not yet evaluated that aspect

of Xsmith.

4.8 Conclusion
Differential fuzz testing can be a powerful tool for finding semantic bugs in programming

languages. Xsmith is a library and DSL that provides shared infrastructure, declarative specification,

and extension hooks that allow users to easily build featureful fuzz testers for differential testing.
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Xsmith has been used to create a variety of fuzzers requiring modest effort and code size that

have found bugs in different language implementations. Compared to related work, Xsmith is the

first tool focused on easily creating fuzzers for differential testing. Xsmith fuzzers can be used

synergistically with other fuzzing techniques to find bugs in many language implementations.
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〈int〉 ::= z | 0 ă z ă 100
〈exp〉 ::= 〈exp〉 + 〈exp〉

| 〈exp〉 / 〈exp〉
| 〈int〉

Figure 4.1: The Grammar of the calc Language
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The tree starts as a single ExpHole node. Choices that are alternates for Exp are listed and one
is chosen at random. The process repeats with a new hole until no holes are left. At some points
choices are filtered. For example, non-atomic choices are filtered when the tree gets too deep.

Figure 4.2: The Process of Hole Filling
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;; We use #lang clotho instead of racket for parametric randomness.
#lang clotho
(require xsmith xsmith/canned-components racr pprint ...)

;; An Xsmith specification starts with a "spec-component"
(define-basic-spec-component js-component)

;; Use canned-components to get common grammar definitions.
(add-basic-expressions js-component

#:LambdaWithBlock #t
#:MutableArray #t
...)

(add-basic-statements js-component
#:ProgramWithBlock #t
#:IfElseStatement #t
...)

;; Use canned-component loop generator. It has many options, some elided.
(add-loop-over-container js-component

#:name ForLoopOverArray
#:loop-ast-type Statement
#:body-ast-type Block
#:collection-type-constructor
(λ (elem-type) (mutable (array-type elem-type)))
...)

;; This header defines safe wrapper operations, and is included
;; when rendering the program.
(define header-definitions-block
"safe_divide = function(a,b){return b == 0 ? a : a / b} ...")

(add-property js-component render-node-info
[VariableReference (λ (n) (text (ast-child 'name n)))]
[SafeDivide
(λ (n) (h-append (text "safe_divide(") (render-child 'l n)

(text ", ")
(render-child 'r n) (text ")")))]

[IfElseStatement
(λ (n)

(h-append (text "if (") (render-child 'test n) (text ")")
(render-child 'then n)
(text " else ") (render-child 'else n)))]

...)

;; This macro defines, among other things, a function to run the
;; command line parser and start generation with the given parameters.
(define-xsmith-interface-functions [js-component]

#:program-node ProgramWithBlock
#:format-render (λ (doc) (pretty-format doc 120))
...)

Figure 4.3: Sample JavaScript generator written with Xsmith
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Generator | LOC | Language
Csmith | 38,988 | C++
Verismith | 10,139 | Haskell
SQLSmith | 3,909 | C++
Xsmith Racket Fuzzer | 1,265 | Racket
Xsmith Dafny Fuzzer | 1,666 | Racket
Xsmith Standard ML Fuzzer | 1,151 | Racket
Xsmith WebAssembly Fuzzer | 1,433 | Racket
Xsmith Python Fuzzer * | 1,800 | Racket
Xsmith Lua Fuzzer * | 450 | Racket
Xsmith Javascript Fuzzer * | 412 | Racket

All line counting was done with Unix wc. Fuzzers marked with * have not been exercised in
substantial fuzzing campaigns.

Figure 4.4: Comparison of Conforming Program Generators

Generator | LOC | Language
Xsmith Framework | 13,325 | Racket
Xsmith Racket Fuzzer | 1,265 | Racket
Xsmith Dafny Fuzzer | 1,666 | Racket
Xsmith Standard ML Fuzzer | 1,151 | Racket
Xsmith WebAssembly Fuzzer | 1,433 | Racket
Xsmith Python Fuzzer * | 1,800 | Racket
Xsmith Lua Fuzzer * | 450 | Racket
Xsmith Javascript Fuzzer * | 412 | Racket

| |
StarSmith Framework | 19,524 | Java
StarSmith C Fuzzer | 1,702 | LaLa
StarSmith Lua Fuzzer | 1,578 | LaLa
StarSmith SQL Fuzzer | „ 3,500 | LaLa
StarSmith SMT Fuzzer | „ 700-900 | LaLa

| |
Polyglot Framework | | Mostly C++
Polyglot C Fuzzer | 1,508 | Mix
Polyglot JavaScript Fuzzer | 1,618 | Mix
Polyglot PHP Fuzzer | 2,013 | Mix
Polyglot Solidity Fuzzer | 2,090 | Mix

Counts prefixed with „ are approximate. Fuzzers marked with * have not been used in substantial
fuzzing campaigns.

Figure 4.5: Comparison of Generic Fuzzing Frameworks
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Implementation | Crash Bugs | Semantic Bugs | Static Non-crash Bugs | Total
| | | |

Racket | | | |
BC | 0 | 5 | 0 | 5
CS | 0 | 4 | 0 | 4
Both Back Ends | 0 | 2 | 0 | 2
Total Racket Bugs | | | | 11

| | | |
Dafny | | | |
Java Back End | 0 | 0 | 8 | 8
C# Back End | 0 | 3 | 3 | 6
Go Back End | 0 | 3 | 0 | 3
JavaScript Back End | 0 | 3 | 1 | 4
All Back Ends | 0 | 1 | 7 | 8
Total Dafny Bugs | | | | 28

| | | |
WebAssembly | | | |
Wasmer | 0 | 2 | 0 | 2

| | | |
Standard ML | | | |
ML MLKit | 0 | 0 | 1 | 1

Crash Bugs: Bugs characterized by a memory error or assertion violation in the compiler or
interpreter causing the system under test to exit abnormally. This is not simply failure to compile
an input or an interpreter exiting with an exception.
Semantic Bugs: Bugs characterized by a wrong program result. Found primarily by differential
testing, but also by testing various properties. For example, a raised exception when the fuzzer has
been constrained not to generate code that raises exceptions.
Static Non-crash Bugs: This category includes various kinds of bugs whose finding would have
required syntactically and semantically correct programs but not necessarily conforming programs.
For example, this category includes failure to compile correct programs, ill-formed compiler output
(eg. Dafny compiler outputting ill-formed Java code that the Java compiler can’t compile), etc.

Figure 4.6: Bugs Found With Xsmith-Based Fuzzers



CHAPTER 5

REFLECTIONS

While the chapters of this dissertation are all linked to the theme of embedded DSLs, the

motivations and future outlook for each project are distinct.

5.1 Parsing With Delimited Continuations
Chido Parse provides real and meaningful improvements for usability, composability, and ex-

tensibility. However, it is currently too slow for use outside of niches where those improvements

are of paramount importance and programs are relatively short. The clear next step for parsing with

delimited continuations is to find a way to make it faster. Based on experience, it seems that the

slow speed is mostly due to the machinery necessary to facilitate ambiguity. Additionally, global

ambiguity is usually not required or even desired in programming language parsing. Therefore,

finding ways to curtail or remove support for global ambiguity seems like the most promising

direction. One possibility is the addition of a Prolog-like cut, which commits to a certain result

or family of results during parsing. Another possibility is to simply support only limited, local

ambiguity.

I hope to make another parsing system that captures delimeted continuations to detect and

resolve left recursion, but that removes the caching mechanism of Chido Parse. Instead, I would

allow alternate parsers to re-run, with a protocol for determining if a new result supercedes the

previous result. Associativity and precidence can be handled with a mixture of result filtering (ruling

new results as invalid replacements to a previous result) and a protocol for operator parsers to abort

based on the operator used in the left operand. With limited caching, it would be possible for parsers

to be re-run many times. However, in practice I believe this would be limited.

Once the performance issues have been solved, I believe that the improvements to parsing

expressiveness gained by parsing with delimited continuations will be very useful for implementors

of embedded DSLs.

Another future improvement to Chido Parse and successors is to use delimited continuation
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capture not only for handling left recursion, but also for adding support for incremental parsing.

Incremental parsing allows a parser to be re-run on a modified input (such as when a programmer

edits the text of a program) without recomputing the entire parse. In order to simplify the imple-

mentation, I did not add support to incremental parsing. However, once a more performant version

exists, support for an incremental mode would be a straightforward and useful improvement.

An incremental mode to Chido Parse or similar parsers based on delimited continuations could

capture delimited continuations as well as parse derivations to allow incremental parsing. When

re-parsing, all derivations that were computed by reading only input to the left of the edit can be

reused without change. Derivations that used the edited portion of the input must be recomputed,

but that computation can be sped up by using a cached continuation to continue from just before

the point of the edit. Derivations from after the edited portion are a little less straightforward, but

can still see a benefit. If results from the edited portion of the input do not affect the parameters of

the procedure calls that parse the latter segment of the input, then the results from those parse calls

may be reused. The one major issue is that input positions (such as line and column count) may be

different. If position data is not semantically relevant, then the results may be reused with a simple

fix-up phase that edits position data in the output derivations (including potentially editing semantic

results such as Racket syntax objects that contain position data for debugging purposes).

5.2 Rash
The enduring popularity of shell languages like Bash show that there is important value in

interactive shell languages. However, Bash and similar shells are riddled with limitations and

design flaws. In recent years, many new shells have been developed that solve many of those issues.

However, unless a shell is embedded in a general-purpose language, it will not be able to gracefully

support the entire range of the interactions to scripts to mature programs growth spectrum that many

programs traverse.

Previous embedded shell languages embody some of the benefits of Rash, but suffer from

various issues, such as supporting only interactions or only scripting, course granularity for host

and shell mixing, and lacking a way to recursively embed the host and shell language into each

other. Rash provides a new benchmark for embedded shells to measure against for tight integration

and extensibility of the embedded shell and host.

Rash’s tight integration could be improved by implementing its parser with a system like Chido
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Parse. The work on Chido Parse was originally motivated by limitations of Racket’s parsing libraries

found when writing Rash. Some of the design of Rash’s notation worked around these limitations,

and could be improved with a more flexible parsing system. But more importantly, integration with

other embedded DSLs that use custom notation could be improved by using a more expressive and

composable parsing system like Chido Parse.

Beyond integration improvements, Rash still has many limitations. While the language design

of Rash cleanly supports the whole interaction-to-program growth spectrum, the features of the

interactive shell are lacking. Rash’s interactive mode currently uses a primitive line editor with very

crude and flawed support for completion and other advanced interaction features. Shells like Zsh

and Fish have far better interactive modes due to mature ecosystems of programmatic completion

and other editing add-ons. I believe the most important next step for Rash to more completely fulfill

its vision is to pair it with a powerful and flexible editor that provides a path to useful completion

and other editing features. In addition, language-agnostic completion specifications for programs

can help Rash and other young shell languages compete with older shells like Zsh in terms of

completion.

Another feature of Rash that is underdeveloped is pipelines that use Racket functions and

objects instead of operating system processes and byte streams. While Rash is fully capable of

such pipelines, there are currently few functions that provide the functionality that Unix programs

provide. This is a similar problem that Microsoft PowerShell has. PowerShell is very useful and

powerful when used on Microsoft Windows, because many “commandlets” have been written to

provide functionality on the Windows platform. However, PowerShell is much less useful on Unix

because commandlets that provide rich object results on Unix have not yet been written. Thus,

PowerShell users on Unix must fall back to using Unix processes that communicate via byte streams.

If Racket functions that return rich objects are created for system administration in Rash, it could

provide much more utility than it can when merely using Unix processes.

Finally, I believe a fruitful direction for embedded shells like Rash is in education. Popular

shells like Bash are abtruse and difficult to learn, with strange syntax and semantics for common

features such as condition expressions, if statements, and error handling. An embedded shell like

Rash could piggy-back on existing programming knowledge easier. While Rash is itself rather

complex, a simplified educational version could be created in the same spirit as Racket’s student

languages.
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5.3 Xsmith
Xsmith is an important contribution to the field of fuzz testing because it is the first system to

provide a low-effort way to create program generators suitable for differential testing. However,

Xsmith has so far been only modestly successful in its goals. In part, this is because our focus in

its development was perhaps too much in development rather than usage and evaluation. Xsmith

includes various features, such as support for parametric guidance and multi-stage program refine-

ment, that we hope will be helpful but have not yet been seriously used. Additionally, I spent much

time creating new fuzzers for different languages despite not having fuzzing environments set up.

The process of setting up a fuzzing environment, including installing several implementations of a

language, and initial testing of a fuzzer to fix incorrect assumptions in the fuzzer specification, can

be a lengthy and somewhat daunting. While setting up a fuzz environment was not very difficult for

Racket, a language that I use regularly, it was much more challenging for languages like Standard

ML with which I have less familiarity.

The results from fuzzing Dafny show that a programmer who is new to Xsmith but knowledgable

with Racket and the fuzzing target can quickly make a useful fuzzer. However, attempts to make

Xsmith fuzzers by programmers with less Racket familiarity have so far been slower and less

successful. This suggests that a more effective method might be to pair an Xsmith or Racket expert

with partners who are an experts with various fuzzing targets. By pairing complementary specialties,

it may be easier to more quickly specify a language with Xsmith, build a fuzzing environment, and

fix issues that arise when first trying to use a new fuzzer.
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This appendix describes a model implementation of our parsing with delimited continuations

algorithm as a literate Racket program. The model has a slightly different API than Chido Parse to

facilitate a simpler implementation. For example, the parse function is elided since it is a simple

wrapper around the parse* function. The program text is inset directly between prose paragraphs,

starting with the library imports.

(require racket/match racket/stream "stream-flatten.rkt")

The "stream-flatten.rkt" import is just a helper library supplying the functions flatten-

stream and stream-flattened?.

Our two parser primitives are proc-parsers and alt-parsers. In this model proc-parsers

contain a procedure that must accept an input string and an offset and return a stream tree. Mean-

while, alt-parsers store a list of parsers. Because parsers are often intended to refer to each other

mutually recursively, we have an issue for parser construction. We can’t refer to a parser that has

not yet been constructed while constructing another parser. To “tie the knot,” we additionally allow

thunks that produce instances of these two structs to be used as parsers.

(struct proc-parser (procedure))

(struct alt-parser (parsers))

To keep track of parsers and their results, we use parser-job objects. In addition to parser,

position, result-index, and result fields, an additional worker field is used to keep track

of the state of a job. When first constructed, the worker field is #f. After a job is started, a worker

struct is used to keep track of progress.

The alt-worker struct is the only worker used for jobs containing alt-parsers, and keeps

track of the dependencies that have yet to be have their results included in the results for the worker’s

job. The continuation-worker stores the captured continuations of proc-parsers when they

are descheduled. The stream-worker is used for jobs with result index 1 or higher in a proc-

parser’s job series. The stream-worker stores the stream returned by a previous job so it can be

forced to return the next result.



100

Additionally, we define a current-job parameter, which allows procedures to detect the

currently running job without explicitly threading it as an argument through all function calls.

(struct parser-job

(parser position result-index [worker #:mutable] [result #:mutable]))

(struct alt-worker ([remaining-jobs #:mutable]))

(struct continuation-worker (k [dependency #:mutable]))

(struct stream-worker (result-stream))

(define current-job (make-parameter #f))

Besides a semantic result, parse-derivations store start and end positions to determine

where future parses must be performed. Additionally, derivations store a list of sub-derivations

and a reference to the parser which created it, which are both useful when filtering derivations for

operator precidence and associativity. To ensure that parsers maintain pointer equality even when

using thunks as parsers, a cache of parsers is used so thunks are only forced once.

(struct parse-derivation (result parser start end sub-derivations))

(define (make-parse-derivation result derivations end)

(match (current-job)

[(parser-job parser start _ _ _)

(parse-derivation result parser start end derivations)]

[else (error

'make-parse-derivation

"Not called during the dynamic extent of parsing...")]))

(define parser-cache (make-weak-hasheq))

(define (canonical-parser p)

(match p

[(or (? proc-parser?) (? alt-parser?)) p]

[(? procedure?)

(hash-ref parser-cache p (λ () (let ([p* (canonical-parser (p))])

(hash-set! parser-cache p p*)

p*)))]))
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The scheduler object keeps track of all progress made in parsing. We keep a cache mapping

input strings to schedulers to ensure we use the same scheduler consistently. A scheduler stores

a cache of jobs keyed by parser, position, and index.

(struct scheduler (input-string job-cache))

(define string->scheduler-cache (make-weak-hash))

(define (string->scheduler str)

(hash-ref string->scheduler-cache str

(λ ()

(define s (scheduler str (make-job-cache)))

(hash-set! string->scheduler-cache str s)

s)))

(define (make-job-cache) (make-hash))

(define (get-job s parser position result-index)

(define cp (canonical-parser parser))

(define cache (scheduler-job-cache s))

(define key (list cp position result-index))

(hash-ref cache key

(λ () (let* ([fresh-job (parser-job cp position

result-index #f #f)])

(hash-set! cache key fresh-job)

fresh-job))))

(define (get-next-job scheduler job)

(match job

[(parser-job parser position result-index _ _)

(get-job scheduler parser position (add1 result-index))]))

Now that we have all of our data structures, it is time to start parsing. When parse* is called,

we get the target job out of the scheduler’s cache and enter the parsing machinery. If this is the

outermost call to parse*, we will simply start the scheduler. But if we were already running a job,

we capture and abort its continuation, storing the continuation and dependency in the job’s worker
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field. When a continuation is aborted, computation will continue inside the scheduler at a point that

we will see later.

(define (parse* in-string parser pos)

(define scheduler (string->scheduler in-string))

(enter-the-parser scheduler (get-job scheduler parser pos 0)))

(define (enter-the-parser scheduler job)

(if (not (current-job))

(run-scheduler scheduler job)

(let ([parent-job (current-job)])

(call-with-composable-continuation

(λ (k)

(set-parser-job-worker!

parent-job (continuation-worker k job))

(abort-current-continuation chido-parse-prompt))

chido-parse-prompt))))

(define chido-parse-prompt (make-continuation-prompt-tag 'chido-parse))

When we run the scheduler, we first check whether our original goal has been completed, and

if so, return its result. When there is work yet to be done, we find a runnable job and schedule it. If

there is no runnable job in the dependency graph of the goal job, we break a dependency cycle and

try again.

(define (run-scheduler s goal-job)

(or (parser-job-result goal-job)

(let ([next-job (find-work s '() (list goal-job))])

(if (not next-job)

(begin (fail-cycle! s goal-job) (run-scheduler s goal-job))

(schedule-job! s goal-job next-job)))))

(define (find-work s blocked-jobs to-check)
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(and (not (null? to-check))

(let* ([j (car to-check)])

(match (parser-job-worker j)

[(continuation-worker k dependency)

(cond

[(parser-job-result dependency) j]

[else (define new-blocked (cons j blocked-jobs))

(define new-to-check

(if (memq dependency new-blocked)

(cdr to-check)

(cons dependency (cdr to-check))))

(find-work s new-blocked new-to-check)])]

[(alt-worker remaining-jobs)

(cond

[(null? remaining-jobs) j]

[(findf parser-job-result remaining-jobs) j]

[else (define new-blocked (cons j blocked-jobs))

(define add-to-check

(filter (λ (x) (not (memq x new-blocked)))

remaining-jobs))

(define new-to-check

(append add-to-check (cdr to-check)))

(find-work s new-blocked new-to-check)])]

[(stream-worker _) j]

[#f j]))))

To break a cycle, we perform a depth-first search of the dependency graph until we reach a job

that depends on a job that we have already seen. We then mutate its dependency to a fake job whose

result is a parse failure.

When no work is available, it would be valid to simply return a parse failure for the goal

job instead of bothering with cycle breaking. However, breaking the cycle allows better failure

positions and messages to be computed. Additionally, breaking the cycle allows parsing procedures
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to tentatively depend on one parser, then fall back on another, as with a biased or parser, or have

ordered dependencies. However, without a guarantee about cycle breaking order, the result of such

parsers is undefined.

(define (fail-cycle! scheduler goal-job)

(define (rec job jobs)

(match job

[(parser-job _ _ _ (alt-worker remaining-jobs) _)

(rec (car remaining-jobs) (cons job jobs))]

[(parser-job _ _ _ (and w (continuation-worker k dependency)) _)

(if (memq dependency jobs)

(set-continuation-worker-dependency! w cycle-breaker-job)

(rec dependency (cons job jobs)))]))

(rec goal-job '()))

(define cycle-breaker-job (parser-job #f #f #f #f empty-stream))

Scheduling a job behaves differently for alt-parsers and proc-parsers.

(define (schedule-job! scheduler goal job)

(if (alt-parser? (parser-job-parser job))

(schedule-alt-job! scheduler goal job)

(schedule-proc-job! scheduler goal job)))

When an alt-parser job is scheduled, we simply process the results of its dependencies.

When a dependency is successful, a result is copied out of its result stream into the result stream of

the alt-parser, and the dependency’s next sibling job is added to the dependency list. When a

dependency has failed (by returning an empty stream), its result is ignored and the dependency is

removed. When an alt-worker has no more dependencies, the result of its job is an empty stream.

(define (schedule-alt-job! scheduler goal job)

(match job

[(parser-job (alt-parser parsers) pos 0 #f _)

(define deps (map (λ (p) (get-job scheduler p pos 0)) parsers))

(set-parser-job-worker! job (alt-worker deps))]
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[(parser-job _ _ _ (alt-worker (list)) _)

(cache-result! scheduler job empty-stream)]

[(parser-job _ _ _ (and w (alt-worker remaining-jobs)) _)

(define inner-ready-job (findf parser-job-result remaining-jobs))

(define result (parser-job-result inner-ready-job))

(define other-remaining-jobs (remq inner-ready-job remaining-jobs))

(if (parse-failure? result)

(set-alt-worker-remaining-jobs! w other-remaining-jobs)

(let ([this-next-job (get-next-job scheduler job)]

[dep-next-job (get-next-job scheduler inner-ready-job)])

(set-alt-worker-remaining-jobs!

w (cons dep-next-job other-remaining-jobs))

(cache-result! scheduler job result)

(set-parser-job-worker! this-next-job w)

(set-parser-job-worker! job #f)))])

(run-scheduler scheduler goal))

When a proc-parser job is scheduled, we execute its procedure, wrapped with the do-run!

helpers. If the procedure has never been run, we simply apply it. If the procedure previously returned

a stream result, we force the stream to find more results. If a job was previously descheduled by

a recursive call to parse*, we resume the job by applying its continuation to the result of its

dependency.

(define (schedule-proc-job! scheduler goal job)

(match job

[(parser-job (proc-parser proc) pos 0 #f #f)

(do-run!/thunk scheduler goal job

(λ () (proc (scheduler-input-string scheduler)

pos)))]

[(parser-job _ _ _ (stream-worker result-stream) #f)

(do-run!/thunk scheduler goal job

(λ () (stream-rest result-stream)))]
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[(parser-job _ _ _ (continuation-worker k dependency) #f)

(do-run!/continuation scheduler goal job k

(parser-job-result dependency))]))

The do-run!/thunk procedure wraps the thunk with the chido-parse-prompt after also

delimiting parse*-direct.

(define (do-run!/thunk scheduler goal job thunk)

(define result

(call-with-continuation-prompt

(λ ()

(parameterize ([current-job job])

(delimit-parse*-direct (thunk))))

chido-parse-prompt

abort-handler))

(result-check-loop scheduler goal job result))

When running a continuation, we do not need to apply delimit-parse*-direct, since the

parse*-direct-prompt is still in the captured continuation. But we do need to re-wrap the

continuation with the chido-parse-prompt.

(define (do-run!/continuation scheduler goal job k k-arg)

(define result

(call-with-continuation-prompt

k chido-parse-prompt abort-handler k-arg))

(result-check-loop scheduler goal job result))

When we get a result from either do-run!/thunk or do-run!/continuation, we check the

result with result-check-loop. When a procedure delimited with the chido-parse-prompt is

aborted, the result given to the result-check-loop is a unique recursive-enter-flag value.

When we get the recursive-enter-flag, we can simply jump back to run-scheduler, since

the abort code in enter-the-parser has already saved the continuation to a continuation-

worker.

When we get an actual result from the job’s procedure, it must be a stream tree which we will

(lazily) flatten into a stream which contains only non-stream elements. While stream flattening



107

is mostly lazy, flatten-stream must force the stream tree until it finds a non-stream result or

finds the flattened stream to be empty. Because our flattening procedure forces part of the stream,

flattening is also wrapped with the chido-parse-prompt. We must loop back to the initial check

with the flattened result in case forcing the stream causes recursion, aborting the continuation and

returning another recursive-enter-flag. In any case, the result-check-loop finishes by

calling back into run-scheduler.

(define (result-check-loop scheduler goal-job job result)

(cond [(eq? result recursive-enter-flag)

(run-scheduler scheduler goal-job)]

[(and (stream? result)

(not (flattened-stream? result))

(not (stream-empty? result)))

(result-check-loop scheduler goal-job job

(call-with-continuation-prompt

(λ () (parameterize ([current-job job])

(delimit-parse*-direct

(stream-flatten result))))

chido-parse-prompt

abort-handler))]

[else (begin (cache-result! scheduler job result)

(run-scheduler scheduler goal-job))]))

(define (abort-handler) recursive-enter-flag)

(define recursive-enter-flag (gensym 'recursive-enter-flag))

When we cache results, we take an element out of a result stream and wrap it in a new stream

whose stream-rest causes computation to re-enter the scheduler. For jobs with proc-parsers,

we additionally save the result stream in a stream-worker.

(define (cache-result! scheduler job result)

(match result

[(? parse-failure?) (set-parser-job-result! job result)]
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[(? stream?)

(define next-job (get-next-job scheduler job))

(when (proc-parser? (parser-job-parser next-job))

(set-parser-job-worker! next-job (stream-worker result)))

(set-parser-job-result!

job

(stream-cons (stream-first result)

(enter-the-parser scheduler next-job)))]))

(define (parse-failure? x) (and (stream? x) (stream-empty? x)))

Finally, we need a form for parsing procedures to conveniently loop over parse results. The

parse*-direct procedure simply captures its current continuation up to the parse*-direct-

prompt, then aborts the continuation. The delimit-parse*-direct function applies the parse*-

direct-prompt with the default abort handler, which accepts a thunk to call after aborting the

continuation. Therefore, parse*-direct replaces its continuation with a thunk that lazily applies

the captured continuation to each parse result using for/parse.

(define (parse*-direct in-string parser pos)

(call-with-composable-continuation

(λ (k)

(abort-current-continuation

parse*-direct-prompt

(λ () (for/parse ([d (parse* in-string parser pos)])

(k d)))))

parse*-direct-prompt))

(define-syntax-rule (delimit-parse*-direct e)

(call-with-continuation-prompt (λ () e) parse*-direct-prompt))

(define parse*-direct-prompt

(make-continuation-prompt-tag 'parse*-direct))
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(define-syntax-rule (for/parse ([arg-name input-stream]) body)

(let loop ([stream input-stream])

(cond [(stream-empty? stream) stream]

[else (let ([arg-name (stream-first stream)])

(stream-cons body

(loop (stream-rest stream))))])))

While this model implementation does not have practical performance characteristics, it is

almost as expressive as the full implementation. Using proc-parser and alt-parser as a base,

users could write and compose ad hoc procedural parsers, parser combinators, BNF parser con-

structors, and other parsing abstractions. This model supports all context-free grammars, including

ambiguous and left-recursive grammars, dynamic extensibility, data-dependent grammars, and other

non-context-free grammars.
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