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ABSTRACT

In introductory education, pedagogic tools and languages can help focus students on

the fundamental programming concepts. Subsets of a professional language support the

presentation of the language’s syntax in step with the presentation of the underlying

concepts, relieving students and instructors from superfluous details. This dissertation

presents the design and implementation of pedagogic tools integrated with an introduc-

tory computer science course.

The tools described in this dissertation include languages, compilers, and libraries

tailored to improve introductory education for students and instructors. Specifically,

• three pedagogic subsets of the Java programming language. My method of designing

these subsets, through a combination of assessing the supported curriculum and

observation, may serve as a guide for creating other subsets. Discussion includes

experiences using these subsets in classrooms, and how observations guided the

design and modifications of the subsets.

• an extension to Java supporting fine-grained interoperability between languages,

which facilitates the reuse of existing libraries accessible within pedagogically appro-

priate subsets of a language. More generally, I demonstrate how to support general

interoperability between two languages. Discussion includes the interoperability

mechanism and a library implementation using the language extension.

• an examination of the compiler implementation supporting the subsets and in-

teroperability extension. The compiler maps Java constructs into similar Scheme

constructs for ease of use of Java programs within Scheme and vice versa. Discussion

includes parsing multiple languages with coherent error messages, representing Java

compilation units, and supporting dynamic checking of Scheme values in Java.
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CHAPTER 1

LANGUAGE SUPPORT FOR PEDAGOGY

Introductory programming frustrates many students. The syntax overwhelms, the

error messages confuse, and too much time passes before the program does something

real. Instructors confront these problems by structuring the course to follow the needs

of the programming language and spending extra class time to explain language minutia

and error messages.

Many difficulties stem from the use of professional programming languages and com-

pilers. Professional languages, including C, C++, Java, etc. and their compilers were

developed for use by fully trained programmers. Such tools allow students to (acciden-

tally) write programs they cannot be expected to understand and report mistakes using

terminology the student cannot be expected to know.

However, switching to a pedagogic language and compiler does not necessarily ease

the confusion and frustration. Pedagogic languages, such as Jeroo, Alice, and Logo, were

designed for use by novice programmers with little to no prior training. These languages

suffer from one of two problems: either they contain enough constructs to fill a course,

which leads to the same problem as professional languages; or they do not contain enough

and must be abandoned, requiring the students to move to a professional language too

soon. In addition, instructors and students do not have the same wealth of libraries

available as those using professional languages, because fewer people write libraries in

pedagogic languages.

Using one pedagogic language is not the answer; using a professional language is not

the answer; using several subsets of professional languages, where each subset adds more

features of the professional language, provides a solution that mixes the best of pedagogic

and professional languages.

Another approach mixes professional and pedagogic tools at a different level by

providing a pedagogic graphical interface on top of a professional compiler and language.

The interface can provide a set of tools to bypass language constructs, additional ex-
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planations of common error messages, or exploratory tools to guide students in creating

and understanding their program. Despite these additions, the underlying reliance on a

professional compiler allows students to encounter many of the same problems as with

using all professional tools. Syntactically correct, but unintentional and misunderstood

programs can be created. Also students can make mistakes that fall outside of the common

error messages and encounter bizarre messages they cannot understand.

Pedagogic development environments do provide useful tools and a more controlled

experience for students. Pedagogic subsets best support students when coupled with

a pedagogic environment. This combination provides student tailored interaction and

language constructs, with error messages written to their understanding. As the student

matures and needs new language constructs, instead of learning an entire new language,

their overall knowledge of the language grows. Further, existing professional libraries can

be made available throughout an introductory course.

1.1 Support from Language and Environment

Pedagogic subsets provide a programming experience tailored to introductory students

while allowing access to professional libraries and features when desired. Also, using the

subsets adds complexity through the course without changing to a different programming

language, requiring learning a new syntactic structure. Supporting the subsets within

a pedagogic environment provides the support of a development environment without

over burdening students. Features of the environment can also impact which language

constructs are unnecessary.

1.1.1 Language Support

A pedagogic language subset contains only enough syntactic and semantic rules to

support the current concepts being covered in class. Very few constructs not yet presented

to the student appear in the language. This restriction not only prevents students from

using constructs they do not understand, but also allows the compiler to present error

messages that could not exist for a professional language, phrasing these messages in

terms appropriate to the student.

With a Java subset without mutation, the compiler can inform students when a field

value was not initialized within the constructor. A compiler for the full language cannot

provide this error message, as fields can be initialized in many places and in many ways.
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A student who encounters strange behavior based on the default value of a field may have

difficulty tracing the error back to their failure to properly initialize all fields of the class.

In all introductory classes, students learn a subset of the language just large enough

to begin writing programs. The professional compiler supports the entire language, and

cannot inform students when they stray outside of the subset, whereas a compiler for

the subset presented informs students when they stray, to avoid confusion and poor

programming style.

In another example, an introductory student might write the following program:

int convert(int in, int by) {
... }
...
convert(4);

Most Java compilers respond with an error message reporting that the method convert

cannot be found (sometimes including the type of the given argument in the message).

Students who have not yet learned about overloading are baffled by the compiler’s claim.

A compiler for a language without overloading can report a clear message to the student.

A single pedagogic subset is insufficient for an introductory course. Like a pedagogic

language, this subset cannot scale to support all of the concepts to be covered in the

course. And like a professional language, this subset can be too large to allow tailored

error messages. Multiple subsets provide the small languages necessary for specific error

messages (and to prevent accidental use of advanced features) and the complexity for a

course to scale up to the full language.

Such subsets, known as language levels, exist for PL/I (SP/k) [1] and Scheme

(DrScheme) [2]. These subsets demonstrate the viability of presenting a curriculum with

a language-processor enforced restriction of a professional language. The SP/k system,

constrained by the expenses of processor availability, did not attempt to address the

confusion caused by error messages, instead opting to report as many errors as possible.

The DrScheme system provides student-targeted error messages, but does not face the

complications of type errors and inheritance inherent in Java. Neither prior work presents

explanations for designing language levels (although Holt. et al present general criteria

for pedagogic languages) nor addresses the impact of language levels in a classroom.
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1.1.2 Environment Support

Using a professional language subset allows the compiler to produce targeted error

messages. Using a pedagogic environment further reduces complexity and confusion for

students, with a simplified interface and interactions designed for student exploration.

Additionally, interactions supported through the development environment can (tem-

porarily) replace constructs in the language.

For example, in the development environments DrScheme [2], BlueJ [3], and Dr-

Java [4], students run their programs interactively. There is no need to dictate before

compilation a series of statements and expressions to evaluate. Not only does this feature

allow students to explore functions, methods, objects, etc., but it also eliminates the

need for public static void main( String[] args). With this need eliminated, the

student language can safely eliminate static methods, void methods, and arrays without

affecting the students ability to write and run usable programs.

1.2 Pedagogic Libraries

Basing pedagogic languages on a professional language, instead of developing a new

language, allows teachers to leverage existing libraries in developing programming as-

signments. These libraries allow assignments to reflect more real-world situations and

programming tasks. However, as a professional compiler is not compatible with pedagogic

endeavors, professional libraries might not be compatible with classroom understanding.

To circumvent problems with a professional library, an instructor-developed library –

teaching library – provides a student-appropriate interface to the full library.

In the presence of a subset language, this teaching library must present an interface

consistent with the pedagogic language. In fact, the teaching library should present very

similar interfaces to all of the subsets. When the static semantics of the professional

library and the pedagogic language do not match, the teaching library must bridge this

gap with runtime checks and conversions.

Proper placement of such checks, especially for use with several different languages,

is error prone. Thus supporting multiple pedagogic languages, while aiding in education,

raises additional problems for instructors in creating teaching libraries.

In essence, the problem is supporting interoperability between two languages. Tradi-

tionally interoperability solutions access on language from the other language through an

API. Methods provided by the API convert values, but the programmer must explicitly

call them. Doing these conversions correctly is difficult and error prone. When interop-
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erability is supported with a language extension, where the compiler inserts checks and

conversions where needed, teaching libraries that bridge two (or more) languages become

easier to create.

With a language extension, the programer denotes where the switch between different

languages occurs (either through a specific name or type designation). The compiler uses

the known type and language information to perform the necessary checks and conversions

for the value at this position. The implementor cannot forget or sidestep a necessary

check. Additionally, if an error occurs in the teaching language implementation, with

compiler added checks, the library implementor will receive an error report that allows

them to quickly address the problem.

1.3 Customizing Languages

A subset of a professional language must support only some language features; the

choice of which features to support arises from the choice of curriculum to follow in

the course. Thus, even when using such pedagogic tools, instructors must either follow

the tool designers’ curriculum, continue to contort their curriculum to meet various

expectations of the tool, or create their own tool.

Tool creation takes time and expertise beyond the resources of most instructors. To

wed a curriculum to a tool or language, the curriculum developer evaluates which concepts

need to be supported and which cause students unacceptable levels of confusion. The

developer then selects the language constructs to present to the student, and organizes

the constructs into language sets. A compiler needs to be developed to support these sets

with student-targeted error messages. Additionally, the compiler must interact with a

development environment, and desired libraries must be incorporated into the curriculum,

including creation of teaching libraries.

A system that accepts a declarative language specification to generate a student-

oriented compiler will greatly reduce the effort required in creating or modifying special-

ized languages, allowing more instructors to undertake this task.

1.4 Towards Customization

In order to build a declarative compiler generation system, several preliminary steps

are needed. These steps form the basis for this work, while a declarative specification

remains for the future.
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• Before creating a general mechanism to create pedagogic subsets, such subsets must

be developed and studied. Otherwise, the resulting general specification mechanism

might not support the restrictions (and extensions) desired in these languages.

Additionally, study of these languages in classrooms will reveal the usefulness of

these subsets and the nature of changes made over time. If subsets are not beneficial,

the general mechanism would not be either.

• Additionally, instructors and students (indirectly) may need to interact with both

the development environment and libraries written in the full language. Therefore,

the compiler must support safe and simple interoperability between the development

environments language, the full language, and the pedagogic language(s). While in

many instances, the environments language is identical to the full language, this

uniformity does not occur in all environments. Providing a general fine-grained

interoperability solution provides support for library creation in either instance, as

well as allowing the static semantics of pedagogic languages to vary from the full

language if desired.

Both steps lead to the thesis that:

Restricting a language through a pedagogic environment provides improved

feedback to students, and fine-grained interoperability through language ex-

tensions supplies needed flexibility and support in implementing subsets and

teaching libraries.

1.4.1 Pedagogic Subsets

As mentioned above, initial pedagogic subsets must be created prior to developing a

general framework. Three subsets are presented in Chapter 2: Beginner, Intermediate,

and Advanced. These subsets present Java to programmers with one semester prior

programming experience1.

Each subset adds features to the previous language, while presenting a language that

is always statically and semantically similar to Java. Classroom usage, to be discussed

further in Chapter 6, demonstrated flaws in the language design and curriculum choices.

The initial languages were then redesigned to support changes to the subject matter

treated. These steps help illustrate the benefits of a declarative specification while

providing the first steps in implementing such a system.

1Although the subsets have been used in first semester courses.
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1.4.2 Programming in Multiple Languages

In our environment, a teaching library may need to interoperate with a dynamically-

typed library in addition to interoperating with full Java libraries. Without improvements

to interoperability, teachers must employ standard techniques to access functionality and

ensure proper treatment of the values.

Consider a dynamic library, written in Scheme, that provides functions to open a

drawing canvas, draw lines in the canvas, and draw various shapes. In order for these

features to be usable within a statically-typed Java-like language, a teaching library will

need to bridge the gap between the Java-like language and Scheme.

The teaching library must either use an API (internally using reflection) to call into

the dynamic library or implement the functionality through a native interface, producing

code similar to the example seen in Figure 1.1(a). Objects entering the dynamically-typed

library that originated in the student’s program must be wrapped with an object that

checks accesses on all methods to ensure proper treatment of the types. Failure to do

this step will allow confusing runtime type violation errors to occur.

By supporting interoperability as a language extension, the bridge between the teach-

ing language and the professional library becomes easier and less error prone, as can be

seen in Figure 1.1(b). The compiler inserts conversions and checks into the program based

on the type information of the program; thus checks cannot be overlooked and cannot be

incorrectly applied.

Examples of using this language extension to provide teaching libraries between lan-

guages with different static-properties are presented in Chapter 3. Additionally, an

extended example of a teaching library connecting Scheme to the existing language levels

also appears.

Explanation of the type-system and insertion of coercions necessary to support this

language extension is presented in Chapter 4.

Chapter 5 presents the implementation of the compiler, including discussion of the

student-oriented error messages as well as implementation of the language extension.

Chapter 6 presents the use of the pedagogic languages in various courses as well as

discussion of extending the existing system to support customizable languages.
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class View {

scheme.interp.SchemeInterface scheme =
scheme.interp.SchemeInterface.init(‘‘draw.lib’’);

void display(int xSize, int ySize) {
scheme.call(‘‘open-canvas’’, scheme.toObject(xSize),

scheme.toObject(ySize));
}

boolean draw( Command c ) {
Object result = scheme.call(‘‘draw-object’’, this.translateProtect(c));
if (scheme.toBool(scheme.call("succeeded", result)) )
return true;

else
throw new RuntimeException(scheme.call("explanation",result));

}
}

(a) Interoperability with an API

import scheme.draw;

class View {

void display(int xSize, int ySize) {
draw.openCanvas(xSize,ySize);

}

boolean draw( Command c ) {
dynamic result = draw.drawObject(c);
if ( draw.succeeded( result ) )
return true;

else
throw new RuntimeException( draw.explanation(result) );

}
}

(b) Interoperability with dynamic

Figure 1.1. Java programs calling Scheme with different interoperability technologies



CHAPTER 2

CREATING PEDAGOGIC LANGUAGES

Designing subsets of a programming language takes into account a curriculum and

the experience level of intended users. Effective pedagogic language levels require a

close partnership with a curriculum. Otherwise, the language either adds inappropriate

restrictions or it allows too many programs. Therefore, the first step in developing

pedagogic languages is understanding the needs of the curriculum.

Further steps involve observing student programmers, defining the subsets to support

the curriculum and common student errors, and then evaluating and revising both the

subsets and the curriculum based on new observations. This chapter presents the devel-

opment of the language levels for ProfessorJ [5] and its connections to the How to Design

Classes(HtDC) curriculum.

2.1 A Curriculum and Its Requirements

The HtDC curriculum covers object-oriented programming in second semester courses

using the ProfessorJ language levels. Both the curriculum and the language levels continue

the curriculum of the first course, using How to Design Programs (HtDP)[6] and the

corresponding Scheme language levels.

The first course covers program design in a largely functional style, using subsets of

Scheme, with a data-centric approach. A “data-centric” approach means that the course

first teaches students to understand the data representation for a problem, and then to

allow the shape of the data to drive the rest of the design. A canonical example from

early in the semester is the “list of numbers” datatype, which might be used to represent

a list of prices in a toy store:

A list-of-numbers is either

• empty

• (cons number list-of-numbers)
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The list-of-numbers data definition drives the implementation of an inventory-value func-

tion that consumes an instance of the datatype. In particular, the function’s implemen-

tation should match the shape of the data: two cases, handling a compound data value

in the second case and a self-reference in the second element of the second case:

(define (inventory-value l)
(cond
((empty? l) . . . )
((cons? l) . . . (first l)

. . . (inventory-value (rest l)))))

This data-oriented approach in the first course transitions naturally to a similar

“object-oriented” approach in the second course. A data definition with two clauses

corresponds to an interface with two implementing classes. The two cond lines in

inventory-value turn into separate method implementations in the subclasses, with a

method invocation in the second one.

interface Inventory { int Value(); }

class Empty implements Inventory {
Empty() { }
int Value() { return 0; }

}

class Addition implements Inventory {
int val;
Inventory rest;
Addition(int v, Inventory r) {
val = v;
rest = r;

}
int Value() { return val + rest.Value(); }

}

Initial data definitions in the second course are simpler than this example, fitting into

one class with no interfaces. From this starting point, the course progresses by presenting

more complicated forms of data including lists, trees, and acyclic graphs.

The first methods students write are functional methods that call no other methods

and return testable values. With more complicated data definitions, students progress to

writing methods that delegate work to other methods and that recur, still functionally.

As program complexity grows, the course introduces abstract classes and methods

to avoid repeated code within a class hierarchy and local variables within a method.

Once inheritance has been established with abstract classes, students learn about full

inheritance and overriding the functionality of the super class’s methods.
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Next, the course moves to discuss mutation within an object-oriented setting, moti-

vated by the creation of cyclic-graphs. Methods are no longer functional and can be used

solely for their (potentially multiple) side-effects.

After mutation, overloaded constructors are introduced, followed quickly by access

controls that allow constructors to be hidden. These lead to covering overloaded methods

and the creation of libraries from students’ programs. Students begin to use some

standard Java libraries instead of teaching libraries. This leads to the discussion of

arrays, loops, and iterators.

Depending on the duration of the course, the content finally covers parametric poly-

morphism, exception handling, i/o, and further abstractions using inner classes.

Several possible language divisions could cover this curriculum. However, regardless

of where the exact divisions are drawn a few restrictions are key for this curriculum:

• The first language must support classes and forbid mutation.

• The language that introduces methods should require functional methods.

• The language that introduces overloaded constructors must also support access

modifiers.

The ProfessorJ compiler covers this curriculum with three pedagogic languages, fin-

ishing with the full language. The first language presents the curriculum until abstract

classes are introduced; the second presents the curriculum until overloaded constructors;

the third presents material until any of polymorphism, exception handling, or inner classes

are presented. More languages could also be used to narrow down the divisions in the

curriculum; however, as the number of languages increases with a hard-coded implemen-

tation, the amount of maintenance and development time also increases significantly.

2.2 Observations

In addition to molding language levels to support a set of concepts, it is also important

to remove troublesome, unnecessary constructs from early levels and to provide clear error

messages for common confusing situations. Identifying such constructs comes through

observation of students, with the correct background knowledge, programming with both

existing tools (covered in Section 2.2.1) and the language subset compiler (Section 2.2.2).

2.2.1 Observations Using Non-ProfessorJ Compilers

For the development of the ProfessorJ languages, I observed students at the University

of Utah taking CpSc 2020 using the BlueJ[7] development environment and a standard im-



12

plementation of javac during regular lab sessions, TA office hours, and in questions mailed

to the 2020 course staff. At the time, CpSc 2020, the second course of the introductory

sequence, presented Java to students familiar with Scheme and functional programming

following the HtDP curriculum. Common problems, confusions, and behaviors were noted

as areas the ProfessorJ language levels should address.

Through the rest of this section, specific error situations and the corresponding

influence on the development of language levels are discussed.

Observation 2.1 (public, private, protected). I observed that errors from typos in

access modifiers (especially public at the start of a file) fostered considerable confusion

among students, as well as confusion arising from the misuse of these modifiers.

Misspelling the first public results in an error message that includes the option to

remove the modifier entirely, which many students chose to take as they did not notice

their typo. This led to different problems later on when trying to run the class or access

it externally. Some students learned (through practice) to randomly add or remove

access modifiers in order to appease the compiler without understanding the meanings of

their actions. Similar problems arose with the placement of private and protected on

methods and fields.

Careful explanations can prevent problems with access modifiers, but the curriculum

does not cover the distinctions until late in the course. Therefore, based on these

observations, the initial language levels restrict access modifiers and treat all members as

public.

Observation 2.2 (variable not found). I observed that error messages reporting un-

bound identifiers when a field is incorrectly accessed as a method caused considerable

confusion, as did the reverse situation. The students could see that the identifier was

indeed bound, and did not notice that their usage was at fault. Once in this situation,

the students could not deduce how to resolve the problem.

Both the HtDC curriculum and the 2020 curriculum explicitly presented the differ-

ences between fields and methods, but in these situations, students could not recognize

the difference in their usage. This inability to visually distinguish the syntax suggested

that a more detailed error message is required.

The ProfessorJ languages do not permit a field and method in the same class to have

the same name. When a program accesses a field with parentheses, the compiler reports
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that the field is incorrectly being accessed as a method and vice versa, to specifically draw

the students’ attention to the point of their mistake.

Observation 2.3 (if without else). I saw that when students wrote programs similar

to this example

if (condition())
var = valTrue();
var = valFalse();

they rarely noticed the lack of the else keyword between the two statements. Clearly, in

the resulting program, var will always have the return from valFalse() without regard

for the result of condition().

I observed students attempting to resolve the error in their program by modifying the

condition to always be true, testing the methods that created the values for var, printing

out the result of condition(), and finally seeking help (occasionally proclaiming their

computer to be broken, since all of the pieces worked individually). No student presenting

this problem to me had even considered the possibility of a syntax error, and some did not

believe that was the error even after correcting their program. These students believed

that an incorrect program that correctly compiled could not be corrected by solely adding

a keyword.

This potential error should be addressed when students learn that if statements do

not require else. Before students specifically learn about this feature and the potential

pitfalls, these observations indicate that the compiler should require the else keyword

for all if statements. Since the HtDC curriculum does not cover this feature until late,

the earlier language levels should restrict the statement.

Observation 2.4 (missing }). Despite BlueJ tool support for creating classes that

creates a new file for each class, I observed some students creating all of their classes in

one file. Often these students omitted required parentheses and braces, typically a } to

close a method. With multiple classes per file, the following circumstance can arise

class Empty extends List {
...

class Cons extends List {
}

The resulting error message, of a missing } to match the first { led many to place the

missing } at the end of their file, inadvertently creating an inner class.
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Since inner classes are legal Java programs, no error occurs until the student adds

accesses to the Cons class outside of the Empty class. At this point, the error message

indicates that the class Cons is unknown, resulting in similar confusion to that in Obser-

vation 2.2.

The problem occurs because introductory students are also novice brace balancers

and tend to blindly follow the suggestions of the compiler. The situation can be avoided

by either restricting the language to allow only one class per file, removing inner classes,

or requiring students to use a class browser. Since the HtDC curriculum presents inner

classes in the latter portion of the class, the ProfessorJ languages do not support inner

classes and therefore avoid this confusion.

Observation 2.5 (static infection). For the course I observed, students were required

to include print outs of their examples and tests in the body of public static void

main(String[] args). Using static methods in order to perform tests and create exe-

cutable content is not unusual. The students did not yet fully understand the difference

between a static and instance method.

I saw many students calling nonstatic methods within the body of main without first

providing an object. The compiler reported to them that a nonstatic method cannot be

called from a static context. Often, students switched the method to be static to resolve

the conflict, and then proceeded to change any fields or methods accessed by this method

to static — a processes that continued until only nonused methods and the constructor did

not contain a static modifier. Students were then befuddled by the incorrect behavior

of their program that was intended to have per-object instead of per-class state.

This problem arises because the students do not understand the magic incantation of

public static void main... and may forget the object of their method call. While

both the BlueJ and DrJava [4] pedagogic environments eliminate the need for main to

explore program behavior, many teachers still require the method for easier grading.

The HtDC curriculum does not cover static methods or per-class behavior until

presenting access modifiers, therefore the first language levels do not need to support

static. Like the BlueJ and DrJava environments, the DrScheme environment provides

support for program exploration without using main. However, either the environment

or the language will need to provide support for repeatable testing.

Observation 2.6 (more variables not found). In addition to difficulties with unbound

variable references when fields and methods are incorrectly accessed, students were also
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confused with error messages arising from incorrect arguments in method calls. The error

reports detail the method name and the arguments passed in, so that the programmer

can compare these to the available overloaded methods.

When the student does not yet know about overloading, this is incredibly odd. Addi-

tionally, even when students have learned about overloading, they encountered difficulty

in determining which portion of their method call was in error. The language level can

confront this problem by withholding overloading until it will be presented in class, and

then restricting the possibilities in order to provide clear error reports.

Observation 2.7 (inheritance and overloading). Another difficulty I observed with

overloaded methods occurred when students inadvertently created an overloaded method

through inheritance. By accidentally omitting a parameter or modifying a parameter

type, students create an overloaded method in the subclass instead of an overriding one.

In these situations, the students could not understand why the functionality of their

new method did not occur when calling the method on instances of the class. They

did not notice that the methods’ signatures were not identical, especially since the two

implementations were rarely simultaneously visible.

In languages without overloading, this problem does not arise as the methods of the

super class constrain the available names and signature of the subclass. A clear error

message is especially important in this circumstance, as the inherited method may not

be in view. The ProfessorJ error message indicates the specific type signatures of the

two methods and explains that they must match to override the method. In Java version

5, the error can also be avoided through use of the @Override annotation to force the

compiler to check for this error, provided annotations fit within the pedagogic language.

Observation 2.8 (uninitialized variables). Repeatedly, I observed students write

programs with uninitialized fields where the student thought the field to be initialized in

the constructor. The following code fragment demonstrates the style of program leading

to this confusion:

class Car {
String make;
Car( String make ) {
make = make;

}
}
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With this code, students expected their field to contain a usable value and could not

understand the resulting error message, which indicated a null value for the make variable.

This problem can be avoided by forbidding assignment to local parameters, requiring

all fields be explicitly initialized, or forbidding parameter names from hiding field names.

The first restriction may restrict too many programs, in a language permitting muta-

tion. The ProfessorJ languages avoid this problem by requiring that fields are explicitly

initialized.

Observation 2.9 (reflection and professional libraries). A different form of problem

arose when I observed students discovering the many libraries available to Java pro-

grammers, especially libraries that partially implemented homework assignments and

the reflection libraries. Many students used these libraries inappropriately for their

assignments, to the detriment of their grade and understanding.

The reflection library allowed students, especially those confused by dynamic dispatch,

to thwart the object-oriented nature of the programming language by writing methods

that dispatched via if and reflective calls.

These problems can be addressed by lowering the students’ grades for using the

libraries; however, controlling the language can additionally allow the compiler to control

the program’s imports and prevent much consternation, arguments, and loss of learning

opportunities for the students.

2.2.2 Observations Using ProfessorJ Compiler

Development of the ProfessorJ compiler did not end observations of the students. I

observed students in the last three weeks of CpSc 2010 (University of Utah’s introductory

course) programming with the compiler, high school teachers (with little to no knowledge

of Java) using the compiler during a one-week crash course, and I observed by-proxy

(comments from course staff) students in other courses interacting with the tool. These

observations led to refinements in the language level restrictions.

Observation 2.10 (condition always true). In the language with assignment, the

language has two very syntactically similar operators = and ==. I observed students

accidentally creating an assignment expression instead of comparing two values. This

accident caused the greatest confusion in code similar to
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if (val = false)
trueMethod();

else
falseMethod():

Clearly, the programmer intended to write val == false. In these circumstances,

students did not notice they had mutated the variable they were testing, they only noticed

that the method always selected one path of the if regardless of the value of val.

To resolve this confusion, the teaching languages do not allow assignment expressions

even when assignment statements are permitted. An alternate possibility would restrict

assignment from the conditional position of an if statement, allowing students to use

the convenience of assignment expressions in other positions. This restriction, however,

presents an inconsistent and confusing language to the students, which is undesirable.

Some teachers requested that using == to compare booleans be disallowed, in part

to prevent this programming pattern. However, discussions with students showed that

a reasonable proportion of the students following the programing convention find that

declaring a variable equal to true assists them in reading and understanding the behavior

of their program. As their comfort grows, they fall out of using this pattern, and so it

should not be prohibited by the language.

Observation 2.11 (inheritance woes). In the original languages, fields of the subclass

were allowed to hide the parent classes’ fields. When inheritance was introduced, I

observed students inadvertently hiding the parent classes’ field names. While looking

at the child class, the student did not recall that the parent class contained the same

field.

As hiding had not yet been presented, the students could not understand why some-

times the value of their field contained the correct value and sometimes an incorrect

value.

Resolving this confusion required either modifying the language or the curriculum,

which was the undesired choice. Therefore, a subclass in the language level introducing

inheritance cannot contain fields with the same names as the super class.

Observation 2.12 (curriculum changing observations). Other observations, such as

confusions regarding where to initialize abstract classes’ fields in the first language level,

problems with super constructor calls, and super method calls, were initially addressed

by adjusting the language levels. However, these problems were a symptom of a greater
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confusion regarding the differences between extending an abstract class, implementing

an interface, and extending a concrete class. Modifying the languages could not fully

resolve these problems. Instead, the curriculum was restructured to present interfaces

first, which made the language corrections based on these observations obsolete.

Since the language change, few problems in the list in the first sentence of this ob-

servation have recurred. However, more observations of students using the new language

designs are still needed.

2.3 General Lessons

My observations of the difficulties students encountered while programming with Java

led directly to the creation of the language levels presented in Section 2.4. In general,

these observations also suggest guidelines that should be considered when adapting any

professional language for pedagogical purposes. For practical concerns, it may be neces-

sary for a pedagogical language to violate one of these guidelines. The language designer

should be aware of the potential difficulties in doing this and construct error messages

accordingly.

When creating the pedagogic languages, two general issues should be considered: that

the intended progression of the languages does not add and then remove features; and

that there are no program portions that will be explained to students using a “magic”

explanation. In the first instance, adding a feature in one language level that will not

appear in the next causes confusion and annoyance. Students become accustomed to

using the syntax, and they are irritated by the removal and unlikely to accept the reasons

considering their prior use of the construct. For the latter case, the students should

not be exposed to features they are not expected to understand yet. A classic example

is using public static void main(String[] args) without explaining the aspects of

the interface.

From Observations 2.6 and 2.7, I conclude that overloading confuses students both

on variance from expected behavior and naming concerns. Overloaded operators cause

similar problems. For instance, in Java + and == perform different operations based on

the types of the arguments. Context sensitive changes in behavior cause unnecessary

difficulty. As a general guideline, overloading of any variety should not appear in a

language for novices.

Several observations, including 2.2, 2.6, 2.7 and 2.11, demonstrate how name conflicts
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cause confusion. When multiple entities within a program have the same name, students

lose track of the individual meanings of the names and become frustrated. In general,

a novice language should not permit multiple entities (including fields and methods,

parameters and global variables, or classes and fields) to have the same name at the same

time. However, when there is a curricular requirement for allowing name overlap, the

general principle suggests that there should be a clear visible distinction between the

names. For example, if a language allows field and method parameter overlap to discuss

lexical scope, the fields must be accessed with this to distinguish them from parameters.

Observations 2.5 and 2.6 both indicate a general problem learning multiple forms of

methods simultaneously. Distinguishing between static methods, instance methods, and

separating methods by argument number and type — before fully understanding any one

of these constructs — leads to confusion and misuse. As a general guideline, only one

variation of a construct should be presented to students at a time, including only one of

functions vs. methods, procedures vs. functions, or data-types vs. classes.

One of the primary causes of the problems noted in Observation 2.10 stems from the

similarity between assignment = and comparison ==. Especially in a language for students,

syntactic forms should not be so similar. Other syntactic forms in the language are also

too similar, including the syntax for calling a constructor and for instantiating an array.

In general, a pedagogic language should not contain syntax that allows one construct to

be easily mistaken for another. In a language where all syntax is similar (i.e., the syntax

of Lisp or Scheme), the general guideline should preclude strong similarities between the

names of operators.

Observation 2.3 indicates that students have difficulty with the optional else branch

of an if statement. This syntactic form can also cause difficulties in writing a parser

specification, requiring productions to resolve the ambiguities of the form. In general,

grammars that increase the difficulty of writing a parser may be a bad choice for student-

oriented programming languages, including such features as disambiguating operator

precedence through position, similar structures for fields and methods, and the if without

else problem.

Observation 2.8 demonstrates the confusion caused by allowing a field to be set

with the default value. In Java, this situation is slightly better than in some other

languages, whose specifications allow implementations to have unpredictable behavior

when a variable is not explicitly initialized. In general, this situation should not occur in
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introductory languages: a pedagogic language should not permit uninitialized values.

Following these criteria can lead to a pedagogic language that supports students while

avoiding unnecessary confusion. However, these lessons form a guide and not unbreakable

rules. Curricular needs and the base syntax of the professional language may require a

language that contains syntax against these guidelines. In such cases, the guidelines

suggest potential pitfalls that may require special attention in crafting error messages.

For example, the ProfessorJ language levels do not avoid the similar syntax of the equality

and comparison, because the courses using these languages stress the importance of using

the Java language, but the error message support addresses the potential confusion.

2.4 ProfessorJ Languages

ProfessorJ presents three pedagogic language levels that support two-thirds of the

second semester curriculum. The number of language levels is a compromise among three

competing stresses: the difficulty of implementing and maintaining a language level (a

stress that will be greatly reduced with the creation of a customizable system); presenting

the material with small enough granularity to avoid confusing students; not overwhelming

the students with too many language levels, which can make students feel insulted. As

with any software project where human computer interaction is an integral portion, the

psyche of the users must also be taken into account.

The three levels presented in this section are not the original levels that ProfessorJ

supported, nor are they likely to be the final levels. As classroom experience regarding

the levels and the curriculum grows, the content of the levels continues to shift to better

support both the curriculum and the students’ confusions. The paper “ProfessorJ: A

Gradual Intro to Java through Language Levels” [5] presents the original language levels

supported by ProfessorJ.

2.4.1 Beginner

The ProfessorJ Beginner language covers the curriculum from the introduction of

Java until the introduction of inheritance. Students use the language to write simple

classes with no methods or implements clauses through classes with recursive methods

implementing an interface.

The declaration constructs presented in Table 2.1 provide enough structure to write

small programs and experience the general flavor of Java.
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Table 2.1. ProfessorJ Beginner Declaration Constructs
Construct Restrictions
imports Some imports not allowed
classes Implicitly public

Cannot be final
Cannot have static members
Cannot be extended

interfaces Implicitly public
Cannot have static members

fields Implicitly public
Implicitly final

constructors Required
Implicitly public
Cannot be overloaded
May only contain assignments

methods Implicitly public
Cannot be overloaded
Cannot return void

Exclusions:
package, inheritance, class and instance initialization blocks,
inner classes and interfaces, all modifiers, arrays

Students use classes to implement the same data structures they have already imple-

mented in Scheme. These Scheme structures are groupings of data that map easily to

objects with immutable fields, where the field values are given as constructor arguments.

To facilitate this mapping, fields must be set in the constructor and cannot be further

mutated. The curriculum also presents constant values, so fields can also be set immedi-

ately (and then cannot be modified). To avoid initialization order concerns, fields cannot

be initialized using other fields.

Due to Observation 2.5, ProfessorJ Beginner excludes static members, and due to

Observation 2.1 all other modifers have been removed as well.

In Java, methods and fields without any modifiers can be accessed by any other class

in the same package. Since all classes are within the same file, they are also within

the same package. Therefore, all members can be accessed by all other classes in the

same program. However, when students override a toString method or implement an

interface, where all members are implicitly public, the student’s methods must also be

public. Internally, the compiler treats all members as though the student declared them

with a public modifier.
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Although, with this technique, the students technically are writing incorrect programs,

omitting the modifier until the Advanced language does not appear to cause confusion

for students while including it in the language has been seen to cause confusion and more

errors.

Methods may neither be overloaded, in accordance with Observation 2.6, nor declared

void. In a language without mutation, void methods can have little visible affect, and so

would not serve a purpose in the language. Further, the material presented while using

this language level requires students to produce a testable value for each method they

write. This reasoning extends to require that each return statement returns a value.

For the statements and expressions, presented in Table 2.2, Beginner imposes restric-

tions to avoid the errors discussed in Section 2.2. In accordance with Observations 2.3, 2.2,

and 2.9, if requires else, field and method names cannot overlap, and some library

methods from Object (such as clone) cannot be called.

Additionally, the overloaded portion of + to support String concatenation has been

Table 2.2. ProfessorJ Beginner Statements and Expressions
Construct Restrictions
Statements
if Must have else
return Must have expression
assignment Cannot be +=,-=, etc.

Only in constructor
Excluded statements:
block of statements, variable declaration, throw, while, do,
for, try, switch, break, continue, label, synchronized, ++ and --
Expressions
Literals (excluding null)
this
Binary operations + may not be used as string append
Unary operations ++, -- not allowed
Variable reference
Field access this required to access current object’s fields
method call this required to call current object’s methods
class allocation
Excluded expressions:
cast, qualified name access, array access,
array allocation, array instantiation, ? conditional,
instanceof, assignment
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removed, as this operation often causes students confusion, and removing the shorthand

does not remove any functionality.

Field and method accesses on the current object must be prefaced with this instead

of using the implicit this provided by Java. This requirement stems from observations

made by other curriculum developers who noted that students understood object-oriented

programming concepts better with this restriction. Coincidentally, this restriction also

permits better error messages to distinguish between field accesses and method parame-

ters, as well as in field initializations within the constructor.

Within this language, the else keyword requirement may not be technically necessary,

since without it a program such as

if (this.condition())
return 1;

return 2;

will produce 1 only when the condition is true and 2 only when it is false. However,

the Intermediate language needs to require the else keyword to prevent the observed

problems. Pedagogic languages should be subsets of each other, so that students are

not required to unlearn semantics covered in the previous languages. Therefore, to allow

Intermediate to restrict the if statement, Beginner must also require the else keyword.

As previously mentioned, the language levels have evolved to accommodate new

observations and curricular changes. Originally, Beginner contained classes and abstract

classes instead of interfaces. Fields were implicitly private to begin teaching encapsulation

early. As the curriculum changed to present these topics later, the language levels also

changed to support the new direction of the course.

2.4.1.1 Ongoing observation. Presently, the lack of local variables within Be-

ginner causes problems for students and teachers. Students quickly reach a point where

they are not ready to graduate to the Intermediate language level, yet are writing

programs with sufficient complexity to warrant the use of a local variable to properly

abstract their code. However, extending Beginner to allow local variables opens problems

for early programmers who do not properly understand when to use a local variable. This

conflict suggests that the step between Beginner and Intermediate may be too large in

practice, and another language level including local variables and perhaps other features

of Intermediate may provide better support.
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2.4.2 Intermediate

The ProfessorJ Intermediate level supports the curriculum from the introduction of

inheritance until the introduction of overloading. This includes fully extendible classes,

interfaces, overrideable methods, and mutable fields. Table 2.3 presents the declaration

constructs of this language level. Classes and methods may be declared abstract, but no

other modifiers are supported.

With the addition of abstract classes, students learn to avoid repetitious code between

subclasses by lifting methods into their abstract class. This teaches them a key difference

between interfaces and abstract classes. This level also supports the introduction of imple-

menting multiple interfaces and employing object-polymorphism. Therefore, expressions

such as instanceof and casts are now required, as shown in Table 2.4.

To support mutating field values, the possible statements are extended with blocks

and assignment. However, based on Observation 2.10 using assignment as an expression is

still prohibited. Within Intermediate, fields may not be declared final, as the curriculum

presents this concept later in the course. This restriction may appear incongruous with the

Beginner language, where fields default to final. However, since the Beginner language

does not allow the mutation of field values, the final property of the fields is technically

unnecessary and undetectable to students.

Within the Beginner level, constructors could contain no statements other than as-

Table 2.3. ProfessorJ Intermediate Declaration Constructs
Construct Restrictions
imports Some imports not allowed
classes Implicitly public

Cannot be final
Cannot have static members

interfaces Implicitly public
Cannot have static members

fields Implicitly public
Cannot be final

constructors Implicitly public
Cannot be overloaded

methods Implicitly public
Cannot be overloaded

Exclusions:
package, class and instance initialization blocks, inner classes
and interfaces, field and method modifiers, arrays
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Table 2.4. Intermediate Java Statements and Expressions
Construct Restrictions
Statements
if Must have else
return
block of Statements
assignment Cannot be +=,-=, etc.
method call
variable declaration
Excluded statements:
throw, while, do, for, try, switch, break, continue, label,
synchronized, ++ and --
Expressions
Literals
this
Binary operations + may not be used as string append
Unary operations ++, -- not allowed
Variable reference
Field access
method call
class allocation
cast
instanceof
Excluded expressions:
qualified name access, array access, array allocation,
array instantiation, ? conditional, assignment

signments to initialize fields. Intermediate introduces the idea that a constructor can do

additional work, and so the body of a constructor has no restrictions beyond that of a

method returning no value.

Expressions and statements retain many of the restrictions from the Beginner level to

avoid the same problems. As Intermediate introduces inheritance, it supports the restric-

tions discussed in Observations 2.7 and 2.11 to avoid these problems when introducing

other concepts of inheritance.

2.4.2.1 Ongoing observation. The current version of Intermediate does not re-

quire that all fields be initialized either at their declaration point or within the constructor

(in order to create cyclic-data references). This permits the common problems arising

from the null value, namely runtime errors reporting null pointer accesses.

Presently, the compiler does not prohibit this situation and attempts to alleviate any
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confusions by providing a student-targeted runtime error. However, observations are

indicating that this support is insufficient. Therefore, future versions of the Intermediate

language may require all fields to be initialized as in the Beginner language, where null

is a possible value to use.

2.4.3 Advanced

The ProfessorJ Advanced language covers the curriculum from the introduction of

overloading and access modifiers through the presentation of iterative programming.

After this topic, students graduate to the full Java language.

As this language level is used to present library development and use, it must support

packages, access modifiers and static members. Also, to support iterative programming,

it must include arrays, loops and supporting expressions. Table 2.5 shows the constructs

supported in Advanced. By this point, students are largely familiar with the Java

language, and most restrictions have been lifted.

The primary omissions between Advanced and full Java for declaration constructs

are inner classes. Presently, the curriculum designers (including myself) are considering

introducing inner classes to Advanced. Both the structure of the course and the ability

to properly support the construct with error messages are contributing to the decision.

While students are no longer likely to accidentally create an inner class, these constructs

introduce other difficulties including accessing members of the enclosing class, the differ-

ence between static and non-static nested classes, and other errors regarding access.

In addition to this restriction, fields and classes cannot be declared final whereas

Table 2.5. ProfessorJ Advanced Declaration Constructs
Construct Restrictions
package
imports Some imports not allowed
classes Cannot be final
interfaces
arrays
fields Cannot be final
constructors
methods
class initializers
Exclusions:
class initialization blocks, inner classes and interfaces
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methods can. Final method support was desired to explain certain libraries, whereas

final fields and classes are explained using full Java. Additionally, as threading and

synchronization are not taught within the second-semester course, the synchronized

modifier is not included within the language.

Table 2.6 presents the statements and expressions supported within the Advanced

language.

While students using the Intermediate language begin to augment their programs with

external libraries, students using Advanced begin to create their own and learn to fully

Table 2.6. ProfessorJ Advanced Statements and Expressions
Construct Restrictions
Statements
if
return
block of Statements
assignment
method call
variable declaration
while
for
do
break inside a loop
continue inside a loop
Unary operations ++ & --
Excluded statements: throw, try, switch, label, synchronized
Expressions
Literals
this
Binary operations
Unary operations
Variable reference
Field access
Array access
method call
class allocation
array allocation
array initialization Cannot be anonymous
cast
instanceof
? conditional
Excluded expressions: qualified name access, assignment
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interact with the Java API, and other APIs. Therefore, students need to understand and

gain experience with public, private, and protected, as well as packages and package

level access.

Further, students are introduced to the differences between class specific members

and instance specific, and learn about abstraction through overloading constructors and

methods. At this point, students split multiple classes over multiple files, so names can

be prefixed with the package containing them.

Notably, despite students accessing and reading external libraries, Advanced does

not support exception handling statements, throw expressions, or throws declarations,

due to curriculum decisions. Nevertheless, programs may call methods that throw non-

RuntimeException derived exceptions. The compiler treats all exceptions arising in

library code identically to RuntimeException methods, so that students do not need

to understand exceptions to interact with these libraries.

Similarly, the break and continue statements outside of the context of looping

constructs are not covered before students graduate to full Java, and are therefore not

permitted anywhere else within the program. While Section 2.4.1 discussed not restricting

language constructs based on context to prevent confusion, this restriction of break and

continue does not contradict the earlier statement. Within Java, these statements only

have meaning within loops, switch statements, and labeled statements. Of these three,

only loops may occur within Advanced programs.

Other statements that facilitate programs with loops, such as ++ and --, also fit into

the material at the same point. These expressions are necessary for for loops unless

the restriction on assignment as an expression is lifted. Current investigations suggest

that this restriction may indeed no longer be beneficial to students; however, further

investigation is required before removing it.

Anonymous array initialization is not necessary for programs at this level; the array

can always be given a name and then accessed. Teaching this syntactic short-hand is not

planned, so the construct is not permitted in the language.

Within Table 2.6, there are no restrictions placed on the if statement. This means

that programs may now omit the else branch. Observations have indicated that students

using Advanced have enough practice with both the statement and blocks of statements

by this time to understand the significance of omitting the else clause, and some novice
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students begin to complain about the uselessness of else in certain situations.1 Therefore,

the clause can be omitted.

2.5 Connecting to the Environment

Program development environments provide novices and professionals greater support

than editing the program, invoking the compiler, and running the program using two or

three separate programs. Different pedagogical and professional environments provide ad-

ditional features and connections, including interactive access to the program, integrated

debugging, visualization tools, automated testing, etc. The features of the environment

affect which language constructs are necessary.

The ProfessorJ languages reside within the DrScheme development environment, which

is a pedagogic/professional environment that supports several languages. DrScheme

presents two windows to users, an upper window referred to as the definitions window and

a lower window referred to as the interactions window. Full programs are created within

the definitions window. Experiments on the program occur in the interactions window;

in full read-eval-print-loop style. Figure 2.1 shows a sample session of the ProfessorJ

Beginner language within DrScheme.

When in the ProfessorJ language levels, interfaces and classes may be declared in

the definitions window. Essentially the content of the definitions window corresponds to

the contents of a typical .java file, except that for the first two language levels, multiple

classes are the norm instead of the exception. Classes and interfaces cannot appear within

the interactions window, instead statements and expressions may appear there.

A typical session begins by implementing a syntactically complete class in the defini-

tions window. To compile and access the class, the programmer selects DrScheme’s Run

button. If there are any errors, the error is highlighted in the definitions window and the

error message appears in the interactions window. If there are no errors, the class can

now be used within the interactions window. Instances of classes display in a format that

includes the name and assigned values of all the fields in the class.

Once students start writing methods, they need a mechanism for (repeatably) testing

the implementation of these methods for each class. Static methods typically serve roles

in testing, either through using main or using jUnit. Despite these roles, my observations

indicate that static methods cause more problems than they solve and allowing static

1The removal of this restriction does need specific class attention to point out potential errors.
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Figure 2.1. ProfessorJ Beginner program within DrScheme

members for the sole purpose of testing violates the intentions of the early language

levels. Another solution is needed.

An extension to the DrScheme environment supports placing test expressions in graph-

ical boxes. These can be placed in the definitions window, allowing savable, repeatable

tests within the confines of the language level restrictions. The boxes visually indicate

(with a red ∗ or a green check) whether the test passed or failed.

However, experience with these boxes indicates that they are not an ideal testing

mechanism as programs become more complex. Additionally, while some students find

the graphical boxes intuitive and enjoyable, others find the user interface cumbersome.

Further, they do not lead to a permanent testing strategy for students, which may cause

the students to cease testing once boxes are no longer available.
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Another testing solution uses an Example class within the definitions window. Stu-

dents store instances of their other classes within this class and write boolean fields to store

all of the tests of the methods. This solution fits within the language levels and scales to

more complicated programs, as well as transitioning the students to using a professional

testing tool such as jUnit. However, this solution requires that students write methods to

compare two instances of the object sooner than the curriculum intends. Also, the true

or false values of the variable are only visible when the student instantiates the Example

class in the interactions window, so a nondiligent student might not know which change

caused an existing test to fail.

Work on a testing solution that combines features of both these systems and leads

students towards writing tests with jUnit is ongoing.

2.6 Supporting Error Messages

Restricting a professional programming language removes potentially erroneous situ-

ations, which allows a compiler to narrow down the possible errors in a situation. This

in turn allows the compiler to produce a more targeted error message than would make

sense in a more syntactically rich language. For novice programmers, these targeted error

messages reduce the confusion involved in correcting mistakes.

In general, error messages in a professional compiler do not adequately support

students due to their vocabulary and tendency to terseness. Professional programmers

rarely need to read an error message beyond the source of the error, so the content

of the message attempts to convey the essence of the problem with minimal effort for

the programmer to read and the compiler writer to create. Students can be taught to

read error messages when they provide sufficient information to explain and identify the

problem, so pedagogic error messages can be more verbose to assist the student.

The remainder of this section presents a common set of mistakes that are not solved

by restricting the programming language. Providing explanatory error messages in these

situations allows students to improve their understanding of the programming language

and programming techniques without the intervention of a teaching assistant.

One class of errors that tend to cause confusion are the result of typos. Leaving out

the letter of a keyword, swapping two characters, or capitalizing some, cause an error

message for most compilers that does not indicate the found identifier is close to the

desired one. Many people when reading a word that is close to the correct spelling will
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tend to read it correctly despite the error. Therefore, it can be difficult to properly trace

the error. Adding in a small keyword spell checker demonstrates this error, so that a

misspelling of public as pulic will report that the compiler has encountered a word

similar to keyword public that is misspelled.

As previously mentioned, students are observably confused with error messages re-

porting unbound identifiers when they can clearly see the binding of the identifier. One

circumstance of this involves a program similar to

interface Animal {
boolean vertebrate();

}
class Cow implements Animal {
boolean vertebrate() { return true; }
boolean vegetarian() { return true; }

}

and a call-site similar to

Animal m = new Cow();
m.vegetarian()

Typical error messages indicate that the method vegetarian is unknown, which confuses

students who are doing constant propagation in their heads. ProfessorJ attempts to lower

this confusion by explicitly stating the type of m and indicating that it is Animal that

lacks the method, to try to direct students to the source of the error.

Similarly, overloading error messages continue to confuse students even when overload-

ing appears in the language. Therefore, ProfessorJ provides overloading error messages

specialized to three different situations with method lookup errors in the presence of

overloading. If there are no methods with the base name, the resulting error indicates

this specific information with no mention of the called method’s arity or argument types.

If there are methods with the given name but not the given arity, the error message

indicates that “No definition of Method with N argument(s) was found.” And finally, if

the arity hits a match but the types of the arguments are incompatible, the given types

and allowable types are outlined in the error message. This added information narrows

the students’ focus onto the core of their error, instead of lumping the three possible areas

of inconsistencies into one general error message.
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2.7 Related Work

Work on pedagogical alternatives to professional tools has encompassed many dif-

ferent languages and ideas over the years. Prior tools supported pedagogic languages

based on restrictions of professional languages. Other tools attempt to minimize student

problems with new pedagogic languages or with entirely different forms of support from

the development environment using a full professional language.

2.7.1 Language Levels

In the mid 70s, Holt et al. created a series of pedagogic subsets based on PL/I called

SP/k [1]. Like ProfessorJ, each subset presents the language constructs that support

a portion of the curriculum, and each builds on the previous subset. Also using PL/I,

Conway and Constable created one subset, PL/CS [8] to use in an introductory course

without the added complexity of the full language. Both of these systems targeted their

error messages for the students knowledge level.

The Cornell Program Synthesizer [9] later provided an integrated editing environment

for PL/CS that prevented syntax mistakes for students with structured editing. The

environment also allowed students to interact with their programs during development.

Also in the 70s, Wirth created a compiler and interpreter for a subset of Pascal,

Pascal-S [10], with a similar philosophy. Again, constructs used within the introductory

course were supported and all others omitted. Error messages were targeted to students.

Like PL/CS, with only one language for the entire first course, students could still access

constructs significantly before their introduction.

In 1993, Ruckert and Halpern [11] presented a subset of the C language which re-

stricted the static type system to prevent common student errors, including adding

booleans and removing potentially unsafe type casts. Students use only the one subset

throughout the course. Additionally, educationalC did not allow students to access

external libraries or teacher provided libraries.

The DrScheme development environment [2] began as a development environment for

three subsets of the PLT Scheme language. These languages support students using the

“How to Design Programs”[6] curriculum and provide crafted error messages designed

for students. As previously mentioned, the ProfessorJ languages support a follow-up

curriculum to “How to Design Programs” and also reside in the DrScheme environment.

The first curriculum covers functional programming in a dynamic language with algebraic
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data-types, while the ProfessorJ languages bring in object-oriented programming in a

statically typed language.

Like DrScheme, the DrJava [4] environment provides a definitions and interactions

window to aide student development. After compiling, programs written in the definitions

window are accessible in the interactions window. DrJava also supports connections to

jUnit and focuses on professional level testing from the first.

In 2005, the DrJava team presented Java language levels to support the curriculum

accompanying DrJava [12]. As in earlier language level implementations, error messages

are geared towards students and the curriculum. Additionally, while the initial DrJava

subset does not support static members or value-less methods, jUnit testing still occurs

in this subset. Therefore, the language within a test class is different from that in other

classes.

The differences between the ProfessorJ and DrJava language subsets highlight the

need for language levels to be tailored to specific curriculums. For example, the ProfessorJ

curriculum stresses the importance of students understanding the connections between

constructor arguments and field values, as a transition away from algebraic data struc-

tures. The DrJava curriculum does not stress this connection and automatically creates

a constructor for students. Further, the DrJava curriculum moves to library interactions

much earlier than the curriculum with ProfessorJ, necessitating various library support

constructs in the second language. Curriculums with these different requirements cannot

share language subsets, necessitating different systems. With a declarative language

specification, both curriculums could support their language subsets without requiring

two full type-checking implementations for the two systems.

Concurrent with the ProfessorJ development, the Expresso [13] project introduced a

compiler with student-oriented messages. This system noted common student errors, such

as omitting the else clause from an if statement, and searched the submitted program

for these forms of errors. Additionally, as discussed in Section 2.6, the overall language

of error messages attempts to address a students knowledge level. Overall, however,

this system does not provide many language restrictions and novice students may still

accidentally write syntactically valid but technically incorrect programs that are difficult

for them to understand and debug.
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2.7.2 Pedagogic Languages

Many different languages have been created for pedagogic use, instead of using pro-

fessional languages. These include both graphical languages that merge the language and

the environment, and textual languages that either operate without an environment or

do not merge the language and environment.

Textual languages, including Jeroo [14] and Logo [15], may be inspired by professional

languages and can be used to teach several styles of programming. Due to the control

over syntax and semantics, error messages can be more targeted than error messages for

pedagogic subsets. For example, one very difficult error situation within ProfessorJ occurs

when three identifiers appear in a row, such as Fish eat Food, this sequence is either the

incorrect opening for a method or a field, the compiler cannot distinguish and so cannot

provide a precise error message. In Jeroo, methods begin with a special keyword, so that

this situation is avoided.

Graphical languages, including Alice [16], toontalk [17], and jPie [18], remove the

burden of syntactic errors from students by supporting varying degrees of structured

editing. These tools may also connect the program to a visual world to run and interact

with program elements, like Alice, or may also be inspired by professional languages, like

jPie.

Many of these tools are not intended for large programming projects, and just intro-

duce students to the ideas and concepts of programming. These students many encounter

the same problems as a novice when facing a professional compiler and the full syntax

of a professional language all at once. Further, of these tools, only jPie connects to the

professional libraries, so instructors must create their own libraries for the other tools.

2.7.3 Pedagogic Tools Without Language Levels

Other tools provide a pedagogic interface over a professional language that is oriented

towards students. These systems expose students to the full error messages of the

professional language. These systems support curriculums ranging from middle school

students to introductory college students.

For example, the Squeak system [19] is used to introduce middle school students

to both programming and scientific thinking, using the Etoys interface. Squeak is a

graphical system in which the underlying objects are in the smalltalk language. Students

program in the Etoys interface by manipulating prepared graphical widgets and directing

objects as to how to move and respond to their environment. While the Etoys interface
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to the Squeak system is intended for students, the system operates directly on top of

the professional environment Squeak. This provides the flexibility to create large scale

projects. It also, however, allows students to encounter the error messages and constructs

of the full system, which can add unnecessary confusion.

Among the development environments for full Java used in schools, BlueJ [7] is

the primary environment designed for student instruction. BlueJ focuses on teaching

introductory students object-oriented programming while using the environment to shield

students from some of the languages complexities. To focus on OO programming, BlueJ

graphically presents a collection of classes, with arrows denoting the inheritance and

use relationships between them. Students can create classes by adding boxes in the

environment, and they can build inheritance hierarchies by inserting arrows. Creating

a class in this manner generates a bare bones class in the source code, with the class

name and inheritance specified, as well as an example method and field. The method

demonstrates the syntax for a method declaration (return type, name, and modifiers)

and a return statement.

Once a class has been implemented and compiled, students can interactively create

new instances, dispatch public methods and inspect fields. This functionality facilitates

interactive testing(without writing specific test code or requiring an understanding of

static methods), as well as visually presenting the inheritance of methods and fields.

BlueJ also contains a statement and expression evaluator, where students can test code.

BlueJ provides access to a graphical debugger, which sets breakpoints and allows users

to step through execution (a la gdb).

Used only as an editor and interactive environment, BlueJ partially succeeds in

shielding students from static members. Students do not have to write statics for their

programs to work. However, because BlueJ does not have language levels enforcing

this protection, students may still use static members (often incorrectly). Additionally,

if students use the debugger, they are exposed to the concept of statics (and threads)

before the material is presented in their course. A further problem with BlueJ, as has

been discussed above, is that the error messages provided to students do not target

their knowledge level. This problem has been mentioned in a user study [20] as one of

the largest problems with BlueJ. The graphical view provided by BlueJ is beneficial to

students as they learn to design and reason about object-oriented programming.



CHAPTER 3

ADDING LIBRARY SUPPORT

Encouraging students to program with external libraries combines practical education

with more enjoyable programming. Instead of writing small stand-alone programs, stu-

dents can create or extend games, develop interactive web pages, write weather forecasting

engines, etc. Such projects provide students with experience interacting with others’

implementations as well as a finished project that they can use and tend to enjoy.

Most libraries are intended for professional programmers, so they come with many

problems similar to those of professional languages and compilers — including inappro-

priate error messages and features beyond the students’ experience. In addition, the

interface to a library may not fit into the language expectations of the current pedagogic

subset. In particular, a library may require extending an abstract class, where a pedagogic

subset may not support inheritance. For these reasons, instructors may need to provide

teaching libraries to connect the students’ programs with the professional libraries.

A teaching library serves as a bridge between the professional language of the full

library and the pedagogic language of the students’ programs. When the static-semantics

of the pedagogic and full languages match, the teaching library bridges the difference

between the students’ knowledge level and the professional interface, for example re-

moving the need to implement an interface if the pedagogic language does not contain

interfaces. Data checks may be necessary in these teaching libraries to avoid runtime

errors from the professional library, which may use inappropriate vocabulary. In cases

where the static-semantics of the two languages do not match, the teaching library must

dynamically merge the static semantics by checking, marshaling, and protecting values

as they pass between the two parts of the program.

Type checks and conversions fit into one of two categories, in-line checks or wrap-

pers. In-line type checks and conversions resemble the data checks necessary to provide

student-oriented error messages. These checks can immediately verify that the received

datum meets the type requirements and can be immediately converted into the proper
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representation. In-line checks are not sufficient for all libraries, however, particularly not

for libraries that pass objects between the student’s program and the professional library.

In these transactions, a wrapper surrounds the object, performing all the necessary checks

and conversions around accesses before dispatching to the object.

Adding the wrappers (and in-line checks) causes significant programming overhead to

developing teaching libraries, and it adds potential failure points in the program when

checks are incorrect or omitted. With multiple pedagogic languages to bridge with a

professional library, the instructor’s task becomes daunting.

By adding these type-checks and data conversions, the library implementor is actually

writing a specialized interface allowing two languages to interoperate. The difficulty

involved matches the general difficulty of writing programs in multiple programming

languages. By extending a programming language to support interoperability, the task

is simplified, despite bridging multiple incompatibilities between the various languages

directly.

This chapter first presents some illustrative examples of mixing programs in pedagogic

languages with programs in other languages. It then presents the language extension

(dynamic) designed to support fine-grained interoperability, followed by an examination

of using the language feature to rework the examples. The chapter concludes with an

extended example of a pedagogic library using both the dynamic language extension and

using older technologies.

3.1 Language Mixings

Different pedagogic languages can arise from different course needs, as mentioned in

Chapter 2. This section presents example combinations between pedagogic and profes-

sional languages in the context of creating a teaching library to demonstrate the difficulty

of this task without fine-grained interoperability.

3.1.1 A Dynamically-Checked Pedagogic Language

One potential pedagogic subset of Java removes all static type information from the

language. Any teaching library connecting a program in this subset to a library in full Java

must perform dynamic checks to ensure that the data conforms to the type expectations

of the library.

The program in Figure 3.1(a) could be written by a student using a dynamically-

checked syntactic Java subset. In order to provide a library to draw trees for the student,
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class Tree {
height; age; fruit;
averageGrowth() { return height/age; }

}

(a) Student Program

void printTree(Object tree) {
... try { (Float) tree.getClass().getField("height").get(e) ... }
catch (ClassCastException e) { ... }
... try { ... (Integer) tree.getClass().getField("age").get(e) ... }
catch (ClassCastException e) { ... }
... printFruit(tree.getClass().getField("fruit").get(e)) ... }

}

(b) Teaching Library

Figure 3.1. Combining dynamic pedagogic language with Java

an implementor using standard technology might write the printTree method seen in

Figure 3.1(b).

This program uses reflection methods of the student’s Tree object to access its values,

a traditional means of supporting interoperability. Once retrieved, the format of the value

must be checked through casts (which also should be caught and handled with informative

error messages). Programming in this style is cumbersome and error-prone.

Problems compound in this system when an object from the student’s program needs

to be used as a statically known class. In these circumstances, the value must be wrapped

with a subclass of the known class and the wrapper must implement checks on the returned

values of all of the methods within the dynamically-checked class.

3.1.2 Parametrically Polymorphic Library

The latest Java language version includes parametric polymorphism, but a pedagogic

language might exclude this feature. When programming in the pedagogic language,

students should not encounter error messages referring to incorrect uses of polymorphic

entities.

Useful libraries may incorporate generic specifications within their interfaces, requiring

the creation of a teaching library to modify the interface for students using a language

without generics. The portion of a GUI library in Figure 3.2(a) demonstrates a potential

use of generics within a library. The methods to manipulate the Frame’s Panels require

that the Panels be wrapped in a List. While the student program (Figure 3.2(c)) can
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package widgets;

class Frame {
List<Panel> getPanels() ...
void installPanels( List<Panel> l) ...

}

(a) Library using a polymorphic List

class Frame extends widgets.Frame {
void installPanels( List l ) {
for( ... )
if (! l.entry(i) Panel)

throw ...
super.installPanels(l);

}
}

(b) Teaching library removing polymorphism

class SimpleGUI {
Frame mainWindow;
List subWindows;

void display() {
subWindows = subWindows.add(new Panel(...));
...
mainWindow.installPanels( subWindows );

}
}

(c) Student program using Frame

Figure 3.2. Combining polymorphic library with nonpolymorphic language

construct a List of Panels, the language does not support the List<Panel> type. The

teaching library bridges this gap.

The teaching library, Figure 3.2(b), overrides the Frame class to provide a method

with an appropriate type. The new method checks that all members of the provided

List are Panels before passing the value to the super class. To allow students to use

this library, warnings regarding potential conflicts in the polymorphic types must be

suppressed. Alternately, the teaching library could repackage the Panel values into a

new List<Panel> before passing them to the super method, which would avoid the

suppression of warnings but requires the creation of an additional List.
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3.1.3 A Dynamically-Typed Library

While the previous sections discussed pedagogic languages with weaker type systems

than the professional library, the reverse situation can also occur. In fact, my original

motivation for fine-grained interoperability was to allow the Java pedagogic subsets to

connect to Scheme libraries, such as graphics libraries. As I will show, dynamic offers a

general solution for connecting two languages with different static semantics.

Traditional techniques for this bridge require either access through an API, as seen in

Figure 1.1(a), or through the Java native interface (another form of interoperability API).

Both situations require that the programmer insert checks and conversions on values that

return from Scheme and insert guards on objects that are passed to Scheme functions.

Further, calls into Scheme are obfuscated by the API middleman. Section 3.4 presents

a complete implementation using the native interface to compare with the fine-grained

solution.

3.2 Extending the Language with dynamic

By extending the language with dynamically-checked expressions, interoperability

between languages with different static-semantics becomes easier for the programmer.

Specifically, adding a dynamic type annotation and specialized import statement suffi-

ciently inform the compiler where to insert checks so that the programmer can safely

omit all type-checks.

3.2.1 Syntax and Extensions

Within my extended language, variables can be declared to have dynamic type.

class Printer {
dynamic tree;
printTree( dynamic tree ) ...

}

Declaring a variable with the dynamic type specifies that the value assigned to this

variable will be checked, and converted where necessary, during execution. No usage

of any value with the dynamic type can generate a compile-time error. This capability

allows dynamic values to bridge two languages with different type-expectations.

Internally, all variables imported from libraries written in other languages have the

dynamic type. A small extension to the Java import declaration indicates when the



42

imported library is not a Java program. When the import declaration begins with the

word scheme, compiler imports dynamically typed libraries from the Scheme language.

import scheme.graphics;
import scheme.lib.prettyPrint;

Although the dynamic extension is not specific to Scheme, I use scheme as a place holder

for “implementation language of the dynamically typed library”. The language created

by merging these extensions with the Java programming language is referred to as Java

+ dynamic .

The preceding import statements direct the compiler to accept values from a Scheme

graphics library in the current package and from a Scheme pretty-print library in the main

repository for Scheme libraries. Unlike other Java classes, Scheme libraries contained in

the current package are not automatically visible to the Java library. Programs written

in the subsets of Java are imported using the standard Java import.

Syntactically, values from Scheme libraries appear as static members of a class with

the name of the Scheme library. In a program with the above imports, the code to

access a print function from the pretty-print library is prettyPrint.print. The compiler

statically guarantees that the pretty-print library contains and exposes a value named

print, but other static checks occur for Scheme imports.

Within Java, values may be flat data or objects. Within Scheme, values may also be

functions. Therefore, values with the type dynamic may also be used as functions in Java.

Within the following example, a parameter to a Java method is accessed as a function:

String keyCallback(dynamic callback, Charset c) {
return callback(c);

}

Assuming that the first argument to keyCallback is a function from Charset to strings,

this program raises no errors.

Another important role of dynamic is its effect on method calls and other primitive

operations. Consider the following example.

Fruit getFruit( dynamic tree ) {
if (tree.hasFruit())

return tree.pickFruit();
else

return tree.getSeeds();
}
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The tree variable is used as an object with no declared class. Nevertheless, methods and

fields can still be accessed from tree. These fields and methods need not come from any

known class.

Consider the first use of tree, which accesses a hasFruit method of no arguments

returning a boolean. During execution, the value is inspected to ensure that it is an

object. This object is further inspected to ensure that it contains the correct method,

which is then called. Separate checks will be used for calls to pickFruit and getSeeds.

Indeed, no class with all three methods may exist, which is completely acceptable within

this program.

Chapter 4 discusses the details of the Java + dynamic language, and the remainder

of this chapter discusses how to use dynamic in creating teaching libraries.

3.3 Writing Libraries with dynamic

Section 3.1 presents possible teaching languages/professional library pairings. In

those examples, the teaching libraries bridged the language gap using traditional in-

teroperability technology. This section presents teaching libraries that use the Java +

dynamic language to bridge the same programs/languages.

3.3.1 Dynamically-Checked Student Language

The teaching library in Section 3.1.1 combined a dynamically-checked student lan-

guage with the static type checking of Java. The library used reflection and casts to

access and verify the values from the student’s program.

In an updated version of the program, these extra calls are removed, leaving

void printTree(dynamic tree) {
... tree.height / 3.0 ...
... tree.age < 100 ...
... printFruit( tree.fruit ) ...

}

Internally, in this revised code, similar checks to the hand-implemented ones ensure that

the tree object has the desired fields, and that the values of these fields conform to the

requirements of their uses.

In this library, printFruit can either accept an argument of type dynamic or one

of type Fruit with the same code for printTree. In the latter case, tree.fruit must

match the signature for a Fruit class, the tree.fruit is inserted into a wrapper that

checks the types of fields and methods on access.
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If the value for tree given to printTree is not an object with one of the required fields,

an error will occur during execution. For example, if the tree value does not contain an

age field, the error message indicates that within the class containing printTree, at the

tree.age position, the object was required to have a field with name age but did not.

Further, if the age is not an integral number, the error report indicates that an integer is

required.

The resulting behavior of the system matches that of the initial bridge library, which

directly required the programmer to insert the runtime checks, without requiring as much

overhead and potential for error.

3.3.2 Polymorphic Library

With the example from Section 3.1.2, a teaching library bridges two typed lan-

guages with differing levels of strictness. The professional library allows parametric

polymorphism and adds static guarantees to ensure that certain conditions are met. The

pedagogic language does not support type constraints.

Within the extended system, the teaching language bridges the two languages by using

a dynamic parameter to indicate the point where the two type systems do not match.

class Frame extends widgets.Frame {
void installPanels( dynamic l ) {
super.installPanels(l);

}
}

This allows the value to enter the original frame without static conversions or checks of

the data. These checks are still necessary, and will be shifted to run-time checks within

the accesses to the list from the students programs. The wrapped list will also carry with

it the source location of the extending Frame class so that errors are correctly reported

as stemming from this location.

3.4 A Teaching Library

The primary use of the Java + dynamic language extension at present is to connect the

Scheme graphics libraries to the pedagogic languages of ProfessorJ through a teaching

library. This library requires interoperation between Java and Scheme. In particular,

the connecting library should be written in Java, so that students programming in the

Java-esque subsets have a firm Java interface to program against. Conforming to Java
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interfaces comprises one facet of the students education, so the types of the library should

be expressible in standard Java.

3.4.1 The Library

The teaching library allows students to create and manipulate images and to program

animations and games. A student writes the logic and control of a game, or the code

to manipulate images. The teaching library connects to an existing pedagogic graphics

library and the Scheme MrEd graphical system [21] to provide bit-level drawing support

and window management.

The teaching library provides several classes, including color, position, and drawing

command representations. The primary support of the library is contained in three

classes: Image, View, and World (and its implementing subclasses, notably GameWorld).

See Figure 3.3 for the visible interface of these classes.

The Image class allows students to represent and manipulate pictures imported from

JPEGs, BMPs, etc. This class connects to an existing Scheme library, providing no

additional functionality.

The View class allows students to open a window and draw Images into it. This

class connects to various components of the Scheme windowing system, merging the

interactions into one interface.

The World family of classes both guide the student into a programming pattern for

creating their animated/interactive programs and provide the support for interacting with

the visible canvas. The class uses existing Scheme libraries to provide time and key events

to the student’s program.

3.4.2 Implementation Options

The teaching library may be implemented using a few different technologies to connect

the languages: through an interoperability or reflection API, through the Java Native

Interface, or by using Java + dynamic .

The first option requires the creation of a library to generally connect Java and

Scheme, similar to those created by other Scheme implementations that compile to Java

such as jScheme[22]. As the ProfessorJ system operates by compiling Java into Scheme

(see Chapter 5 for details of compilation) and can easily use the Java native interface,

such a library has not been created.
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class Image {
Image overlay( Image i);
boolean inside( Image i );
//Several other Image manipulation methods

}

class View {
View();
View display(int width, int height);
View hide();
View show();
Image draw(Command c);
Image drawSequence( CommandSequence cs);

}

abstract class World {
View display;
World onKey(String key);
World onTick();
Image draw();
Image erase();
boolean animate( int width, int height, int rate );

}

Figure 3.3. Drawing library: Student interface

Within the ProfessorJ system, native methods are implemented in Scheme. The

compilation procedure specifies a name for these methods, which appear as Scheme

functions within another file. Each (nonstatic) native function is automatically given

several data-structures containing information about the current instance. The Scheme

functions are unrestricted by the Java compilation. In addition to providing access to

Scheme functions through the native interface, the ProfessorJ system also allows Scheme

classes to impersonate Java classes by providing a specification of the field and method

interfaces of the class, i.e., the Java type signatures for the Scheme class. These assertions

are unchecked.

The ProfessorJ system also supports the Java + dynamic language option. Programs

written in Java + dynamic have access within the Java program to all of the PLT Scheme

libraries, as well as locally written Scheme modules. In some circumstances, the Java

programmer will have to write an auxiliary Scheme module to translate some Scheme
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names into Java or to write functions.

3.5 The Implementations

This section presents illustrative portions of the native and Java + dynamic imple-

mentations of the graphics library. The complete implementations of these classes are

contained in Appendix A.

3.5.1 Image

The Image class embeds a Scheme value, representing a picture, and provides methods

to manipulate this value. The methods connect to functions provided by a Scheme image

library.

This section presents two representative methods: inside, which determines whether

the given Image occurs within this; and addLine, which uses two points, represented by

Java class Posn, and a Color to create a new Image containing a line.

3.5.1.1 Native Method Implementation. Figure 3.4(a) presents the Java por-

tion of the native method implementation. The Image class stores the Scheme value as

a private Object field, theImage. While the value assigned to this variable will never

have type Object, no Java code will ever access this variable so the type is irrelevant.

Instead, the Scheme portion reflectively accesses the value.

Figure 3.4(b) presents the Scheme implementation of the native methods. Each native-

method function must accept four arguments in addition to those declared by the Java

method. In order, the extra arguments are

1. the current instance of the class – this

2. a hash-table mapping symbolic representations of field names to functions that

retrieve the values for those fields – getters

3. a hash-table mapping field names to functions that modify field values – setters

4. and a hash-table providing access to the private methods of the class – privates

These arguments allow the native method implementation access to portions of the class

structure that would otherwise be inaccessible.

To access the theImage field for any Image class, the Scheme implementation must

first retrieve the accessor function from the hash-table getters. The function expects an

object of the Image class and returns the value of the specified field.
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class Image {
private Object theImage;

public native boolean inside(Image isInside);
public native Image addLine(Posn start, Posn end, Color c);

}
(a) Image.java

(module Image-native-methods mzscheme
(require (lib ”image.ss” ”htdp”) · · ·)
· · ·
(define (inside-draw2Native.Image-native this getters setters privates image)

(check
boolean?
(image-inside? ((hash-table-get getters ’theImage) this)

((hash-table-get getters ’theImage) image))
(lambda (v)

(raise
(make-java-runtime-exception

(format ”In class Image, inside expected to return a boolean, given ˜a” v))))))
(define (addLine-draw2Native.Posn-draw2Native.Posn-draw2Native.Color-native

this getters setters privates posn1 posn2 c)
(new-image

(add-line ((hash-table-get getters ’theImage) this)
(Posn-x posn1 ) (Posn-y posn1 )
(Posn-x posn2 ) (Posn-y posn2 )
(send (send c toString) get-mzscheme-string))))

)
(b) Image-native-methods.ss

Figure 3.4. Image : Native methods

The inside method returns a boolean directly from the image-inside? function.

Internally, Java and Scheme have the same representation for booleans, so no conversion

is necessary within the native method. As there are no guarantees that the function

will return a boolean, the type of the value must be checked and an error thrown when

necessary. The implementation of the check function follows.

(define (check pred? val thunk)
(if (pred? val)

val
(thunk val)))

In the addLine method, the color object’s toString method is called. Before

passing this value to the add-line function, it must be converted. The Java String

class implementation contains a special method to retrieve a Scheme string from the Java
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representation. Also, a new instance of the Image is created. While not shown here, the

function to create the instance of Image is defined within the Scheme program as well.

This function must instantiate the Image object and then call the constructor explicitly.

3.5.1.2 Java + dynamic Implementation. Figure 3.5 presents the Java + dynamic im-

plementation of the Image class. The data-structure representing images is stored in the

dynamic variable theImage. Therefore, this value can be used in any manner.

The import declaration allows the Image to access all of the Scheme image library’s

functions, including image-inside? and add-line. Within the Java program, the names

addLine and imageInsideP automatically access the same functions with Java expressible

names.

The inside method extracts the Scheme object from the parameter and dispatches

to the Scheme function. As in the native version, the type of the returned value from

image-inside? will be checked. In this version, the check is forever tied to the return

value of the Java method.

Similarly, the addLine method dispatches to the Scheme function, disassembling the

arguments to match the Scheme signature. When the addLine method accesses the color

object’s toString method, the value is automatically converted from a Java String into

its Scheme counterpart.

3.5.1.3 Discussion. For Image, the native implementation requires the program-

mer to take more actions. Interactions between different portions of the same class

import scheme.lib.htdp.image

class Image {
private dynamic theImage;

public boolean inside( Image isInside ) {
return image.imageInsideP( theImage, isInside.theImage );

}

public Image addLine(Posn start, Posn end, Color c) {
return new Image(image.addLine(theImage, start.x, start.y,

end.x, end.y, c.toString()));
}

}

Figure 3.5. Image: Java + dynamic
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occur through an indirection required to pass protected information across the language

boundary. Values returning to Java should be checked in order to prevent type errors

from occurring in odd places within student programs, although there is no enforcement

of these checks and they can be forgotten. Values entering Scheme potentially must be

converted when data representations do not mesh.

3.5.2 View

The View class provides a wrapper over several classes within Scheme, a window

frame, editable canvas, drawing element, and an off-screen drawing element for buffering.

The class connects all of these Scheme classes and provides a unified view to users.

The Scheme canvas class requires an updating callback to direct the behavior when the

containing window is resized or obscured.

This section presents the embedding of the Scheme objects into the Java class and

the implementation of the display method, which instantiates the Scheme objects and

opens a blank window.

3.5.2.1 Native Method Implementation. Figure 3.6 presents the native method

implementation of this class. The Java class contains one Object field that will store a

Scheme record collecting all four of the objects necessary to interact with the display.

Since the Java implementation will never access these values, for the reasons discussed

in the Image class, collecting the values together simplifies retrieval in the Scheme imple-

mentation.

The canvas class expects a function of two arguments for the redrawing callback. This

is easily implemented with a local function definition. Accessing and mutating the fields

of the View class constitutes much of the work required for this class.

This implementation mutates two Java fields, one with type Object and one with

type boolean. The first field is never accessed in Java, so the type does not matter. The

second field, visible, is used within the Java class and so must be a boolean. While

the provided value is a boolean, there is no guarantee that the implementation will not

violate Java’s type expectation. Since the programmer providing the value is the one

who would implement a check around the value, inserting the check provides no more

assurance it is the correct type. The same is true for the returned value of the display

method.

3.5.2.2 Java + dynamic Implementation. Figure 3.7 presents the Java + dynamic im-

plementation. As with the Image class, the View class encapsulates the Scheme objects
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class View {
private Object display;
private boolean visible;
public native View display( int width, int height);

}
(a) View.java

(module View-native-methods mzscheme
(require (lib ”mred.ss” ”mred”) · · ·)
(define-struct view (buffer dc canvas frame))
(define (display-int-int-native this field-accs field-sets privates x y)

;Fields and field setters
(let ((visible ((hash-table-get field-accs ’visible) this))

(set-visible (hash-table-get field-sets ’visible))
(name ((hash-table-get field-accs ’name) this))
(get-display (hash-table-get field-accs ’display))
(set-display (hash-table-get field-sets ’display)))

(when visible (send this hide))
(let∗ ((buffer (make-object bitmap-dc% (make-object bitmap% x y)))

(call-back
(lambda (canvas dc)

(send dc draw-bitmap
(send (view-buffer (get-display this)) get-bitmap) 0 0)))

(frame (make-object frame%
(send name get-mzscheme-string) #f (+ x 10) (+ y 15)))

(canvas (make-object call-back-canvas% frame null call-back))
(dc (send canvas get-dc))
(display (make-view buffer dc canvas frame)))

(set-display this display)
(send dc clear)
(send buffer clear)
(send frame show #t)
(set-visible this #t)
this)))

)
(b) View-native-methods.ss

Figure 3.6. View: Native methods
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import scheme.lib.mred.mred;
import scheme.lib.htdch.graphics.rename;

class View {
private dynamic frame;
private dynamic canvas;
private dynamic dc;
private dynamic buffer;
private boolean visible;

//Produces a View with a visible canvas of size x and y
public View display( int x, int y) {
if (visible)
this.hide();

buffer = rename.newObject(mred.bitmapDcObj,
rename.newObject(mred.bitmapObj,x,y));

buffer.clear();

class Update {
public void callBack(dynamic canvas, dynamic dc) {

dc.drawBitmap(buffer.getBitmap(), 0,0);
}

}

frame = rename.newObject(mred.frameObj, name, false, x+15, y+20);
canvas = rename.newObject(rename.callBackCanvasObj, frame,

rename.emptyList,
rename.innerToFunction(2, new Update()));

dc = canvas.getDc();

this.clear();
frame.show(true);
visible = true;
return this;

}
}

Figure 3.7. View: Java + dynamic
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as dynamic private variables, as they will be accessed individually throughout the class.

The call back for redrawing the canvas class is represented by the inner class, Update.

However, the Scheme class requires that the supplied callback be a two argument function,

which cannot be written within Java without further extensions. The Java programmer

resolves this problem by supplying a function, inner->function, that wraps an object

containing a callBack method in a function, which call the method with the correct

number of arguments when the function is called. This function is used to wrap all of

the callbacks required in the drawing library.

3.5.2.3 Discussion. While in this class the lack of ability to define a function in

Java suggests some benefits to the native method approach, the native implementation

continues to access other portions of the class through an indirect mechanism. Further,

there are no checks that values are being set to the correct value and so the program-

mer relies solely on their own ability to place the correct kind of value. This is not

unreasonable, but can be prone to confusing errors. The choice of whether the function

or inner class definition better supports interaction can be one of personal preference.

However, splitting the important aspects of the implementation across two files can also

be a detriment to understanding. This problem could be addressed by extending Java

+ dynamic with the ability to automatically convert objects that implement particular

interfaces into appropriate functions.

3.5.3 GameWorld

The abstract World class can be written entirely in Java, with all abstract methods

and a View display object. The GameWorld subclass implements the abstract animate

method to provide the functionality required of game play. These aspects require that

a timer intermittently call an update method to change the representation of the world,

and that a callback be registered with the drawing canvas to call an update method to

change the representation in response to user input. The MrEd library provides a suitable

timer class implementation, which like the canvas class requires a function callback.

In providing a callback to process user input, the teaching library must connect a

string from the Scheme program with a Java String in the students’ programs (this

value is the argument to onKey in the World class). There are no guarantees that the

value provided from the Scheme function is indeed a string.

3.5.3.1 Native Method Implementation. Figure 3.8 presents the native method

GameWorld implementation. As in the previous classes, this version of GameWorld stores
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public abstract class GameWorld extends World {
private Object timer;
private World nextWorld = this;
public final native boolean animate( int width, int height, int rate );

}
(a) GameWorld.java

(module GameWorld-native-methods mzscheme
(require (lib ”mred.ss” ”mred”) . . . )
(define (animate-int-int-int-native this field-accs field-sets privates x y rate)

(let∗ ((timer-set (hash-table-get field-sets ’timer))
(timer-get (hash-table-get field-accs ’timer))
(nextWorld-get (hash-table-get field-accs ’nextWorld))
(nextWorld-set (hash-table-get field-sets ’nextWorld))
(get-display (hash-table-get field-accs ’display))
(set-display (hash-table-get field-sets ’display))
(display (get-display this)))

(let∗ ((draw-sequence (lambda (o n)
(timer-set n (timer-get o))
(set-display n (get-display o))
(send (get-display this) allowImage #f)
(send n draw)
(send (get-display this) allowImage #t)))

(timer-callback (lambda ()
(let∗ ((world (nextWorld-get this))

(new-world (send world onTick)))
(draw-sequence world new-world)
(nextWorld-set this new-world))))

(key-callback (lambda (key)
(unless (string? key)

(raise (make-java-runtime-exception
(make-java-string

(format
”Internal error: key must be a string for callback, given ˜a”
key)))))

(let∗ ((world (nextWorld-get this))
(new-world (send world onKey-java.lang.String

(make-java-string key))))
(draw-sequence world new-world)
(nextWorld-set this new-world))))

(timer (make-object timer% timer-callback)))
(send display display x y)
(send display keyCallBack key-callback)
(send timer start rate #f) #t)))

)
(b) GameWorld-native-methods.ss

Figure 3.8. GameWorld : Native methods
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the timer object as a private Object field and uses the hash-tables to access the various

fields and field modifiers.

In the key-callback function, the key argument must be manually checked and con-

verted into a Java String. The String library provides the make-java-string function to

perform this conversion. In the event of an error, the user must explicitly create a Java

RuntimeException (or suitable subclass) instance to throw. As in creating an instance of

an Image class, the programmer must create the instance in the two steps of instantiating

the class and explicitly calling the constructor. Additionally, due to requirements of

interoperating within the DrScheme environment, the exception creation function must

set source properties during the creation of the error. The Throwable library provides

a function to perform some of this translation, but the Scheme programmer must still

provide class-specific functionality.

3.5.3.2 Java + dynamic Implementation. Figure 3.9 presents the implemen-

tation of GameWorld for Java + dynamic . The timer object is a dynamic field, and

both the timer and user input callbacks use the inner->function procedure to translate

instances of the classes into functions.

As in the native method version, the argument to callBack(String) arises from a

Scheme function. When the instance of KeyCallback is passed to inner->function, the

compiler wraps the object to protect its future interactions with Scheme functions.

When the Scheme function invokes this callback method, checks and conversions

automatically take place to transform the provided value into a Java String. The

resulting error, if the value is not a string, will lead back to the GameWorld class with

an error in accessing the KeyCallback class.

3.5.3.3 Discussion. Each of these classes required more work from the native

method implementor than the Java + dynamic. The implementor also had to remember

without any assistance all locations where types must be verified and data converted.

Even I, the primary expert in using this native method interface, encountered con-

fusing errors due to supplying incorrect types as an argument to the onKey method, and

with correctly connecting the Scheme native method library with the portions of the

library implemented entirely in Java (such as the Posn class). Such errors did not occur

in implementing the dynamic version.
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import scheme.lib.htdch.graphics.rename;
import scheme.lib.mred.mred;

public abstract class GameWorld extends World {

private dynamic timer;
private World nextWorld;

private void drawSequence( World old, World newW) {
((GameWorld) newW).timer = ((GameWorld) old).timer;
newW.display = old.display;
display.allowImage(false);
newW.draw();
display.allowImage(true);

}

public final boolean animate( int width, int height, int rate ) {

class TimerCallBack {
public void callBack() {

World old = nextWorld;
nextWorld = nextWorld.onTick();
drawSequence(old, nextWorld);

}
}

class KeyCallBack {
public void callBack(String key) {

World old = nextWorld;
nextWorld = nextWorld.onKey(key);
drawSequence(old, nextWorld);

}
}

display.display(width, height);

display.keyCallBack(rename.innerToFunction(1, new KeyCallBack()));
timer = rename.newObject(mred.timerObj,

rename.innerToFunction(0,new TimerCallBack()));
timer.start(rate, false);
return true;

}

}

Figure 3.9. GameWorld : Java + dynamic



CHAPTER 4

EXPLORING DYNAMIC

Programs containing dynamic variables and references to Scheme programs require

more dynamic checks. In particular, compilation must insert the necessary wrappings

and runtime checks to validate the type assumptions.

This chapter first presents the locations within a program that require checking

dynamic variables and protecting Java values. Then the nature of a check is presented,

as well as an implementation sketch.

4.1 Type Checking dynamic

Revisiting the program from Section 3.2.1

Fruit getFruit( dynamic tree ) {
if (tree.hasFruit())

return tree.pickFruit();
else

return tree.getSeeds();
}

The compiler analyzes the program and assigns wraps the various uses of tree to ensure

that the value is an object, with the appropriately named method, and that the method

returns a value with the appropriate type. Here, the first method must return a boolean

and the other two must return instances that match the Fruit class.

During the static analysis of a program, the surrounding static type information

supplies the dynamic checks that will occur during program execution. This information

ensures that when dynamically checked values enter statically verified procedures, the

value will cause no primitive runtime failures. If the dynamic value is incompatible with

the static expectation, the program will fail at the point that the dynamic value enters

the statically verified portion. Runtime errors that were possible in the original program,

such as null pointer exceptions, are still possible in the extended program.
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The context of a dynamic variable’s use provides sufficient information to build type-

expectations. Table 4.1 presents the positions in a program that determine which checks

are necessary.

In the first five cases, the dynamically checked value is cast (either implicitly or

explicitly) to a static type. Since the compiler, after these points, statically checked

the validity of the program with respect to the known type, it is necessary that the

dynamically-checked value conform to the stated type. The next four cases place a

dynamically checked value in a conditional position, which the Java language specifies

must contain a boolean. Checking this constraint is simply shifted to a dynamic check.

Similarly, in the next three checks, the language requires that the values in these positions

be numeric (or Strings in the case of +), so, again, the static check is shifted to a dynamic

one.

The remaining four cases present circumstances where dynamic values are used as

Table 4.1. Positions to Insert Checks
Program points that specify Checks:

KNOWN TYPE VARIABLE = dynamic VALUE;
(KNOWN TYPE) dynamic VALUE
KNOWN TYPE method() { ... return dynamic VALUE;}
methodCall(dynamic VALUE) where method(KNOWN TYPE)
new KNOWN TYPE(dynamic VALUE) where KNOWN TYPE(KNOWN TYPE)
if (dynamic VALUE) ... ...
(dynamic VALUE) ? ... : ....
while (dynamic VALUE) ...
for( ... ; dynamic VALUE ; ...)
dynamic VALUE checked-binop primitive numeric
dynamic VALUE checked-binop dynamic VALUE
KNOWN TYPE VALUE[dynamic VALUE]
dynamic VALUE(..)
dynamic VALUE.method(...)
dynamic VALUE.field
dynamic VALUE[...]

Key:
dynamic VARIABLE → Variable with declared type dynamic
dynamic VALUE → Value with unknown type
KNOWN TYPE VARIABLE → Variable with declared type other than dynamic
KNOWN TYPE VALUE → Value with statically known type
KNOWN TYPE → Non-dynamic type
checked-binop → One of +,−, ∗, /, <,>,<<,>>, etc. (not ==)
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functions, objects or arrays. In these situations, no specific types are statically known.

Instead, a type is invented that must match only the specific use of the value, which is

represented with a general mechanism described in Section 4.2. In the case of a method or

field access, this expectation reflects that the dynamic value must be an object containing

a member of the specified name and the resulting value should be dynamically checked.

For method access, the check will also verify that the method can accept the number of

arguments presented. In the case that a dynamic value is used as an array, the resulting

check will ascertain that the value is an instance of a Java array but places no constraints

on the values contained in the array.

In addition to program positions that incur checks, other program positions exist

that require adding guards to statically checked values. To preserve type-safety, values

with known types require guards when entering positions where the value is dynamically

checked. These positions, outlined in Table 4.2, statically hide the known type.

Each case represents an implicit or explicit cast of the known type value to dynamic .

While the last case may not seem intuitive, the opposite choice of specifying that the

dynamic value have the same type as the known value proves too restrictive. This is

illustrated with the following example:

class One { }
class Two extends One { }
...
One single = new One();
Two double = new Two();
... condition ? single : double ...

In this example, it is statically evident that double is a subclass of single’s class

and the resulting type of the expression is One. Replacing the type of single with

dynamic changes the type of the expression to Two. The value of single is not a Two so

Table 4.2. Positions to Insert Guards
Program points that specify Guards:

dynamic VARIABLE = KNOWN TYPE VALUE
(dynamic) KNOWN TYPE VALUE
dynamic method() { ... return KNOWN TYPE VALUE;}
methodCall(KNOWN TYPE VALUE) where method(dynamic)
new KNOWN TYPE(KNOWN TYPE VALUE) where KNOWN TYPE(dynamic)
dynamic VALUE.method(KNOWN TYPE VALUE)
BOOLEAN VALUE ? dynamic VALUE : KNOWN TYPE VALUE
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this modified program generates a runtime error.

In general, changing a static type to dynamic in a program should not cause a correct

program to become incorrect — this would lead to confusion and increase the difficulty of

understanding programs containing dynamic. Therefore, the result type of a conditional

expression with a dynamically checked value is dynamic. Similarly, an == expression does

not constrain the type of a dynamic value as many formerly valid programs would be

ruled out through the type check.

4.2 Protecting Type-Safety

The type-correctness of flat values, such as numbers, booleans, or characters, can

be verified with in-line checks. Higher-order values, such as objects, cannot be so easily

verified. In-line checks verify that an object contains the required methods and fields, but

cannot verify that a method always returns the correct type when the method may come

from a dynamically typed language. To perform higher-order checks (with sufficient

information for a precise error report), each object value is wrapped in a contract. A

contract in this system follows the ideas of contracts from Findler et al. [23].

4.2.1 Contracts

Within a dynamically checked language, such as Scheme, programmers occasionally

prefer to enforce type-like constraints on functions and other values. For example, a

Scheme library might include the function from Figure 4.1(a). The comment for this

function indicates that it expects to receive an integer as the first argument, which will be

used to generate a filename for the specified user. If a client calls save-config with a value

other than an integer, the resulting filename might violate later program expectations

or other security concerns (such as with an argument ”../../passwords”). To protect

against such problems, the Scheme programmer can insert an explicit check of save-

config ’s argument, as seen in Figure 4.1(b).

In the presence of higher-order functions, no immediate check suffices. To illustrate,

an additional function in the same library will load a user’s configuration once given their

id number, see Figure 4.2(a). The implementor of load-config not only requires that get-id

be a function, but also that the function return an integer. A call to (procedure? get-id)

ensures that get-id is a function, but does not ensure that the function will produce

an integer. Therefore, load-config must additionally check the result of get-id before

proceeding, as seen in Figure 4.2(b).
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;; save-config : integer string → void
(define (save-config u-id data)

(write data (open-output-file (format ”config/˜a.txt” u-id))))
(a) Unchecked Scheme program

(define (save-config-checked u-id data)
(check integer? u-id)
(save-config u-id data))

;; export save-config-checked to clients as save-config
(b) Checked Scheme program

Figure 4.1. Checking flat values in Scheme

;; load-config : (→ integer) → string
(define (load-config get-id)

(let ([u-id (get-id)])
(read (open-input-file (format ”config/˜a.txt” u-id)))))

(a) Higher-order unchecked Scheme function

(define (load-config-checked get-id)
(check procedure? get-id)
(define (checked-get-id)

(let ([id (get-id)])
(check integer? id)
id))

(load-config checked-get-id))
;; export load-config-checked to clients as load-config

(b) Checking a higher-order value

Figure 4.2. Checking functions in Scheme

Implementing these checks for all functions with constraints becomes tedious, and may

obscure information that could assist an optimizing compiler. For these reasons, Findler

developed a construct similar to an apply-contract form for PLT Scheme programmers

that annotates values with runtime checks and source information for reporting failures.

Figure 4.3 presents constraints for save-config and load-config using contracts. Specifying

these constraints using a new language construct simplifies the creation and modification

of these programs, as well as providing more information for compiler optimizations.

4.2.2 Contracts and Java + dynamic

The Scheme-oriented view of contracts extends naturally to object-oriented program-

ming [24]. As discussed in Chapter 3, requiring the programmer to insert explicit contracts
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(define save-config-contract
(integer string . -> . void))

(define save-config-checked
(apply-contract save-config-contract save-config))

(define load-config-contract
((-> integer) . -> . string))

(define load-config-checked
(apply-contract load-config-contract load-config))

Figure 4.3. Enforcing constraints with contracts

for fine-grained interoperability adds too much overhead and programmer added contracts

may be accidentally omitted. However, the compiler can still use contract technology to

insert checks for the programmer.

To demonstrate the operation of contracts, without committing to an implementation

strategy, the contracts are depicted as superscripts above the contracted expressions. In

Section 3.3.1, a method is written to display dynamically-checked trees written by the

students. The following code snippet simplifies the example to show only one contract.

void printTree( dynamic tree ) {
... tree.age < 100 ...

}

The usage of tree requires that it have an age field containing an integer value. The con-

tract annotated version, including this requirement, adds an abstract ageField contract:

ageField = object{age : int}

void printTree( dynamic tree ) {
. . . treeageField.age < 100 . . .

}

In this notation, ageField provides a name for the contract, object constructs a

contract for an object with the given fields and methods. The fields (and methods) are

specified by name, age, with the contract following the colon. The contract for a method

is equals : object → boolean, method arguments appear to the left of the arrow, and

the expected result appears to the right.

This evaluates during program execution, checking the actual value. The steps of this

check are shown in Section 4.2.3 using algebraic simplification of expressions, much like

earlier models of Java evaluation [25, 26]).
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4.2.3 Checking Contracts

As in Scheme, the simplest contract applies to flat values. In the following program,

int count( int i, dynamic up ) {
if (up)
return i + 1;

else
return i - 1;

}

the dynamic variable up appears in the condition of an if, which requires a boolean

value. Assuming the value of up at this point is true, evaluation first looks up the

value associated with the variable, then checks the value against the contract, and finally

discards the contract and returns the value (since true is a boolean).

if (upboolean) ....
⇒ if (trueboolean) ....
⇒ if (true) ....

If, instead, the value associated with up is "true", the contract checker detects and

reports an error instead of discarding the contract.

if (upboolean) ....
⇒ if ("true"boolean) ....
⇒ error

In this scenario, the blame for the contract violation lies with the client of count, who

by using count accepted responsibility for providing the method with a boolean instead

of a string.

For higher-order contracts that cannot be checked immediately, the checks must

occur in a coherent order. In Figure 3.5, the method inside calls the dynamic func-

tion imageInsideP (imported from scheme.image) where the context requires that the

function return a boolean. The contract for this use is

imageInsideP (any any→boolean)( theImage, isInside.theImage)

This contract states that the imageInsideP function must accept two arguments of any

type and return a boolean. The any contract is satisfied by all values and corresponds

to values with type dynamic and no contextual restrictions. When checked, this contract

verifies that the imageInsideP variable refers to a function value with the correct arity.

If this check succeeds, argument and result contracts distribute to the actual arguments

of the function and to the result of the application.
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imageInsideP (any any→boolean)( theImage, isInside.theImage)
⇒ (imageInsideP(theImageany, isInside.theImageany))boolean

⇒ . . .

Resolution of the contracts on the arguments proceeds as in the up example, as will the

resolution for the result once the function application results in a value.

In the event that any portion of the above checks fails, assigning blame is more

complicated than the boolean contract described previously. If imageInsideP is not a

function with the correct arity, then the supplier of this value is to blame, in this case

the Scheme image library. As the client of imageInsideP, the Java Image class is to

blame for any defects in the arguments presented to the function. And, once again, the

supplier of imageInsideP holds responsibility for the result of matching the contract, as

the supplier of the function is also the supplier of the resulting value.

In this interaction, the two parties involved not only represent different libraries, but

also different languages. The position of the contract represents the point at which values

flow between Java and Scheme. In general, the language in control of the evaluation at the

point where values pass between languages is responsible for those values. Since function

arguments flow in the opposite direction from function results, the blamed party for a

function argument is the opposite of the blamed party for a function result.

In general, the languages interacting at dynamically-checked points can be Java +

dynamic and any arbitrary language (including Java + dynamic itself). For simplicity of

presentation, I restrict blame assignment to Scheme and Java (+ dynamic). Additionally,

individual libraries and classes will not be identified. Contracts that blame Java are

annotated with JS:, while contracts blaming Scheme gain the annotation SJ:. To explain

further, the previous example is revisited with the appropriate annotations.

imageInsidePSJ:(any any→boolean)( theImage, isInside.theImage)
⇒ (imageInsideP(theImageJS:any, isInside.theImageJS:any))SJ:boolean

⇒ . . .

During the second step of the modified example, the annotation moves onto the

arguments, with the polarity reversed to indicate a change in responsibility, and result

of the function call. If imageInsideP is not a function, an error occurs during this step

blaming S . The argument and result contracts bear no further relevance.

Like procedure contracts, object contracts must also distribute the method argument

and result contracts for the specified method during method invocation. When, in Fig-
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ure 3.9, an instance of the KeyCallBack class is passed into the dynamic innerToFunction

function, the value gains an object contract. For this call, the relevant contracts appear

below:

keycallback = object{ callBack : String→ void}

innerToFunctionSJ:(int keycallback→any)(1, new KeyCallBack())

Evaluating the call to innerToFunction instantiates the KeyCallBack, checks that

innerToFunction is indeed a function of two arguments, and then distributes the argu-

ment and result contracts before calling the function. This means that the KeyCallBack

instance flows into Scheme annotated with the contract JS : keycallback. This annotation

remains with the value within the resulting lambda expression, and the contract is

checked on any access to the object.

The Canvas class calls the function returned from innerToFunction, which in turn

calls the callBack method of the KeyCallBack class using the Scheme send form (which

performs a method call). At this point, the contract wrapping the specific instance

(hereafter to be referred to as keyobj) comes into play.

(send keyobjJS:keycallback ”left”)
⇒ (send keyobj call-back ”left”SJ:String)JS:void

⇒ . . .

At the call site for the method callBack, the contract on the method moves the contract

for the argument to the appropriate value, and places the contract for the result on the

send expression. In this circumstance, the Scheme string satisfies the contract entering

Java, a conversion is performed, and void is returned from Java. If the value passed into

callBack were not a String, the Scheme program would bear the blame of the misuse.

The resulting error message pinpoints the location where the Java value entered Scheme,

that the violation occurs within the access to the KeyCallBack class’s callback method,

within the specific Scheme library accessing the value.

In a circumstance where the value returned to Scheme from a Java method is another

instance of a Java object, the value is wrapped with an appropriate context. For example,

assuming that the callBack method returns a World object, instead of nothing, the

keycallback contract changes to:

keycallback = object { callBack : String→ world }
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The result of calling the method is an object wrapped with a world contract, thus any value

entering Scheme from Java is wrapped with a contract to enforce the type requirements.

As mentioned in Section 4.2.1, Scheme libraries may provide checked versions of their

values by attaching contracts. Each contract may be unrelated to the contract attached

to the value by Java. The same basic technique applies to the contract checking, where

both contracts are checked at the requisite point. Since the two contracts originated in

different locations, there are now three potential sources of an error: Java does not meet

Scheme’s contract, Scheme does not meet Java’s contract, or the two contracts do not

match. In the third case, neither the Java program nor the Scheme program is expressly

to blame. Instead, a third party, named C, is involved in the program to mediate the

composition of the two languages. This party is blamed for any mismatch between the

Java and Scheme contracts.

In the Scheme library rename (used in the Java libraries presented in Chapter 3), there

is a function inner->function that wraps method calls within a lambda. A reasonable

contract for this function checks that the argument is an object containing the call-back

method, with an unspecified number of arguments and promises to return a function. In

the syntax presented thus far, this contract is

callbackobj = object { call-back : any* → void }

inner->function-cont = callbackobj → (any* → void)

For a simple example of a disagreement between a Java and Scheme contract, the

following program generates a runtime error:

1 + innerToFunction(new KeyCallBack())

The type requirements of the Java + expression dictates that the left hand argument

(the result of calling innerToFunction) be an integer. Therefore, the Java contract

is keycallback → int; however, the Scheme program provides the inner->function-cont

contract, specifying that the returned value will be void.

To enforce both contracts on the same value, they each appear in the exponent on

innerToFunction, with C as the opposite party:

1 + innerToFunctionSC:(callbackobj→void),CJ:(keycallback→int)(new KeyCallBack())

Since the value initially flows from Scheme to Java, the SC annotation appears on the

Scheme contract, indicating that Scheme is initially responsible for the value itself, and
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the CJ annotation appears on the Java contract, indicating that Java is responsible for

arguments flowing into the value.

Following the same simplification steps as before, but with the new contracts, gives

⇒ 1 + innerToFunctionSC:(callbackobj→void),CJ:(keycallback→int)(objref)
⇒ 1 + innerToFunction(CS:callbackobj→SC:void),(JC:keycallback→CJ:void)(objref)
⇒ 1 + (innerToFunction(objrefJC:callbackobj,CS:keycallback))SC:void,CJ:int

At this point, the two contracts on objref are compatible, so the composer can never be

blamed. The contract on the results, however, are different. Assuming that innerToFunc-

tion matches its Scheme contract, eventually evaluation produces the following (where

void is a special value in Scheme that has no operations, unlike void in Java):

⇒ 1 + voidSC:void,CJ:int

Now, since the value is indeed void, the Scheme contract can be discarded, leaving

⇒ 1 + voidCJ:int

which aborts the program, since void is not an integer. In this case, C is blamed,

indicating that a mis-match between the two contracts was detected.

In a real implementation, the annotations S, J , and C point to the program points

where the code first began interoperating, so that the contract failure pinpoints a specific

expression, and not merely a specific side of the interoperating code.

4.3 Adding Support for dynamic

While many implementation techniques exist for dynamic, this section presents a

technique using mirrors to support the checks and guards across the language boundaries.

4.3.1 Mirrors and Reflection

Support for reflection is usually implemented with a combination of virtual-machine

support and a reflection API, where reflection support is built into every declared class.

A mirror-based implementation of reflection, in contrast, supports reflection operations

separately from each declared class.

One way to implement mirror-based reflection is to generate a mirror class for each

declared class. An instance of the mirror class embeds the base objects, and it contains

all information that is needed to support reflection.

For example, the drawing library contains a class, Posn, to represent coordinates.
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class Posn {
Integer x,y;

}

In a Java-style reflective system, the Posn class automatically includes methods to support

reflection operations. With mirror-based reflection, the Posn class contains no such

methods, and reflection operations are instead supplied by a class like PosnMirror:

class PosnMirror extends ClassMirror {
Posn p;
Object getField( String name ) {
if (name.equals("x"))
return p.x;

...
}

}

A mirror encapsulates all reflection operations, it is separate from the base object, and

its structure reliably reflects the structure of the core object [27].

4.3.2 Implementing dynamic with Mirrors

Mirrors provide the reflective framework to support dynamically-checked accesses of

Java objects. Returning to the Image class of the drawing library,

class Image {
dynamic theImage;

Image( dynamic init ) {
theImage = init;

}

}

the converted signature for Image’s constructor using a Mirror is

Image(Mirror init)

and the type of the corresponding field becomes Mirror. In an initialization of the Image

class with a non-dynamic argument, such as

new Image( new Bitmap("") )

the compiler must insert a coercion to the argument’s mirror.

new Image(new BitmapMirror(new Bitmap("")))

Given a Bitmap declaration
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class Bitmap {
....
boolean inside(Bitmap img) { .... }

}

the compiler generates a mirror class.

class BitmapMirror implements Mirror {
final Bitmap orig;
BitmapMirror(Bitmap _orig) { orig = _orig; }
...

}

The main operation that the compiler needs on the Mirror interface is call, which

dynamically locates a method by name and argument count, and then applies an array of

Mirror values to produce a Mirror result. Thus, the implementation of BitmapMirror

includes a call method as follows.

class BitmapMirror implements Mirror {
...
Mirror call(String name, Mirror[] args) {
if (name.equals("inside") && (args.length==1)) {
....

} else
raise new Error("method not understood");

}
}

To implement the dynamic call, the call method of the class BitmapMirror must

unpack its arguments (raising an error if an argument does not have a suitable type), call

the original method, and then pack the result as a Mirror.

Mirror call(String name, Mirror[] args) {
if (name.equals("inside") && (args.length==1)) {
Bitmap img;
if (args[0] instanceOf BitmapMirror)
img = ((BitmapMirror)args[0]).val();

else
raise new Error("bad argument");

Boolean result = orig.inside(img);
return new BooleanMirror(result);
} else
raise new Error("method not understood");

}

This Mirror implementation includes dynamic checks that are just like contract checks.

The check that the argument is a Bitmap is like the check in callbackobj . The coercion
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of result to a mirror is much like wrapping get-id with check-get-id ; it can be viewed as

applying the contract “must be used as a boolean” to the result of the method.

A method call on a dynamic value translates to a dispatch to the Mirror’s call

method. So within the image class, a call to inside translates to:

theImage.call("inside", new Mirror[] {img.theImage} )

Field access will be handled similarly.

4.3.3 Static Types from Dynamic Values

In the Scheme examples, only definitions acquire contracts. In Java with dynamic,

variable declarations and dynamic expressions both acquire contracts. For example, in the

GameWorld class, the call timer.start(rate, false) implies a contract on the timer

value:

startContract = object { start : int boolean→ any }

Taking representation issues into account, the call to timer’s method must also coerce

arguments to Mirrors and coerce the result from Mirror (in the cases where the result is

also used). Just as for declaration-side contracts and coercions, user-side contracts and

coercions can be naturally packaged together in a compiler-generated Unmirror class, as

follows.
....
Mirror timerOrig;

....
new StartUnmirror( timerOrig ).start(rate, false);

....
final class StartUnmirror {
Mirror m;
StartUnmirror (Mirror _m) { m = _m; }

void start(int rate, boolean rerun) {
Mirror[] args = new Mirror[2];
args[0] = new IntegerMirror(rate);
args[1] = new BooleanMirror(rerun);

/* Might raise a dynamic exception */
Mirror result = m.call("start", args);

}
}

As in BitmapMirror, the checks and coercions in the class StartUnmirror are based on

the static types surrounding the timer.start(rate, false) call. Specifically, the first
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argument is packaged using IntegerMirror because the type of the argument rate is

int, and similarly for the second argument. If the result of the function were used, a

check of the Mirror result value would be necessary.

When a dynamic value is stored as an instance of a specific class, for instance

dynamic buffer;
....
JBuffer b = buffer;

the dynamic value is wrapped with an unmirror specific to the Java class. So, in the

above example, the buffer object (an instance of the Mirror interface), will be wrapped

in an instance of UnmirrorJBuffer that contains all of the methods of the JBuffer class,

and appropriately mirrors and packages the arguments to pass to the wrapped Mirror

instance.

The generated StartUnmirror class above has a final declaration to emphasize that

it is completely under the control of the compiler, which might choose to eliminate the in-

stance and inline the method call. An inlining optimization produces checks immediately

around the dynamic start call, which is what a programmer would intuitively expect.

In contrast, the IntegerMirror object cannot be eliminated in general; it encapsulates

obligations for a dynamic implementation of start, to ensure that start uses the integer

safely. This wrapper is consistent with the intuition that statically typed objects passed

to dynamic code must be wrapped with checks to guard the object.

4.4 Related Work

4.4.1 Mixing Dynamic and Static Types

Strongtalk [28] adds an optional static type system to Smalltalk [29]. On the boundary

between typed and untyped expressions the compiler either assumes a type or relies on an

annotation from the programmer. Unlike Java + dynamic , these type assumptions are

not validated at runtime, so that if a type annotation or assumption is incorrect, typed

operations can generate dynamic type errors.

The Amber programming language [30] also mixes static and dynamic type checking.

Values with statically checked types can be placed into Dynamic wrappers, in which

the static type information is disregarded. During program execution, interaction with

these values is checked to conform to the static type knowledge. When a value without

a statically known type was placed within a Dynamic construct, the programmer must

explicitly inform the system of the type expectations of the value. Unlike Java + dynamic ,
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interaction with Dynamic values is not identical with interaction with statically checked

values and required programmer intervention in cases where the value never had a static

type (such as when a value enters from Scheme within, or when a value enters through

loading in Amber).

A proposed extension to ML allows for a Dynamic type constructor [31, 32], which is

similar to the constructor within Amber as well as the dynamic declaration. The Dynamic

constructor encapsulates data with unknown types, with the intent that untyped data

arise from I/O calls, as opposed to other programming languages. In order to extract

data from a Dynamic value, programmers first explicitly test the type of the value. Only

data with named types can be extracted. As in my system, these types are checked at run

time, but a programmer must explicitly cast the data and provide datatype definitions

for all values. Unlike for Amber and Java + dynamic , a value with a statically known

type is not protected when entering a Dynamic constructor.

Work on embedding languages by Benton [33] and Ramsey [34] provides connections

between statically typed languages and embedded dynamically typed languages. For both

systems, when a value from the dynamically typed language is passed into the statically

typed language, the system performs an immediate check of the value. The expected

type is derived from a specification either written by the programmer or provided by the

system library. This system requires more effort on the part of the programmer to specify

the types of the dynamically typed values as well as tying the dynamically typed program

to the static type system of the other language.

A proposed extension to the Java Virtual Machine [35], invokedynamic, would add

the ability to dynamically invoke methods without the static knowledge that such a

method exists [36]. This instruction would permit an extension to Java similar to Java

+ dynamic , but would not fully eliminate the need for mirrors or unmirrors within the

resulting system to ensure the proper treatment of values with statically known types

entering dynamically checked variables.

4.4.2 Language Interoperability

The Portable Common Runtime [37] provides a shared address space for programs

written in multiple languages, along with support for channels that different programs

can use to communicate. Similar approaches, including the Mercury system [38] and

HRPC [39], supplied connections through remote procedure calls and IO techniques built-

in to the support libraries. Java + dynamic also uses a shared memory system for the
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languages, so that low level memory management is not required of the programmer.

These earlier systems did not provide data checks and conversions on language boundaries,

nor were interoperability calls fine-grained.

Component models, such as COM [40], CORBA [41], SOM [42], and DOM [43],

support language interoperability through a shared interface definition language (IDL).

Each IDL is effectively a universal interface for data interchange, so that more than two

languages can communicate with an application, but this “least common denominator”

approach limits the granularity of interoperability. Furthermore, the component model

is generally specified outside the programming language, so that it is relatively opaque

to compilers and analysis tools.

The Microsoft .NET framework [44, 45, 46] is similar to component models, but

interoperating languages are all compiled to a Common Intermediate Language (CIL).

This approach makes interoperability more apparent to the compiler, but also limits

implementation strategies for languages to those that fit well into CIL.

SWIG [47] bridges C-level libraries and higher-level (often dynamic) languages by au-

tomatically generating glue code from C and C++ sources. Programmers can implement

new modules for SWIG to support bridges from C to new programming languages, but

only to the degree supported by a foreign-function interface in the non-C language. In

short, SWIG supports interoperability much like component models or .NET, but with

C as the universal API.

The nlffi-gen [48] foreign-function interface for ML produces ML bindings for C

header files. The system also provides an encoding of C datatypes into ML so that

ML programmers may directly access C datatypes. Marshaling of data occurs within the

ML program, written by the programmer, where necessary. The system does not provide

support for ML data representation into the C code. Interoperating between ML and

C is easier for the programmer, although type-safety and data representation are still a

concern for the programmer.

Furr and Foster have developed a system that analyzes C foreign-function libraries for

OCaml [49]. Their tool uses OCaml type information to statically locate misuses of the

OCaml data within C. In a sense, this tool effectively bridges the gap between a strongly

typed language and a weakly typed language by strengthening the latter’s type system.



CHAPTER 5

BUILDING THE SYSTEM

To provide customized error messages throughout the development process, the com-

piler for the ProfessorJ languages (including Java + dynamic) begins with Java source. It

then proceeds with a standard type-checking pass, and finally translates the Java program

into an equivalent PLT Scheme program that includes source-location information for the

original program. Maintaining the source location allows run-time errors to report the

position of the error, and also allows greater interaction with DrScheme tools.

Supporting multiple languages with the same implementation requires that the front-

end of the compiler, including the parsing and type-checking phases, support different

rules, depending on the language of the current program. Further, the compiler must be

able to switch the language for different portions of the program, as imported classes may

be written in a different Java language. These requirements drive different consideration

within the implementation than a compiler for only full Java.

The addition of dynamic into the language also requires differences in the type-

checking phase over nonparametric Java type-checking. While a value with type dynamic

cannot cause a type-checking error, the type-checker is responsible for determining the

expected types of dynamic uses and the locations where values with known types become

dynamically checked.

When translated into Scheme, the Java program contains Scheme functions, constants,

and classes. While standard Scheme does not contain a mechanism for class definition, the

PLT Scheme variant supports a class system implemented with macros. This extension

allows greater interoperability between Java and Scheme, as well as shifting the work

of implementing a language construct away from the task of compiling Java so that the

two concerns can be separated. Similarly, ProfessorJ uses the Scheme contract macros to

implement dynamic checks.
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5.1 Compiling for Multiple Languages

The back-end of the ProfessorJ compiler is language-agnostic, with no knowledge of

which Java subset is being compiled. The front-end cannot be language-agnostic, and

must support the differences between the languages through parsing and type-checking

technologies.

5.1.1 Parsing

The ProfessorJ compiler supports five syntactically different, although similar, lan-

guages. Despite the similarities, the parsers cannot all reside in one Yacc style parser

specification. Additionally a Yacc parser is not an ideal technology for including clear

error messages. So, the system contains four Yacc-style parsers, three of which support

the pedagogic languages and one which supports both the Java language and Java +

dynamic and one special parser for producing error messages.

The parser for the full language, which contains a production for the dynamic keyword

when an appropriate flag is set, comes from the Java specification [50] first edition,

augmented with productions from the second edition. Each of the pedagogic parsers

follows from this specification, with productions removed or simplified as necessary to

only allow the syntactic constructs of the current language.

While each parser does contain a default error message in the event that the program

does not meet the language specification, this default message should never appear for

the pedagogic languages. The Yacc parsers build the abstract syntax tree, but when a

program does not properly parse, a specialized error parser is called. The error parser

is a hand-written, top-down, recursive-descent parser that supports all three pedagogic

languages and encodes expert knowledge of student errors within the program logic.1

The error parser disables productions based on the language being compiled, which

permits the one parser to support all three languages. It is also connected to a primitive

keyword spell checker to distinguish misspellings from misplaced identifiers. Some pro-

ductions identify common programming errors instead of the correct syntax to provide

specific error messages. Where possible, error messages provide guidance regarding the

correct form of the program, such as reminding users of the proper structure of a field.

The knowledge encoded within the parser, including common error situations, advice as

1Both the full language and Java + dynamic rely on the Yacc parser’s default message, and
therefore are not intended for student use at this time.
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to the correct syntax, and error message vocabulary, is tightly connected to the three

subsets that the compiler presently supports.

While this parsing solution supports the current system with three languages, it is

not ideal for building a parser from a declarative specification.

5.1.2 Type Checking Multiple Languages

The type-checker operates in two phases. The first phase checks the structure of

classes, while storing signature information for each class for later use. The second phase

checks the initializations of fields and the bodies of all methods, using the stored class

signature information where necessary. Both phases use function parameters to keep

track of language restrictions to apply, which allows different portions of the program to

be checked in different languages.

Checks for many language constructs can be wholly language-agnostic, as the different

parsers preclude their presence in languages that do not support them. Such features

include checks of arrays, loops, casts, and others. Other checks are required for all

languages, such as only implementing interfaces, not instantiating interfaces, and not

attempting to subtract a number from an object. Finally, some property checks should

only occur within specific language levels.

In language-specific cases, checks are placed behind a guard that only executes the

check for the correct language level. For example, the check that all thrown exceptions

are either caught or declared occurs only in the full and dynamic languages, while the

check that fields and methods do not share the same names occurs only in the pedagogic

language levels.

Static analysis can take advantage of the language level knowledge to suggest opti-

mizations to the final pass of the compiler with less actual analysis. For example, in

ProfessorJ Beginner, the compiler automatically suggests that all methods be optimized

for tail-calls, since all returns within these methods must be in tail position.

5.1.3 Error Messages

Like the language-specific static checks, the vocabulary of error messages is modified

by the current language level. For example, error messages in the Beginner and Interme-

diate languages refer to creating a new instance of a class, while in Advanced the same

error may refer to creating a new instance of an array. Some error messages present

entirely different content depending on the language level. For example, in the Beginner
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language, putting a nonstatement in a statement position generates an error message

listing all (two) of the possible statements in Beginner. The same error situation cannot

have the same error message in the other languages as there are too many statements to

reasonably list.

To provide the most specific error possible, extra information is sometimes retained.

In the following cases, extra information provides clearer error messages:

• In a constructor, if another constructor is to be invoked, the invocation must be the

first statement in the constructor. While checking the remainder of the constructor

body, it is unnecessary to know whether the super call has already been called.

However, this information can clarify the resulting error message (to say both that

the constructor call must be first, and that it cannot occur multiple times).

• When a field access fails for an array, knowing that the accessed object was an array

can permit the error message to explicitly state that arrays have only the length

field.

• Further, knowing that an expression should return an integer because it is in an

array access position can allow the error message to specifically state the reason

why the expression must be an integer.

• Storing the name of the current class, or the parent class or interface where an

inherited method arises from, can allow many error messages to pinpoint more

information in a program which compiles multiple classes in the same file.

Other information can also be stored for providing clearer error messages, requiring

only that the error messages receive sufficient focus during development.

5.2 Type Checking dynamic

Section 4.1 presented the locations that constrained the permitted types of dynami-

cally checked values. Implementing Java + dynamic requires that the static type checker

store the expected type of a particular use of a dynamic value. Then, the next phase of

the compiler uses this information to generate code that contains the required check.

Gathering this information requires adding checks into the process of checking the

constructs listed in Tables 4.1 and 4.2. The checks determine when an expression with

type dynamic occurs within the production, assigning the expected type of the expression

or recording the known type of expressions when a guard is necessary.

Adding function application of dynamic requires a more involved modification. Prior

to this addition, a flat method call such as draw() triggered a search in the current class
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for a draw method. After the change, this search must first look for a draw parameter

with type dynamic, then either a method or field named draw. The choice is to first

search methods and then fields for draw. With this ordering, programs cannot use a

dynamic field as a function when the class contains a method with the same name.

Expressions of the form a + b, where both a and b have been declared dynamic ,

cause a small dilemma. The + operator could allow the arguments to be any of Strings,

characters, numbers, etc. The type ought to dictate which form of + is intended, but

these are not known until runtime. Three possible solutions exist: defer to the expected

type of the expression; assume that the values are numbers unless otherwise indicated (or

Strings); defer all decisions in this circumstance until runtime. The first choice is only an

option if the expected type is not also dynamic. The current implementation chooses to

defer to the expected type when one is available, and assume numbers when no type is

available.

Another related problem arises in selecting overloaded methods. When the compiler

can reduce the list of possible methods to one by arity, the unique choice is used. When

there are multiple possible methods with the correct arity, if any of the methods expects

a dynamic parameter in the position of the dynamic value, this method is chosen. In

all other circumstances, the compiler indicates that there is not enough information to

select the method. Programmers can remedy this with a cast, as is already necessary in

other circumstances when resolving overloading. While a runtime decision may provide

enough information, in the circumstances where a cast is necessary in a static world, the

program would fail at runtime to be able to choose between the methods. This situation

is also avoided by requiring the programmer to resolve the overloading.

5.3 Compiling to Scheme

For the sake of easy interoperability from Scheme into Java programs, it is important

the the compiled Java support similar interfaces as Scheme programs, including the import

mechanism, object access, and class inheritance. This motivation directed several choices

in the output of a Java class.

5.3.1 Compilation Units

A single Java source file typically contains one public class or interface. Often, the

file itself corresponds to a compilation unit, so that one .java file can be compiled to one

.class (or, in this compiler, to one .scm file).
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In general, however, reference cycles can occur among .java files, as long as they

do not lead to inheritance cycles. Thus, the compilation unit actually corresponds to

several mutually dependent .java files. For example, one class may refer to a field of

another class, and compiling this reference requires information about the structure of

the referenced class. In contrast, merely using a class as an identifier’s type does not

necessarily require information about the class, especially if the identifier is not used.

More concretely, the code in Figure 5.1 corresponds to three source files, one for each

class. Compiling Empty requires knowledge of the superclass List, while compiling List

requires knowledge of Empty for the constructor call. Similarly, List refers to Cons and

Cons refers to List. Thus the three classes must all be compiled at the same time. This

style of cyclic reference appears frequently in real Java code.

Java’s packages are orthogonal to compilation units because a group of mutually

dependent .java files might span several Java packages. Furthermore, a mutually de-

pendent group of files rarely includes all files for a package, so forcing a compilation unit to

be larger than a package would lead to needlessly large compilation units. Finally, in most

settings, a Java package can be extended by arbitrary files that simply declare membership

in the package, which would cause an entire package to recompile unnecessarily.

To a first approximation, the ProfessorJ compiler produces a single Scheme module

for each collection of mutually dependent Java sources, where module is the unit of

compilation for PLT Scheme code [51]. Each class used by, but not a member of, the

dependent group is require-ed into the module. The Java specification [50] requires that

each class be initialized and available prior to its first use, which the require statement

ensures.

The module is also a unit of organization at the Scheme level, where Scheme pro-

grammers require modules as Java programmers import classes. Allowing Scheme

programmers to access individual Java classes as modules aids interoperability from the

Scheme perspective.

Thus, the compiler actually produces N + 1 modules for N mutually dependent Java

sources: one that combines the Java code into a compilation unit, and then one for each

source file to re-export the parts of the compilation unit that are specific to the source.2

Thus Scheme and Java programmer alike import each class individually. For example,

2If a class is not a member of any dependency cycle, then the compiler produces only one
module.
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public abstract class List {
public abstract int length();

public static void main() {
Test.test(new Empty().length(), 0);
Test.test(new Cons(1,

new Empty()).length(),
1);

}
}

public class Empty extends List {
public int length() { return 0; }

}

public class Cons extends List {
int car;
List cdr;
public Cons( int c, List cdr ) {
this.car = c;
this.cdr = cdr;

}
public int length() { return 1 + cdr.length(); }

}

Figure 5.1. Java program with dependency cycle

compiling Figure 5.1 results in four modules: a composite module that contains the code

of all three classes and exports all definitions, a List module that re-exports List and

main, an Empty module that re-exports Empty, and a Cons module that re-exports Cons

and field-relevant information.

In practice, most groups of mutually dependent files are small, so that the resulting

compilation units are manageable. This is no coincidence, since any Java compiler would

have to deal with the group as a whole. In other words, this notion of compilation unit

is not really specific to this compiler. Rather, having an explicit notion of a compilation

unit in the target language has forced a precise understanding of what compilation units

are in Java, and to reflect those units in the compiler’s result.

The compiler produces an additional file when generating Scheme from Java code.

This extra file contains class signature information, such as the types and names of fields

and methods, the implemented interfaces, and the parent class. This information is used

to process other compilation units that depend on the Java class. Other Java compilers

use the .class files to retrieve this information; however, this information does not fit



81

as naturally into the Scheme modules. Future versions of the compiler will likely embed

the type information into the module in much the same way that compile-time macros

are stored in modules.

5.3.2 Classes

A Java class can contain fields, methods, nested classes (and interfaces), and additional

code segments, each of which can be static. PLT Scheme classes are similar to Java classes,

except that they do not support static members. Nevertheless, a static member closely

corresponds to a Scheme function, value, or expression within a restricted namespace,

i.e., a module, so static Java members are compiled to these scheme forms.

The Scheme classes contain overridable methods and nonshadowable fields, both of

which can be either public or private. They implement Scheme interfaces (collections

of method names) and extend Scheme classes, with object% serving as the inheritance

base. Expressions placed in the top-level of a Scheme class are evaluated when the class

is instantiated. An instance of a class is created with a new form that provides init

variables with their values.

The top-level expressions serve the same purpose as a single Java constructor, and

no explicit constructor form is provided. However, a Java class can contain multiple

constructors, preventing a direct translation from a Java constructor to a sequence of

top-level expressions. Instead, constructors translate into normal methods within the

Scheme class. A Java new expression translates into an invocation of the Scheme new,

followed by a call to the constructor method.

Overall, the initialization sequence of the compiled class

1. provides fields with default values based on their types;

2. mutates the field to the initialized value, where applicable;

3. executes any top-level block statements;

4. calls the constructor method specified by the argument types.

This behavior adheres to the guidelines for class instantiation provided by Java’s specifi-

cation [50].

Scheme additionally does not support abstract classes. These classes translate into

full Scheme classes with stub methods for any abstract methods.
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Figure 5.2 presents a sketch of compiling two Java classes into Scheme. If either class

implemented an interface, the name of that interface would appear within the parens to

the right of the parent class.

5.3.3 Fields and Methods

The member fields of a Java class translate into field declarations. Scheme fields must

either be initialized at their definition site or through initialization arguments passed

to the new form. A static Java field, meanwhile, translates into a Scheme top-level

definition. Thus, the fields in the Animal class

static int total;
int myId;

become, roughly

abstract class Animal {
static int total;
int myId;

}
class Fish extends Animal {
Fish( ) { ... }

}
... new Fish( ) ...

(a) Java classes

(define Animal
(class Object ()

. . .
))

(define Fish
(class Animal ()

(define (Fish˜constructor) . . . )
. . .
))

. . . (let ((new-obj (new Fish)))
(send new-obj Fish˜constructor)
new-obj ) . . .

(b) Scheme compilation of Java classes

Figure 5.2. Compiling Java classes
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(define total 0)

and

(define Animal
(class Object

(field (myId 0)) · · ·))

However, the above translation does not connect the variable total to the containing

class Animal. If multiple classes within a compilation unit contain a static field total,

the definitions would conflict. For nonstatic fields, Scheme classes do not allow subclasses

to shadow field names again potentially allowing conflicts. Unlike Java, Scheme classes do

not provide distinct namespaces for fields and methods, so to avoid conflicts the compiler

appends a ˜f to the field names. Therefore, the total name is combined with the class

name and ˜f , forming the result as Animal-total˜f , and myId becomes Animal-myId˜f .

Note that Scheme programmers using these names effectively indicate the field’s class.

To access Scheme fields from outside the class, it is necessary to use special functions

built using the class. The compiler uses these to generate a mutator and accessor function

for myId; additionally, it generates a mutator function for total. Since the module

form prohibits mutating an imported identifier, the mutator function Animal-total-set!

provides the only means of modifying the static field’s value. If the static field were

final, this mutator is not exported. Also, instance field mutators are not generated

when they are final. Thus, even without compile-time checking, Scheme programmers

cannot violate Java’s final semantics.

Similarly, instance methods translate into Scheme methods and static methods into

function definitions with the class name appended, but the name must be further mangled

to support overloading. For example, an expansion of the class Animal in Figure 5.3(a)

contains two methods named feed, one with zero arguments, the other expecting one

integer.

As seen in Figure 5.3(b), the method feed(int) translates into feed-int , and feed

translates into feed . This mangling is consistent with the Java bytecode language, where

a method name is a composite of the name and the types of the arguments. Also, since

“-” may not appear in a Java name, our convention cannot introduce a collision with any

other methods in the source.3

3Method names do not require further additions to distinguish them from field names, as field
names are now sufficiently distinct.
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abstract class Animal {
abstract Animal feed();
abstract Animal feed(int f);

}

(a) Overloaded methods in Java

(define class Animal · · ·
(define (feed) · · ·)
(define (feed-int f ) · · ·)
· · ·)

(b) Overloaded methods in Scheme

Figure 5.3. Compiling overloaded methods

As shown in Figure 5.2, constructors are further identified with special names. The

constructor for Fish is Fish˜constructor , while the constructor for Cons from Figure 5.1

is Cons-int-List˜constructor .

Scheme classes support both private and public members. A public method is denoted

with a public form, listing public methods, all identifiers created with a field form are

public. Anything inside the class declared using the define form is private (a private

form exists for methods). However, a private Java member does not translate to a

private Scheme member.

Java static members translate into module-level definitions in the Scheme program,

which are not part of the class. Therefore, these values do not have access to private

members of a Scheme class. Since Java allows static members to access all of the

containing classes members, so the compiled members cannot be private. Scheme provides

a form, define-local-member-name, that makes a class member name local to the

current module. By declaring all private fields and methods within this form, the compiler

ensures that the names cannot be accessed externally. All accesses within the module

are checked by the compiler. The compiler does not preserve package and protected

access restrictions.

5.3.4 Nested Classes

In Java, a nested class may either be static or an instance class, also known as an

inner class. An inner class can appear as a member of a class, within statement blocks,

or after new (i.e., an anonymous inner class).

Static nested classes are equivalent to top-level classes that have the same scope as
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their containing class, with the restriction that they may not contain inner classes. These

can be accessed without directly accessing an instance of the containing class. When

compiled to Java bytecodes, nested classes are lifted out and result in separate .class

files. The ProfessorJ compiler also lifts nested classes, and provides a separate module

for external access of static nested classes. A nested class and its containing class are

members of the same cycle, so both definitions appear in the same module.

Inner classes are also compiled to separate classes. Unlike static nested classes, they

may not be accessed except through an instance of their containing class or within the

containing method. A separate module is therefore not provided, and construction may

only occur through a method within the containing class. The containing class gains one

method for each constructor in the inner class.

For member inner classes, the name of a nested class is the concatenation of the

containing class’s name with the class’s own name. For the following classes

class Fish {
class Baby {
}

}

class Baby is accessed as Fish.Baby. The method added to Fish to construct an instance

of Baby has the name construct-Baby , where any arguments for the constructor follow the

same convention as previously described. For named classes within a block statement,

the class name is further amended with unique information, so that it cannot conflict

with other class names when the class is lifted. Similarly, anonymous inner classes are

given a unique name, without any additional amending information, and lifted, as is done

by bytecode compilers.

Access to the containing class, and any final parameters where appropriate, is provided

through an init-field . This field is set in the argument list of the call to new contained

in the constructing method. These fields cannot be accessed externally as no functions

are provided.

5.3.5 Statements and Expressions

Java and PLT Scheme both enforce the same evaluation order on their programs.

Therefore, those Java constructs that are subsumed by Scheme constructs have a straight-

forward translation. For example,
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bool a = varA < varB, b = varA > 0;
if (a && b)
res = varA;

else
res = varB;

translates into

(let ((a (< varA varB))
(b (> varA 0)))

(if (and a b)
(set! res varA)
(set! res varB)))

with annotations specifying the source location. Indeed, the majority of Java’s statements

and expressions translate as expected.

Numbers, characters, and booleans translate directly into Scheme values. Boolean and

mathematical operations translate into standard Scheme operations where possible. Thus,

unlike the Java specification, numbers do not have a limited range and will automatically

become bignums. This is desired behavior in the Beginner and Intermediate languages,

where the curriculum does not intend for students to confront overflow. Future versions

of the compiler will use operations that cause overflow in the Advanced, Full and Java +

dynamic languages (mathematical operations on two dynamic values will not overflow).

Not all Java statements translate directly into Scheme. The primary exceptions are

return, break, continue, finally, and switch, which implement statement jumps.

For all of these except switch (which is not implemented) and finally (which will be

discussed in Section 5.5.3), the jumps are implemented with let/ec.

The let/ec form captures an escape-only continuation in a similar manner to the

let/cc form:

(define-syntax let/cc
(syntax-rules ()

((let/cc k expr . . . )
(call-with-current-continuation

(lambda (k) expr . . . )))))

Both forms bind the continuation to the specified variable, and escape back to the point

of the let with a value.

A return translates into an invocation of a continuation that was captured at the

beginning of the method. This allows the method to return the specified value, regardless
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of the position of the return within the method body. For example, an implementation

of the method feed within the Fish class,

Animal feed() {
return new Fish(weight + 1);

}

translates into

(define/public feed
(lambda ()

(let/cc return-k
(return-k (make-new-fish (+ weight 1))))))

where the make-new-fish is a short-hand introduced here for the object creation previously

described.

Within a for, while, or do loop, the break and continue statements terminate

and restart the loop respectively. Capturing one continuation outside the loop body

implements the functionality of both these features. Although this hinders the readability

of the generated program, this is an acceptable trade-off.

For the while loop

while(true) {
if (x == 0)
break;

else if (x == 5)
continue;

x++;
}

the translation into Scheme is

(let/ec loop-k
(let loop ((continue? #f))

(when #t
(if (= x 0)

(loop-k (void))
(when (= x 5)

(loop-k (loop #t))))
(set! x (+ x 1))
(loop #f)))))

The continue? argument present here provides valuable information in a for loop, for

determining when the increment portion of a the loop needs to be rerun. It is included

here for consistency.

Capturing a continuation, using either let/cc or let/ec is an expensive operation in

PLT Scheme. While compiler optimizations could remove many of the capturing calls, this
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does not overall improve performance. A future version of the compiler will incorporate

a Scheme source-to-source optimizer, that eliminates such let/ec patterns, putting each

statement in a separate letrec-bound function and chaining them. This solution not only

improves the performance of Java programs, but could provide overall speed benefits to

other Scheme programs without sacrificing expressiveness.

5.3.6 Native Methods

Most Java implementations use C to provide native support. This system, naturally,

uses Scheme as the native language. When the compiler encounters a class using native

methods, such as

class Time {
static native long getSeconds(long since);
native long getLifetime();

}

the resulting module for Time requires a Scheme module, Time-native-methods, that

must provide a function for each native method. The name of the native method must be

the Scheme version of the name, with -native appended at the end. Thus a native function

for getSeconds should be named Time-getSeconds-long-native and getLifetime should

be getLifetime-native.

Within the compiled code, a stub method is generated for each native method in the

class, which calls the Scheme native function. When getSeconds is called, its argument

is passed to Time-getSeconds-long-native by the stub, along with the class value, relevant

accessors and mutators, and generics for private methods. An instance method, such as

getLifetime, additionally receives this as its first argument.

5.4 Compiling for Interoperability

In order to support interoperability with Scheme for Java + dynamic , the back-

end of the compiler must be aware of dynamic, and compile accordingly. Additionally,

wrappers must be generated for every class so that instances of the class can be passed

into dynamic contexts and retrieved from dynamic values.

5.4.1 Objects and Methods

In order to support dynamic objects, each class requires a guard for the possibility

that an instance of the class will flow into a dynamic context and each class requires a con-

verting wrapper for the reverse situation. In Chapter 4, an implementation using mirrors
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was presented for these guards and assertions. So that Scheme programmers can follow

a Scheme convention in calling methods, mirrors are not used in this implementation.

Figure 5.4 presents a Java class and the resulting guard and conversion wrapper

generated for instances of the class. The guard-Fish class is used to protect an instance

of class Fish entering a Scheme function. A guard class exists for each Java class and

interface, and extends the guard for the parent class (which provides wrappers for the

accessible methods of the parent class). It contains one method for each new method

of the class, as well as a method that conforms to Scheme naming conventions where

applicable. Similarly, the convert/check-Fish class is used to wrap an instance of an

object matching the Fish interface coming from Scheme. Before creating this object, a

check is performed to ensure that the entering instance contains the correct methods.

Methods in the guard-Fish class accept a variable number of arguments to control the

error reporting an incorrect number of supplied arguments. Arguments are checked for

the correct type, and then converted using a convert/check . Results are guarded using

a guard class before returning. In the convert/check classes, methods take the correct

number of arguments and check the results.

For the guard, classes contain additional methods whose names follow a Scheme

naming convention. The naming convention is described in Section 5.4.6. This feature

allows Scheme programmers to call methods on objects that may have originated in

Scheme or Java. Overloaded methods do not receive this treatment, so that the Scheme

programmer must specify which overloaded method should be used.

5.4.2 Fields

When wrapping objects, fields cannot be directly encoded into the wrapped object.

The field must always reflect the current value of the objects field, with the appropriate

wrappers. Figure 5.5 demonstrates the implementation of a guard for a field. In this

implementation, the compiled accessor function, part c, dispatches to the accessor method

in the wrapper class in circumstances where the given object is not an instance of the

correct class. The method in the wrappers strips off one layer of wrapping and attempts

again to gain access to the class.

5.4.3 Inserting Dynamic Checks

For positions that acquire guards and checks, the compiler back-end queries type

information collected by the type-checker and generates the required checks around the
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class Fish extends Animal {
String getColor(String format) { ... }

}

(a) Java class

(define guard-Fish
(class guard-Animal ()

(define (fish · · ·))
; ”. args” puts all arguments into a list
(define (getColor-String . args)

(if (= (length args) 1)
(if (is-string? (first args))

(apply-string-guard
(send fish getColor

(apply-string-conversion/check
(first args))))

(raise TYPE-MISMATCH-ERROR))
(raise ARG-NUMBER-WRONG-ERROR)))

(define (get-color . args) · · ·)
(super-new fish · · ·)))

(b) Scheme Guard Implementation

(define convert/check-Fish
(class convert/check-Animal ()

(define (fish · · ·))
(define (getColor-String arg)

(let ((res (send fish get-color (apply-string-guard arg))))
(if (is-string? res)

(apply-string-conversion/check res)
(raise TYPE-MISMATCH-ERROR))))

(super-new fish · · ·)))
(c) Scheme Convert/Check Implementation

Figure 5.4. Java class and wrappers for dynamic
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class Fish {
Food favorite;

}
(a) Java class with fields

(define guard-Fish · · ·
(define (get-favorite)

(apply-guard-fish (Fish-favorite-get fish)))
· · ·)

(b) Guard with field

(define Fish-favorite-get
(let ((fish-get · · ·)) ;Retrieves field accessor from class

(lambda (obj )
(cond

((is-a? Fish obj ) (fish-get obj ))
(else (send obj get-favorite))))))

(c) Field accessor function

Figure 5.5. Implementing fields in wrappers

value. In the following program, the use of dynamic variable twoFish must be an Object

Fish oneFish;
boolean continue( dynamic twoFish ) {
return oneFish.equals(twoFish);

}

Prior to the call to the equals method, the compiler inserts a check followed by creating

an instance of the convert/check-Object class with twoFish as the argument, producing

the following code

(if (check-Object? twoFish)
(apply-convert/check-Object twoFish · · ·)
(TYPE-MISMATCH-ERROR))

The function check-Object uses a Scheme predicate on objects to confirm that the

object contains appropriately named methods for the Object class, and that the methods

accept at least the specified number of arguments. The actual implementations of the

methods may accept more arguments. Instances of the actual Object class, as well as

instances of guard-Object, satisfy this predicate. The · · · in the code are filled with

source information for the original location of twoFish in the method call.

When the type-information specifies a primitive value, the dynamic expression is

wrapped with a contract built from the appropriate predicate, such as integer? or char? .

The contract is provided source information for the location of the value.
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Additionally, when dynamically checked variables are used as objects, with unknown

classes, or functions, the contract check verifies only that the object contain the specific

method or field mentioned at the site. The resulting value of the field access or method

call acquires its own checking/wrapping.

5.4.4 Supporting Equality and Casting

As with any wrapping strategy, testing for equality of objects using == becomes more

difficult, since the wrapped object is not obviously equivalent to an unwrapped object.

This problem is rectified by changing the implementation of == from a straightforward

translation to eq? into a predicate that understands the wrapper system.

The revised == first examines the two objects for eq? -level equality. If the two

objects fail this comparison, and if either of the objects are an instance of a known

wrapper, then the predicate queries the wrapper for an equality test. The equality

method within the wrapper strips off the current wrapper, checks the unwrapped value

for equality with the passed in value, and finally dispatches if the wrapped quantity is

itself wrapped. Eventually, the comparison bottoms out with two completely unwrapped

values to compare with eq? .

Casts incur a similar problem, with an additional twist. Not only does the cast-check

within the wrapper need to remove wrappers to determine whether the underlying object

is an instance of the specified class (or supports the interface of the class), it must re-wrap

the class in the correct wrapper. While the wrapper may not be necessary in all actual

cases, it is still necessary in general to ensure that Scheme subclasses of Java classes can be

used as the original Java class, even though the subclass may disregard type requirements

from the parent class.

5.4.5 Inheritance

Scheme programmers can directly subclass Java classes and implement Java interfaces.

While the Scheme program may violate type expectations of the methods in the class,

introducing an instance of the class into Java through a dynamic variable preserves Java’s

type-expectations.

However, a Java programmer cannot presently easily derive a subclass from a Scheme

class. This limitation stems from the inability to extract sufficient information from the

Scheme class to distinguish overloaded from overridden methods, initialization argument

requirements, and other information. This information is necessary not only to prevent



93

the Java class from incurring runtime errors but to prevent the generated class from

incurring class analysis errors.

The Java programmer can provide this information to the compiler through a .jinfo

file, which contains sufficient information for Java to use the Scheme class as a Java

class. With this information, the Scheme class can be used directly as a Java class, for

instantiation, extension and overriding, or instance tests.

One problem remains: every class in Java extends Object, but not every Scheme class

does so. To resolve this mismatch, the compiler does not actually treat Object as a class.

Instead:

• The core Object methods are implemented in a mixin, Object-mixin. Therefore,

Object methods can be added to any Scheme class that does not already supply

them, such as when a non-Object Scheme class is used in Java.

• The Object class used for instantiation or class extension in Java code is actually

(Object-mixin object%).

• Object instance tests are implemented through an interface, instead of a class. This

works because Object has no fields (fortunately) so the class is never needed.

A .jinfo file indicates whether a Scheme class already extends Object or not, so that

the compiler can introduce an application of Object-mixin as necessary. A Scheme class

can explicitly extend a use of Object-mixin to override Object methods.

5.4.6 Naming Conventions

Permitted names in Scheme programs are a superset of permitted names in Java

programs. This can cause problems when a Java programmer calls a Scheme function

with a name that cannot appear in a Java program (such as eq? ). While the system

could require that Java programmers create a new Scheme library that remaps all of the

unsuitable Scheme names into suitable ones, this is onerous in practice.

With standard naming conventions, Scheme programs frequently contain names con-

taining the characters “-”, “?”, and “>”. To ease cross-language references, the Java

compiler converts Scheme names that follow certain conventions to names using Java

conventions. Dashes in Scheme names are dropped, and the following letter is capitalized;

arrows -> in scheme names are replaced by To, and the following letter is capitalized;

trailing question marks are replaced by P; trailing exclamation marks are replaced by

Set; and trailing %s are replaced with Obj.
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Thus, a Scheme function named slice-fish is accessed as sliceFish within a Java

program, and fish-ok? as fishOkP. Module names also receive this treatment to allow

greater accessibility of Scheme from Java. When the Scheme module exports a name

that cannot be fit into Java using this convention, the Java programmer can resort to

providing a new renaming module. With this naming convention, however, few names

will require this treatment.

5.5 Java–Scheme Data Mapping

Java provides two kinds of built-in data: primitive values, such as numbers and

characters, and instances of predefined classes. The former translate directly into Scheme,

and most of the latter (in java.lang) can be implemented in Java. For the remainder of

the built-in classes, we define classes directly in Scheme.

5.5.1 Strings

Although the String class can be implemented in Java using an array of chars, to

facilitate interoperability, String is implemented in Scheme. Thus a Scheme string holds

the characters of a Java string, and operations on Strings become operations on strings.

The String class contains a private field that is the Scheme string and a public method,

get-mzscheme-string to return an immutable string value.

The apply-check/convert-String and apply-guard-String functions convert between the

two representations. The first function wraps a Scheme string in an instance of the String

class (instead of a check/convert-String), and the latter extracts the Scheme string using

get-mzscheme-string . Thus, despite the difference in string representations, the data do

not need to be converted by either Scheme or Java programmers.

5.5.2 Arrays

A Java array cannot be a Scheme vector, because a Java array can be cast to and from

Object and because assignments to the array indices must be checked (to ensure that

only objects of a suitable type are placed into the array). For example, an array created

to contain Fish objects might be cast to Object[]. Assignments into the array must

be checked to ensure that only Fish, or subclasses of Fish such as Shark or Goldfish,

objects appear in the array.

To allow casts and implement Java’s restrictions, a Java array is an instance of a class

that descends from Object. The class is entirely written in Scheme, and array content is
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implemented through a private vector. Access and mutation to the vector are handled

by methods that perform the necessary checks.

5.5.3 Exceptions

PLT Scheme’s exception system behaves much like Java’s. A value can be raised as an

exception using raise, which is like Java’s throw, and an exception can be caught using

with-handlers. The with-handlers form includes a predicate for the exception and a

handler, which is analogous to Java’s implicit instance test with catch and the body of

the catch form. The body of a with-handlers form corresponds to the body of a try

before catch. Java’s finally clause is implemented using dynamic-wind, which triggers

the code when leaving the body of the expression.

Unlike Java’s throw, the PLT’s raise accepts any value, not just instances of a

throwable. Nevertheless, PLT tools work best when the raised value is an instance of

the exn record. This record contains fields specifying the message, source location of the

error, and tracing information.

When the Throwable is given to throw, a contract is implied that coerces the Throw-

able into the Scheme form. A catch form implies a contract that expects a Scheme

exception record and coerces the value into a Throwable. In circumstances where the ex-

ception value does not reflect a Throwable instance, the coercion creates a new Throwable

instance of the appropriate type with the information provided by the exception record.

Internally, the Scheme exception is embedded in the Java Throwable as with String and

Scheme strings.

Besides generally fostering interoperability, this reuse of PLT Scheme’s exception

system ensures that Java programs running within DrScheme get source highlighting

and stack traces for errors. All of Java’s other built-in exception classes derive from

Throwable, and therefore inherit this behavior.

5.6 Related Work

The J2S compiler [52] compiles Java bytecodes into Scheme to achieve good perfor-

mance of Java-only programs. This compiler additionally targets Intel X86 with its JBCC

addition. J2S globally analyzes and optimizes the bytecode to enhance performance. Java

classes compile into vectors containing method tables, where methods are implemented

as top-level definitions. Instances of a class are also represented as vectors. Unlike the

ProfessorJ system, this compilation model does not facilitate conceptual interoperability
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between Scheme and Java programs. Native methods may be written in Scheme, C, C++,

or assembly, which allows greater flexibility than with our system at the cost of potential

loss of security. As with our system, J2S does not support reflection.

Several Scheme implementations compile to Java (either source or bytecode) [22, 53,

54, 55, 56]. All of these implementations address the interaction between Scheme and

Java, but whereas the ProfessorJ compiler must address the problem of handling object-

oriented features in Scheme, implementors of Scheme-to-Java implementors must devise

means of handling closures, continuations, and other Scheme data within Java:

• JScheme [22, 53] compiles an almost-R4RS Scheme to Java. Within Scheme, the

programmer may use static methods and fields, create instances of classes and

access its methods and fields, and implement existing interfaces. Scheme names

containing certain characters are interpreted automatically as manglings of Java

names. Java’s reflection functionality is employed to select (based on the runtime

type of the arguments) which method to call. This technique is slower than selecting

the method statically, but requires less mangling.

Accessing Scheme from Java requires the use of an API. The code fragment below

illustrates a use of Scheme’s complex numbers through the JScheme API:

import jscheme.JS;
...
int x, y;
...
JS scheme = new JS();
scheme.load(new java.io.FileReader("math.init"));
Object z = scheme.call("make-rectangular",

scheme.toObject(x),
scheme.toObject(y));

double m =
scheme.doubleValue(scheme.call("magnitude", z));

...

JScheme’s interoperability through an API is typical of Java–Scheme implementa-

tions, and other implementations that target Java.

• SISC [57] interprets R5RS, with a Java class representing each kind of Scheme value.

Closures are represented as Java instances containing an explicit environment.

Various SISC methods provide interaction with Java [55]. As with JScheme the user

may instantiate Java objects, access methods and fields, and implement an interface.

When passing Scheme values into Java programs, they must be converted from

Scheme objects into the values expected by Java, and vice versa. To access Scheme



97

from Java, the interpreter is invoked with appropriate pointers to the Scheme code.

• The Kawa [54] compiler takes R5RS code to Java bytecode. Functions are repre-

sented as classes, and Scheme values are represented by Java implementations. Java

static methods may be accessed through a special primitive function class. Values

must be converted from Kawa specific representations into values expected by Java.

In general, reflection is used to select the method called, but in some cases, the

compiler can determine which overloaded method should be called and specifies it

statically.

• In addition to a C back end, Bigloo [58, 56] also offers a bytecode back end. For this,

functions are compiled into either loops, methods or classes (to support closures).

Scheme programmers may access and extend Java classes.

MLj [59] compiles ML to Java, and it supports considerable interoperability between

ML and Java code. MLj relies on static checking and shared representations ensure that

interoperability is safe; not all ML values can flow into Java. Of course, MLj adds no new

degree of dynamic typing to Java.

PLT Scheme developers have worked on embedding other languages in Scheme, in-

cluding Python [60], OCaml, and Standard ML. None of these implementations supports

the level of interoperability between the Scheme language and the compiled language as

the ProfessorJ compiler provides with Java.



CHAPTER 6

IN THE FIELD

Assessing the benefits and drawbacks of pedagogic languages requires not just observ-

ing and analyzing their use in a classroom, but also observing and analyzing a control

group that is not using the pedagogic languages. Doing a full psychological study, as

such an endeavor would be, could provide information on the overall benefits of pedagogic

languages and compilers to assess the potential impact for a tool that allows customized

pedagogic languages.

However, doing such a study requires significant efforts on the part of faculty, students,

and researchers. At least two distinct (yet similar in curricular content) courses must be

run; students in all courses must be observed and participate in specialized assessments,

and a random sampling of students from all courses must be followed through some

portion of their subsequent careers to assess the impact of their earlier education. Doing

such a study has not been feasible.

Instead, when teachers have chosen to use the ProfessorJ languages within their

courses, information-gathering surveys have been used to inform the future course of

the languages and gain some understanding of the benefits of pedagogic language subsets

of professional languages. Due to the lack of a control group, full observation, test-based

assessment, or review of progress through subsequent courses, these assessments cannot

reach the evaluative abilities of a full study. Nevertheless, the anecdotal evidence gathered

is useful for forming an initial assessment of the strengths and weaknesses of language

levels and the ProfessorJ languages in particular. It can also be beneficial in suggesting

improvements in the languages.

The remainder of this chapter presents the means of gathering information regarding

ProfessorJ usage, discussion of the usage of ProfessorJ in a classroom, and presentation

of the results of user surveys.
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6.1 Anecdotal Assessment

The assessment of the ProfessorJ language levels took place through a variety of means

to gather anecdotal evidence. These include direct observation of students programming,

bug reports indicating troubling error messages, student response and surveys, as well

as teacher surveys. These sources provided information regarding the suitability of

the language levels to variants of the intended curriculum and the perceived impact of

language levels in these courses.

While the ProfessorJ languages were designed to cover a second semester curriculum

that builds on the HtDP curriculum, not all of the courses using ProfessorJ have followed

this format. It has also been used as the primary compiler in first programming classes,

during the last few weeks of a first semester HtDP course, during the second semester

after a procedural programming course using Java syntax, and during the second semester

of a high school course using an abbreviated HtDP curriculum. In each of these, the same

curriculum was followed as much as possible as in the intended course.

6.2 ProfessorJ in the Classroom – Self-Evaluation

During the summer of 2005, I presented a first programming course to novices using

the ProfessorJ language levels and a combination of the HtDP and follow-up curriculums.

The course used all three language levels, spending roughly six weeks of a twelve-week

course in the Beginner language, three in Intermediate, one using Advanced, and one

using Advanced and Eclipse.

Through teaching this course, I could observe student reactions to the language levels

in class, lab, one-on-one sessions, and in their programs. I could also note areas where the

language levels were either insufficiently or overly restrictive for the students. At the end

of the course, I collected written survey responses from students regarding their opinions

of the tool. However, these responses cannot be considered unbiased. The students knew

that I had created the software and might be able to associate responses with students,

despite my assertions that responses would not affect their grades.

6.2.1 Teacher’s Perspective

The teaching experience demonstrated certain restrictions in the language that did not

fit with the curriculum order. Two examples are instanceof and interfaces vs abstract

classes.
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When presenting object comparison and equals using the Intermediate language,

the lack of instanceof made the resulting programs and explanations awkward and

confusion. To implement the body of an equals method for a class with no fields, students

and professor alike struggled with either returning true in all instances or raising a class

cast error in cases where the passed in object was not equal. This difficulty resulted in

adding instanceof into Intermediate.

While observing students programming in 2020, I noted that some students tended to

use instanceof to avoid method dispatch. This motivated delaying the construct into the

Advanced language. However, after observing my students’ programming patterns using

Beginner and Intermediate, I saw no indication that the students would use instanceof

to avoid method dispatch. With the current curriculum, the benefits of the construct

now outweigh the drawbacks of potential abuses.

At the time of the course, the language levels presented abstract classes prior to

interfaces. Students struggled with the differences between the two constructs since,

when interfaces were introduced, the students were not actually conceptually ready for

the notions of multiple inheritance and saw no other benefits to interfaces. This helped

to motivate moving the concept earlier to provide more distinctions.

The language levels did provide benefits beyond postponing material in the course.

Some students, with minimal programming backgrounds, attempted to write incoherent

programs that mutated variables in incorrect ways. Left to their own devices, the students

may have found a program that compiled (and produced a correct result on their input).

Because of the error messages from the language level, however, the students met with

the course staff to discuss a different methodology for solving their problem.

Additionally, I encountered some general problems. For the error messages to be

effective, students must understand the words and actually read the error messages. As

a young instructor, I occasionally forgot to define technical terms to the students, who

then encountered confusion when seeing the term for the first time in an error message.

Also, despite the students’ lack of experience, they were already habituated not to read

error messages. This problem took time to overcome by reading error messages in class

to them when I would make a mistake, and by asking them to first read to me the error

message when problems arose in their programs.

I did not encounter some problems that I had previously observed in students who

were not using language levels. I did not encounter students abandoning a homework
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implementation due to the problems in it. Instead, in general, students were able to

solve the problems they encountered and move on with the same program. I did not see

students blame the language/compiler for errors in logic.

The languages and error messages allowed the students to work within their un-

derstanding to solve most syntactic problems, coming to the course staff primarily for

higher-level concerns. Other than the problems outlined above, the languages allowed me

to present the concepts I wanted, when I wanted, without extraneous language details.

6.2.2 Students’ Perspective

At the end of the course, students were asked to participate in a user survey regarding

ProfessorJ. Of the sixteen students enrolled in the class, only five were present on the

day of the survey, so only these students participated. This small sample size lowers

the effectiveness of the survey and so this information is augmented with complaints and

compliments made by students to the course staff (consisting of myself and a teaching

assistant).

6.2.2.1 Survey Responses. Of the five respondents, four judged themselves to be

complete programing novices and the fifth had minimal previous experience programing

in Java. This reflects the makeup of the entire class, where only four or five students had

prior programming experience, although the previously known languages also included C

and C#. The students were asked questions on the error messages, overall usage of the

system, and testing. For the complete survey, see Appendix B.2.

All of the survey respondents found the error messages of ProfessorJ to be generally

comprehensible to them. One student indicated that the messages helped track down

program errors with greater ease than the error messages with a standard Java compiler

(which we transitioned to at the end of the course). However, another student indicated

that while the messages were generally comprehensible, occasionally the jargon caused

confusion, since the words were unknown. This particular problem was also voiced to the

course staff by a few students.

Many of the error messages for ProfessorJ were designed for novice object-oriented

programmers, who had some prior programming experience. Because of this expectation,

the error messages contain jargon that a complete novice programmer may not know.

This is a problem of using the tool with the wrong curriculum, where the error messages

need to explain more jargon at the very first. A declarative system that also allows
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specification of either the level of error message or text for certain jargon replacement

could address this problem.

Of the overall system, the students appreciated the interactivity that the system

provided and the coloring and highlighting of the definitions window. However, the

students also desired some of the features they encountered in the Eclipse environment,

including greater debugging support (for more complicated programs) and auto-name

completion.

When asked whether they would prefer to continue using ProfessorJ and the language

levels, two students responded in the affirmative. These students desired more time with

a simple, student tailored system. The remaining three students either indicated that

they were ready to move on or felt that practice in a professional environment would

benefit them more.

Finally, the survey also asked about testing preferences. These students used two

testing solutions throughout the course. In the first, the students inserted graphical

boxes into the definitions in which they could enter their tests. If a test succeeded, the

box displayed a green check. A red ’x’ appeared if the test failed. Additionally, students

used a jUnit-like testing library, where the students extended a test class and provided

test methods.

Overall, the students preferred the graphical interface to the textual due to the

simplicity and the visual feedback. Despite the connections to a professional library, the

students found the nongraphical solution too complex for their first testing experiences.

6.2.2.2 Personal Comments. Throughout the semester, students commented

to me and my assistant regarding their experiences using the ProfessorJ compiler. The

majority of the complaints came further into the semester, as the programs became more

difficult, the software became less thoroughly tested, and possibly as the students became

more comfortable with us. Compliments came from several of the students throughout

the course, both from the more experienced students and novices.

As the programs became more complex, students desired a means of investigating

the intermethod behavior. The lack of debugging or stepping support bothered them.

Additionally, the lack of libraries other than the drawing library caught their attention.

Towards the end of the semester, the students desired more complicated programs and

would have preferred interacting with more libraries. These complaints can be addressed

with further development work.
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From their statements, some students liked receiving only one error message at a

time, as this permitted them to focus on the problem. They found that the error

messages guided them to correcting the problem quickly, when they could understand

the language of the error message. Others mentioned that, unlike previous courses, in

early programs there were fewer potential problems to uncover when debugging a program

and the interactions window allowed them to debug more quickly.

6.2.3 Conclusions

From this experience, it seems that the language levels do provide benefit to the

instructor and the students. However, the language levels need to be tailored not just

to the curriculum but also to the specific knowledge level of the students. Thus, not

only should the declarative specification support adding checks and removing constructs,

it should also provide a means of tailoring the vocabulary of the error messages to the

specific course.

6.3 ProfessorJ in the Classroom –
External Evaluation

As previously mentioned, the ProfessorJ compiler has been used in several high school

and university classes. Instructors for some of these courses volunteered to answer a user

survey regarding the experience. And after one course, students were given a usage survey

to assess their experience with the language levels.

6.3.1 Teachers’ Perspective

Seven instructors volunteered to complete the user survey found in Appendix B.3.

The request for feedback was sent to a mailing list for individuals who had completed a

training course in using ProfessorJ and teaching the accompanying curriculum, as well as

individuals who were known to have used the compiler in their course. Survey participants

were not anonymous. People who may have used the compiler and left the mailing list

did not receive a request to participate. Therefore, the survey respondents should be

considered a friendly audience who may not reflect all experiences.

Two of the seven respondents used ProfessorJ in high school courses prior to covering

AP material, while the others used the compiler in university courses – in either the first

or second semester. Only one respondent used ProfessorJ as the first programming tool

in the first course. Primarily, the students had the intended experience level of one prior
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semester programming experience. All respondents followed the intended curriculum as

closely as possible. One respondent used only the Beginner programming level before

moving to a different environment; the others used Beginner and Intermediate, with one

allowing students to use Advanced if they chose. Table 6.1 enumerates the schools for

the survey participants, what course(s) the participant taught, the current and previous

textbooks for the course, as well as the experience level of the students in the course.

Six respondents indicated that using ProfessorJ’s language levels improved their abil-

ity to present material. The remaining respondent indicated that the tool benefited

Table 6.1. Teachers Using ProfessorJ: N/R indicates no response, N/A indicates
the teacher had not taught the course before, B indicates novice students, I indicates
intermediate students. U.N.A.M is the Universidad Nacional Autónoma de México.
School Course Exp. Textbook
U. of Utah Intro. to C.S. I B/I With ProfJ: HtDP & HtDC

Before: N/A
With Tool: N/A

Northeastern U. Fund. of C.S. 2 I With ProfJ: HtDC
Before: Object of Data Abs. & Strct.
With Tool: JPT & Metroworks

Knox College Intro. to C.S. B With ProfJ: HtDC
Before: Objects First with Java
With Tool: BlueJ

Colby College Data Struc. & Alg. I With ProfJ: HtDC &
Goodrich&Tomassia

Before: Standish
With Tool: N/R

Spackenkill HS Programming II I With ProfJ: HtDC
Before: Software Solutions
With TOol: BlueJ

U. N. A. M. Intro. Prog. all With ProfJ: N/R
Before: N/R
With Tool: BlueJ

Data Struct. all With ProfJ: N/R
Before: N/R
With Tool: BlueJ

A.I. all With ProfJ: N/R
Before: N/R
With Tool: BlueJ

Owatonna HS C.S. 2 I With ProfJ: N/R
Before: N/R
With Tool: N/R
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instruction, but did not elaborate. Of those who saw improvement, three indicated that

the language levels allowed them to focus only on the syntax relevant to the current

concept, which allowed them to spend greater time conveying the important information.

Others indicated that the interactive (and textual) nature of the environment allowed

them to clearly show their students the effects of expressions and statements.

One respondent, using the compiler in the first course, did indicate that the language

levels were not completely suited to their curricular needs. In the Beginning language

level, the if statement does not permit the different branches to be enclosed in {},

which this respondent found confused his students. Further, the bitwise expression

operator caused confusion and incorrect program behavior. For the intermediate level, the

instructor would prefer to teach about static and overloaded methods instead of delaying.

Based on the experiences of two of the respondents, several language changes have been

made to make the languages provide stronger support for the intended curriculum. These

include moving abstract classes and inheritance from the Beginning level; restricting

== to compare only integral numbers, booleans, and characters; and many vocabulary

changes to the error messages.

All of the respondents indicated that using the compiler had a positive impact on their

students. One of the high school teachers presented the second semester of his pre-AP

class using the compiler, and now has students from this program in his AP class. These

students show a greater understanding of Java programming and object-oriented concepts

than students who had taken the previous pre-AP course.

Four respondents indicated that the language level’s restrictions assisted the students

in distinguishing instance variables from method parameters and other local variables.

And many noted that their students had fewer problems with error messages, although

there were still problems.

Overall, the respondents indicated that there are areas for improvement in the com-

piler. For some, the language levels do not quite fit their curricular requirements. For all,

the vocabulary of the error messages needs to continue to be refined for the knowledge

level of the students. However, the restrictions do provide them the ability to focus their

lectures on the material they desire to and spend less time explaining error messages. All

respondents indicated they would use ProfessorJ again.
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6.3.2 Students’ Perspective

In the fall semester of 2003, the first semester course at the University of Utah taught

the HtDP curriculum for two-thirds of the semester, followed by the HtDC curriculum

using an early version of the ProfessorJ compiler. Before switching to Java, the students

learned functional programming in Scheme followed by studying mutation. In Java, the

course covered the Beginning language level, including inheritance, method dispatch, and

recursion, and the Intermediate level, including object polymorphism and a mutation in

an object-oriented setting. At the end of the course, students were asked to participate

in an anonymous survey, in Appendix B.1.

This course used the first released version of ProfessorJ, which contained many bugs

and environmental integration problems. Exposure to these bugs and usage problems

negatively colored some students’ experience with the system.

Of the approximately 100 students taking the course, 89 participated in the survey.

The course consisted of students with no prior programming experience and students who

had written (self-described) large programs in the past. The students can opt out of the

course by passing the AP exam. Twenty-six percent of survey respondents had no prior

programming experience, thirty-nine percent had written small programs, twenty-four

medium sized, and eleven percent had written large programs.

Table 6.2 presents the overall assessment of the students’ opinions about the expe-

rience. This opinion combines the reaction to the curriculum, the tool, and, for a few

students, the course as a whole. Overall, the students indicated that the experience

was beneficial to them. The students with the most experience indicated that while the

environment did little to assist them, it lowered the amount of help they gave classmates

compared to previous courses. Many students who fall into the mixed reaction (neither

overall favorable or unfavorable) complained about the bugs encountered when using the

software.

A few students, across the board, found the language levels too restrictive and not

sufficiently applicable to professional programmers. These students desired that the

course and the tool be geared towards teaching them to use the Java libraries and other

professional tools instead of the presented curriculum. At the time, no libraries were

available to the students.

Other students enjoyed either the language levels or the tailored error messages (some

students who disliked the levels still appreciated the error messages). These students
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Table 6.2. Students’ Assessment of Overall Experience
All respondents
Favorable experience 52%
Mixed experience 29%
Unfavorable experience 12%
Indeterminable 7%
No prior experience
Favorable experience 52%
Mixed experience 35%
Unfavorable experience 9%
Indeterminable 4%
Written small programs
Favorable experience 53%
Mixed experience 26%
Unfavorable experience 12%
Indeterminable 9%
Written medium to large programs
Favorable experience 48%
Mixed experience 29%
Unfavorable experience 16%
Indeterminable 6%

indicated that the language levels allowed the professor to concentrate on the interesting

portions of programming, and that the levels allowed the students to ease into Java. One

student indicated that the language levels lowered their trepidation about learning a new

professional programming language.

Students with prior experience indicated that overall the error messages were easy

to understand, while those with less experience found some messages confusing. Specific

confusion arose with parsing error messages that did not provide sufficient contextual

information for the student.

In addition to general impressions about the overall experience and language levels,

students were given the opportunity to list features of the system that either helped them

or caused them problems. Table 6.3 presents a break-down of the features that students

found beneficial, while Table 6.4 presents a break-down of items that caused the students

problems.

For both questions, students could freely respond with any number of items. The

tables present those answers given by more than one student, where some responses have

been placed into specific categories. For example, if a student enumerated several different
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Table 6.3. Beneficial Features of ProfessorJ, broken down by prior experience. Percent-
ages are percent of entire group, students could select multiple features or no features.
Beneficial Feature Percent
All respondents
Familiar interface 16%
Error messages 14%
Interaction window 15%
Language levels 3%
No prior experience
Familiar interface 4%
Error messages 17%
Interaction window 4%
Language levels 4%
Written small programs
Familiar interface 21%
Error messages 18%
Interaction window 15%
Language levels 6%
Written medium to large programs
Familiar interface 19%
Error messages 7%
Interaction window 19%
Language levels 0%
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Table 6.4. Problematic Aspects and Features of ProfessorJ. Percentages are percent of
entire group; students could indicate multiple aspects, or none.
Problematic aspect/feature Percent
All respondents
Compiler bugs 45%
Test suite 28%
Error messages 12%
Parse Error messages 1%
Textual representation 2%
No prior experience
Compiler bugs 52%
Test suite 17%
Error messages 4%
Parse Error messages 0%
Textual representation 0%
Written small programs
Compiler bugs 47%
Test suite 38%
Error messages 12%
Parse Error messages 0%
Textual representation 3%
Written medium to large programs
Compiler bugs 39%
Test suite 26%
Error messages 19%
Parse Error messages 3%
Textual representation 3%

forms of software bug, the answer was counted as simply compiler bugs. The percentages

shown in the tables are the percentage of the entire group that wrote the item.

As is evident from Table 6.4, the test suite caused students considerable problems.

At the time of the course, testing was carried out by inserting graphical boxes into the

definitions window. The interface for this feature was also in development and students

encountered many bugs. Further, they indicated that they found the interface to use this

feature cumbersome and that it did not provide sufficient feed back.

Error messages appear in both tables. Many students indicated both that they liked

the error messages and that the error messages caused them difficulty. Some clarified

that the vocabulary of certain error messages could cause them considerable confusion

even though overall the specificity of error messages assisted them in correcting problems.

Additionally, some students indicated that when internal errors arose, the internal error
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message did not help them in correcting their program. When this was explicitly stated,

the complaint was classified as disliking the bugs in the system. However, it is possible

that some respondents who did not clarify had more problems with bugs instead of the

intended error messages.

The survey additionally asked whether the student would like to continue using Pro-

fessorJ or advance to a professional compiler supporting full Java. Twenty-nine percent of

respondents indicated they would like to continue using ProfessorJ. The common reason

for this preference was to gain more familiarity with Java in a familiar environment with

tailored error messages. The common reason to move on was either that the respondent

felt ready for the full language or they thought that experience with a professional tool

would benefit them more. Eighteen percent of respondents did not answer this question.

6.3.3 Conclusions

From the teachers’ experience reports, it can be deduced that language levels do

provide the ability to focus on high level concepts instead of syntactic issues. However,

even for teachers using a very similar curriculum (with variations based on the particular

requirements of individual schools) the language levels can require adjustment to properly

present the topics. Also, error messages presently in the system do not always use the

correct vocabulary for introductory students.

For the students, more access to professional libraries may quell some concerns over

not learning with the professional environment. However, the small increments of the

language levels does allow the novice to focus on one concept at a time instead of feeling

overwhelmed with syntax required to make the program work.

6.4 Developing Libraries for ProfessorJ

As mentioned in Section 6.3.2, some students would like to write programs using

multiple libraries, which are not provided by the ProfessorJ compiler. External instructors

have recognized this desire and attempted to correct the deficiency for their classes.

At least two developers have attempted to create individualized libraries for the Pro-

fessorJ system using the interfaces available prior to the release of the Java + dynamic lan-

guage. In the surveys from instructors, one respondent mentioned that the older interface

was too difficult to accommodate his desire to augment the existing library with ones that

met his institution’s needs.
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Despite working closely with other PLT developers and myself, one of the attempted

implementors encountered several pitfalls due to the nature of the connection between

Java and Scheme. The library attempted to link a Java drawing interface to the Scheme

drawing libraries, similar to the library presented in Chapter 3. However, unlike the

presented library, this interface presented a deep class hierarchy with different drawing

capabilities.

The base class of the hierarchies contained native methods to connect to the Scheme

library. These native methods accessed a noninstance field for the canvas, as the library

implementor did not include an instance field whose type would never be correct. This

led the developer to include all of the native methods’ functionality within one module to

access the hidden canvas. This choice led to the native method implementation requiring

access to the subclasses, which led to a nonobvious illegal dependency cycle which the

implementor could neither understand nor see how to resolve without direct support.

Most instructors do not have the available time to work through such problems. In the

Java + dynamic language, these specific problems are extremely unlikely to occur as the

programs do not require unseen levels of indirection and dependency.

While no external programmers have created libraries using the Java + dynamic lan-

guage level, due in part to lack of time, the process of creating a library using the

system is easier than for the older system. The two first steps are necessary regardless

of any language interoperability details – understand the professional library, and design

a suitable interface for students. While in the steps of actually connecting the libraries,

an implementor would previously have needed to understand the native interface and

dependency requirements between Java and Scheme files, now the implementor can reason

about a Java program that accesses the professional library with known types (dynamic).

Connecting the library to the DrScheme environment does require one additional step,

that Scheme programmers (and Java programmers in Java only systems) do not have.

The ProfessorJ compiler must be explicitly informed, in an installation file, which Java

files to compile (and their order to ensure proper compilation). This requirement can be

eliminated with extensions to the ProfessorJ compiler.

6.5 Onwards

While language levels provide educational benefits for instructors and students, no

single set of pedagogic levels is sufficient across all courses. Even instructors using similar
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curricula experience incongruities between the language supported by the compiler and

the language needed in class that require modifying classroom presentation. Although

the existing language level implementation could be tweaked, manually tweaking for even

one specific incarnation of a curriculum is time-consuming, no matter the programmer’s

level of expertise.

Instead, a declarative specification of languages could be tweaked by nonexperts to

allow the presented languages to mirror the languages presented in class. Building a cus-

tomizable system will entail designing a declarative specification language, development

of new parser technologies, as well as modifying the existing type-checking infrastructure.

6.5.1 Specification Language

Pedagogic languages may require modifications to the Java type-system, restrictions of

language features based on context (i.e., assignment only permitted within constructors),

or additions to the Java language. Other pedagogic languages may simply remove

constructs without modifying any static restrictions. A graphical configuration system

may be desirable for simple specifications.

For simple restrictions, the language specification should be correspondingly simple,

for both specifying the constructs within the language and specifying simple constraints

on the constructs. For example constraints like the following should be simple to specify:

that constructors are not only permitted but are required; fields are permitted and they

must be initialized. Additionally, error message vocabulary should be easily constrained

(i.e., mapping concepts, such as class instantiation, to the desired terminology).

More complicated modifications to the professional language, including additions to

the type requirements and additions to the language, will require more control within

the specification. A textual representation of the specification will be desired for more

complicated languages.

The simplest specification could contain a list of language constructs present within

the language (where the default constructs contain a canonical set of names). Operators

to specify contextual restrictions — such as “only one”, “required”, “only within” — could

be applied to the construct within the list. Modifications to the type system could be

applied as functions provided to similar operators, including a “remove-check” operator.

Operators to control overloading, naming, and scope could be applied within an entire

class, method, or the language overall.
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In adding new constructs, the language implementor must provide base parsing, type-

checking, and compilation information. Additionally, the implementor must extend the

specification language with the name of the new construct and potentially new operators.

These operations could be performed by special operators. New features could be added

as traditional macros — taking new Java to traditional Java — or by providing a new

function to compile the new construct directly to the target language. In the former case,

the type-checker must check the added construct with the provided analysis, and then

check the transformed Java code as necessary. Any errors occuring in the transformed

code should be reported as errors with the language script and not the student’s program.

For any specification, the system must perform as many checks as possible to ensure

that the language grammar is satisfiable (and at least warn of ambiguities) and consistent.

If possible, the system should also analyze the satisfiability of the type specifications. A

small amount of internal analysis will be necessary; for example, if the language removes

type-checking but supports type-based overloading, no language should be built from the

specification.

Language specifications should be able to build upon existing specifications, both to

aid in reuse when building subsets of the language and so that instructors can perform

simple adjustments to an existing language. Two operators should be provided for this,

“include-from” and “exclude-from”. If a language specification is extended without these,

then the new language should contain all of the features and restrictions of the old

language with any constructs included in the new specification.

6.5.2 Separating Error Messages

The present compiler contains two kinds of error messages: intentional error messages

caused by erroneous student programs, and internal errors reporting a fault within the

compiler. The new system must contain three kinds of errors: the two existing kinds,

and an error arising from undetected inconsistencies in the language specification. For

example, if a built-in check requires information from a different check (such as method

argument types), then the compiler will be unable to preform appropriately if the language

configuration does not include both checks. As much as possible, these situations should

be detected, during compilation where possible and at runtime if necessary, and reported

as errors in the specification.

To aid in the debugging of specifications, the resulting error message should include as

much source information regarding the specification as possible. Source information could
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be removed during an optimization pass if the language specifier indicates. Unfortunately,

errors in the language specification may arise as errors in the students’ program when

the specification does not meet the designer’s intention; this is unavoidable.

6.5.3 Parsing

The parsing system must generate parsers by integrating (without human inter-

vention) different productions into one parser, with error messages that specify the

point of error and the form of the correct construct with vocabulary suited to students.

Additionally, the system ought to account for similarities in different language constructs

in both parsing and error reporting.

As discussed in Chapter 5, the ProfessorJ parser for error messages contains pro-

ductions for incorrect language constructs that follow common behaviors observed in

students. Additionally, some parse error messages for syntactically similar constructs,

such as field and method declarations or casts and parenthesized expressions, refer to

both constructs in the message and arise from grammar productions that may match the

prefix for either production. These productions support error messages that point out

the erroneous portion, note the syntactic similarity between the constructs, and suggest

modifications for either syntactic form.

Existing parser generators can be leveraged to build parsers from a specification,

support error message development, or to a limited extent both. However, on their own,

none of the existing systems adequately supports both requirements of modular extensible

parser generation and student-sufficient error reporting.

Existing work on generating parse errors falls into two categories: error recovery, where

the parser attempts to correct the parse error and continue; and error specification, where

error messages arise from implementor specifications (not necessarily hand-written error

messages). In the former category, the HLP [61] attempts to provide student friendly error

messages based on automatic corrections to the program. This technique appears to falter

when syntactic elements are similar, and it can skip over errors. The Merr system [62],

a member of the latter category, generates error messages based on examples of correct

and incorrect syntax, attempting to match student programs to the examples and provide

error messages based on these. This system does seem to provide specified and tuned

error messages, but would require significant work for a language implementor to create

examples based on the constructs included in each language. While these systems do
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not provide adequate support, they may provide a starting place for the error generation

system.

Other existing systems may provide strong starting points for modular parser gen-

eration, although their current support for error messages is lacking. These include

Asf+Sdf [63], Eli [64], and IPG [65]. Both Asf+Sdf and Eli support defining pieces

of a language, including syntactic entities and associated actions, and then combining

them into one language processor. It may be possible to use the combination mechanism

to include production specific error messages as associated actions into the process of

reading the text of the program, but the system may require extension to support this.

The IPG system supports incremental generation of parsers based on existing parsers;

such a system may be amenable to the creation of parsers that accept different portions

of a language by starting with a minimal core and adding productions as constructs are

added to the language. Attaching appropriate error messages is still a concern.

Another parser generator does attempt to combine modular parser creation with

error message support. The antlr parser generator [66] supports specifying a parser

by selecting different productions, represented by class-like entities. Parser productions

can be extended through inheritance of these class-like entities. Error messages can

be associated with the different productions to be pieced together. This technique is

insufficiently strong, as it does not support the ability to specify error messages for

syntactic situations that are close to other syntactic features without providing a specific

production for these cases.

Other possibilities for producing a suitable parser builder include modifications to a

Yacc/recursive-descent joint parser as is used in ProfessorJ, or exploring natural language

processing approaches to parsing. In the former situation, individual language produc-

tions might be connected to functions that provide different potential error situations

and corresponding error messages. These functions would require many pieces of external

information to be supplied based on the other pieces of the language. This approach may

not provide support for differentiating within the error message syntactic similarities

between language constructs, as discussed earlier.

Natural language processing routinely parses documents that do not have a strict

formal structure guiding the parsers. Leveraging these techniques with a programming

language may lead to parsers that can suggest multiple modifications to the program

resulting in a correct parse. Further, it may be possible to augment these modifications
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with explanations (based on the grammar) of how the suggested edit changes the meaning

of the program. This style of example modifications, instead of traditional error messages,

may be a viable approach for parsing errors for students.

6.5.4 Type Checking and Compiling

Unlike parsing, type-checking and compilation can extend the current implementation

for arbitrary new languages. The extended type-system must conditionally turn off checks

required in the full language as well as accept and run new checks, and the extended

back-end must accept translations for new constructs and potentially replace existing

translations.

Instead of current hardcoded, guarded analysis, the updated compiler should contain

hooks to call analysis functions indicated or provided by the specification. These should

be functions, returning no values, that preform a check and signal an error in the event of

a violated restriction. The provided input will vary based on the construct that contains

the restriction, including relevant local and class-wide information. The mechanism to

raise an error in the appropriate context and style will be provided through an error

library.

Modifying the behavior of analyses that must provide information, such as method call

resolution, will require providing a function that does return the appropriate information.

These analyses should be guarded by a condition that switches between the default

analysis and the optionally provided new function. If the provided function does not

produce information in the correct format, an error blaming the specification should

occur.

So that language writers do not have to encode all analysis functions, a library of

common functions should be provided. This library can additionally serve as examples

of how to create new analysis functions for the various language constructs. This library

should be available for extension as well as reuse, so that language designers can easily

create libraries containing the analysis functions needed for their languages.

To support adding a new language construct, all analysis and translation functions

must support the ability to recognize new abstract syntax nodes and to accept new

functions over these nodes.

6.5.4.1 Error Messages. The vocabulary of error messages must reflect both the

constructs in the language and the words chosen by the specification. Both situations can

be handled with parameterized error message functions. Additionally, the specification
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language may need to include the ability to swap a built-in error message function for

another, in the event that the error message text cannot be sufficiently controlled through

vocabulary parameters. If this is necessary, the new error message function should accept

similar information to new analysis functions and produce the error message string.

6.5.4.2 Modifying the Back-end. As mentioned previously, the system should

support two forms of extending and modifying the output of the compiler – a macro-like

system and the ability to replace translation functions.

The Java-to-Java transformations would type-check in the full language, with the error

messages replaced with internal errors to indicate a problem with the transformation.

User-level error messages must be provided by the script author, but could use existing

functionality where applicable.

For the second system, only some functions would be replaceable. Functions necessary

to the execution of a compiled program (i.e., functions that produce modules) could not

be replaced.



APPENDIX A

DRAWING LIBRARY

A.1 Native Interface

A.1.1 Image

Image.java

package draw2Native;

public class Image {
private Object theImage;

Image( Object i ) {
this.theImage = i;

}

public native Image movePinhole( Posn p );
public native Image putPinhole( Posn p );
public native Image overlay( Image i );
public native Image overlayXY( Image i, Posn p);
public native Posn getPinhole();
public native boolean inside( Image isInside );
public native Posn find( Image inside );
public native Image addLine(Posn start, Posn end, Color c);
public native int width();
public native int height();

}
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Image-native-methods.scm

(module Image-native-methods mzscheme

(require (lib ”image.ss” ”htdp”)
(lib ”graphics.ss” ”graphics”)
(lib ”class.ss”)
(lib ”Throwable.ss” ”profj” ”libs” ”java” ”lang”)
(lib ”RuntimeException.ss” ”profj” ”libs” ”java” ”lang”))

(provide (all-defined-except new-image Image Posn-x Posn-y new-posn Posn))

;Necessary
(define Image (dynamic-require ’(lib ”Image.ss” ”htdch” ”draw2Native”)

’Image))

;Fixed by adding a require-java form
(define Posn-x (dynamic-require ’(lib ”Posn.ss” ”htdch” ”draw2Native”)

’Posn-x-get))
(define Posn-y (dynamic-require ’(lib ”Posn.ss” ”htdch” ”draw2Native”)

’Posn-y-get))
(define Posn (dynamic-require ’(lib ”Posn.ss” ”htdch” ”draw2Native”)

’Posn))

;new-image: image → Image
(define (new-image i)

(let ((new-i (make-object Image)))
(send new-i Image˜constructor-java.lang.Object i)
new-i))

;new-posn: int int → Posn
(define (new-posn x y)

(let ((new-p (make-object Posn)))
(send new-p Posn˜constructor-int-int x y)
new-p))

;check: ( any → bool) any (any → void)
(define (check expected? value error)

(if (expected? value)
value
(error value)))

;make-java-runtime-exception: string → RuntimeException
(define (make-java-runtime-exception str)

(create-java-exception
RuntimeException
str
(lambda (e s)

(send e RuntimeException˜constructor-java.lang.String s))
(current-continuation-marks)))

(define (movePinhole-draw2Native.Posn-native this getters setters
privates posn)
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(new-image (move-pinhole ((hash-table-get getters ’theImage) this)
(Posn-x posn)
(Posn-y posn))))

(define (putPinhole-draw2Native.Posn-native this getters setters
privates posn)

(new-image (put-pinhole ((hash-table-get getters ’theImage) this)
(Posn-x posn)
(Posn-y posn))))

(define (overlay-draw2Native.Image-native this getters setters
privates image)

(new-image (overlay ((hash-table-get getters ’theImage) this)
((hash-table-get getters ’theImage) image))))

(define (overlayXY-draw2Native.Image-draw2Native.Posn-native
this getters setters privates image posn)

(new-image (overlay/xy ((hash-table-get getters ’theImage) this)
((hash-table-get getters ’theImage) image)
(Posn-x posn)
(Posn-y posn))))

(define (getPinhole-native this getters setters privates)
(let ((the-image (((hash-table-get getters ’theImage) this)))

(checker
(lambda (val)

(check
integer? val
(lambda (v)

(raise
(make-java-runtime-exception
(format ”In class Image, getPinhole expected int given ˜a”

v))))))))
(new-posn (checker (pinhole-x the-image))

(checker (pinhole-y the-image)))))

(define (inside-draw2Native.Image-native this getters setters privates image)
(check boolean?

(image-inside? ((hash-table-get getters ’theImage) this)
((hash-table-get getters ’theImage) image))

(lambda (v)
(raise
(make-java-runtime-exception
(format
”In class Image, inside expexted to return a boolean, given ˜a”
v))))))

(define (find-draw2Native.Image-native this getters setters privates image)
(let ((s-posn (find-image ((hash-table-get getters ’theImage) this)

((hash-table-get getters ’theImage) image)))
(checker
(lambda (val)

(check
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integer?
val
(lambda (v)

(raise
(make-java-runtime-exception
(format ”In class Image, find expected int given ˜a” v))))))))

(new-posn (checker (posn-x s-posn)) (checker (posn-y s-posn)))))

(define (addLine-draw2Native.Posn-draw2Native.Posn-draw2Native.Color-native
this getters setters privates posn1 posn2 c)

(new-image (add-line
((hash-table-get getters ’theImage) this)
(Posn-x posn1 ) (Posn-y posn1 )
(Posn-x posn2 ) (Posn-y posn2 )
(send (send c toString) get-mzscheme-string))))

(define (width-native this getters setters privates)
(check integer?

(image-width ((hash-table-get getters ’theImage) this))
(lambda (v)

(raise
(make-java-runtime-exception
(format
”In class Image, width expected to return an int, given ˜a”
v))))))

(define (height-native this getters setters privates)
(check integer?

(image-height ((hash-table-get getters ’theImage) this))
(lambda (v)

(raise
(make-java-runtime-exception
(format
”In class Image, height expected to return an int, given ˜a”
v))))))

)
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A.1.2 View

View.java

package draw2Native;

public class View {

static int count = 0;
Object display;
boolean visible = false;
String name;
private boolean image = true;

public View() {
count += 1;
name = "View-"+count;
visible = false;

}

public View hide() {
this.visible = false;
toggleVisible(visible);
return this;

}
public View show() {
this.visible = true;
toggleVisible(visible);
return this;

}

public Image draw( Command c) {
drawToCanvas(c);
doubleBufferCall();
return getBufferCopy();

}

public Image drawSequence( CommandSequence commands ) {
commands.drawAll(this);
doubleBufferCall();
return getBufferCopy();

}

void allowImage(boolean ok) { image = ok; }

public native View display( int width, int height );
native void drawToCanvas( Command c );
private native Image getBufferCopy();
private native void doubleBufferCall();
private native void toggleVisible(boolean v);

}
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View-native-methods.scm

(module View-native-methods mzscheme

(require
(lib ”class.ss”)
(lib ”mred.ss” ”mred”)
(lib ”String.ss” ”profj” ”libs” ”java” ”lang”)
(lib ”Throwable.ss” ”profj” ”libs” ”java” ”lang”)
(lib ”RuntimeException.ss” ”profj” ”libs” ”java” ”lang”)
(lib ”Image.ss” ”htdch” ”draw2Native”))

(provide display-int-int-native drawToCanvas-draw2Native.Command-native
getBufferCopy-native doubleBufferCall-native
toggleVisible-boolean-native)

(define-struct view (buffer dc canvas frame))

(define call-back-canvas%
(class canvas%

(define call-back-proc (lambda (a) (void)))
(define/override (on-char char)

(call-back-proc (to-string char)))
(define/public (set-callback proc)

(set! call-back-proc proc))
(super-instantiate ())))

(define (to-string ke)
(let ((ke (send ke get-key-code)))

(if (char? ke) (string ke) (symbol->string ke))))

(define (make-java-runtime-exception str)
(create-java-exception
RuntimeException
str
(lambda (e s)

(send e RuntimeException˜constructor-java.lang.String s))
(current-continuation-marks)))

(define (display-int-int-native this field-accs field-sets privates x y)

;Fields and field setters
(let ((visible ((hash-table-get field-accs ’visible) this))

(set-visible (hash-table-get field-sets ’visible))
(name ((hash-table-get field-accs ’name) this))
(get-display (hash-table-get field-accs ’display))
(set-display (hash-table-get field-sets ’display)))

(when visible
(send this hide))

(let∗ ((buffer (make-object bitmap-dc% (make-object bitmap% x y)))
(call-back
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(lambda (canvas dc)
(send dc draw-bitmap

(send (view-buffer (get-display this)) get-bitmap) 0 0)))
(frame (make-object frame%

(send name get-mzscheme-string) #f (+ x 10) (+ y 15)))
(canvas (make-object call-back-canvas% frame null call-back))
(dc (send canvas get-dc))
(display (make-view buffer dc canvas frame)))

(set-display this display)
(send dc clear)
(send buffer clear)
(send frame show #t)
(set-visible this #t)
this)))

(define (drawToCanvas-draw2Native.Command-native this field-accs
field-sets privates c)

;Fields and field getters
(let ((visible ((hash-table-get field-accs ’visible) this))

(get-display (hash-table-get field-accs ’display)))

(unless visible
(raise
(make-java-runtime-exception
(make-java-string ”View must be displayed in order to draw in it”))))

(send c issue-java.lang.Object (view-buffer (get-display this)))))

;Note: any Scheme program can call these private methods

(define (getBufferCopy-native this field-accs field-sets privates)
;Fields
(let ((image ((hash-table-get field-accs ’image) this))

(buffer (view-buffer ((hash-table-get field-accs ’display) this))))

(if image
(let∗ ((buffer-bitmap (send buffer get-bitmap))

(bitmap-copy (make-object bitmap% (send buffer-bitmap get-width)
(send buffer-bitmap get-height)))

(dc-copy (make-object bitmap-dc% bitmap-copy)))
(send dc-copy clear)
(send dc-copy draw-bitmap buffer-bitmap 0 0)
(send dc-copy set-bitmap #f)
(let ((image-obj (make-object Image)))

(send image-obj Image˜constructor-java.lang.Object
(make-object image-snip% bitmap-copy #f))

image-obj ))
(make-object Image))))

(define (doubleBufferCall-native this field-accs field-sets privates)
;Fields
(let ((dc (view-dc ((hash-table-get field-accs ’display) this)))

(buffer (view-buffer ((hash-table-get field-accs ’display) this))))
(send dc draw-bitmap (send buffer get-bitmap) 0 0)))
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(define (toggleVisible-boolean-native this field-accs field-sets privates v)

;field
(let ((frame (view-frame ((hash-table-get field-accs ’display) this))))

(send frame show v)))

)
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A.1.3 GameWorld

GameWorld.java

package draw2Native;

public abstract class GameWorld extends World {

Object timer;
World nextWorld = this;

public GameWorld() {
super(new View());

}

public native World endOfWorld();

//Produces a World that will animate with a clock tick of rate
public final native boolean animate( int width, int height, int rate );

}
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GameWorld-native-methods.scm

(module GameWorld-native-methods mzscheme

(require (lib ”mred.ss” ”mred”)
(lib ”class.ss”)
(lib ”String.ss” ”profj” ”libs” ”java” ”lang”)
(lib ”Throwable.ss” ”profj” ”libs” ”java” ”lang”)
(lib ”RuntimeException.ss” ”profj” ”libs” ”java” ”lang”))

(provide (all-defined-except make-java-runtime-exception))

(define (make-java-runtime-exception str)
(create-java-exception
RuntimeException
str
(lambda (e s)

(send e RuntimeException˜constructor-java.lang.String s))
(current-continuation-marks)))

(define (animate-int-int-int-native this field-accs field-sets
privates x y rate)

;fields
(let∗ ((timer-set (hash-table-get field-sets ’timer))

(timer-get (hash-table-get field-accs ’timer))
(nextWorld-get (hash-table-get field-accs ’nextWorld))
(nextWorld-set (hash-table-get field-sets ’nextWorld))
(get-display (hash-table-get field-accs ’display))
(set-display (hash-table-get field-sets ’display))
(display (get-display this)))

(let∗ ((draw-sequence
(lambda (old new)

(timer-set new (timer-get old))
(set-display new (get-display old))
(send (get-display this) allowImage #f)
(send old erase)
(send new draw)
(send (get-display this) allowImage #t)))

(timer-callback
(lambda ()

(let∗ ((world (nextWorld-get this))
(new-world (send world onTick)))

(draw-sequence world new-world)
(nextWorld-set this new-world))))

(key-callback
(lambda (key)

(unless (string? key)
(raise
(make-java-runtime-exception
(make-java-string
(format
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”Internal error: key must be a string for callback, given ˜a”
key)))))

(let∗ ((world (nextWorld-get this))
(new-world
(send world onKey-java.lang.String

(make-java-string key))))
(draw-sequence world new-world)
(nextWorld-set this new-world))))

(timer (make-object timer% timer-callback)))
(send display display x y)
(send display keyCallBack key-callback)
(send timer start rate #f)
#t)))

(define (endOfWorld-native this field-accs field-gets privates)

;fields
(let ((timer ((hash-table-get field-accs ’timer) this)))

(send timer stop)
this))

)
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A.2 Java + dynamic

A.2.1 Image
package graphics;

import scheme.lib.htdp.image;
import scheme.lib.graphics.graphics;
import scheme.lib.htdch.graphics.rename;

public class Image {
dynamic theImage;

Image( dynamic i ) {
this.theImage = i;

}

dynamic getBitmap() {
return theImage.getBitmap();

}

public Image movePinhole( Posn p ) {
return new Image(image.movePinhole(theImage, p.x, p.y));

}

public Image putPinhole( Posn p ) {
return new Image(image.putPinhole(theImage, p.x, p.y));

}

public Image overlay( Image i ) {
return new Image(image.overlay(theImage, i.theImage));

}

public Image overlayXY( Image i, Posn p) {
return new Image(rename.overlayXY(theImage, p.x, p.y, i.theImage));

}

public Posn getPinhole() {
return new Posn(image.pinholeX(theImage),image.pinholeY(theImage));

}

public boolean inside( Image isInside ) {
return image.imageInsideP(theImage, isInside.theImage);

}

public Posn find( Image inside ) {
dynamic position = image.findImage(theImage, inside.theImage);
return new Posn(graphics.posnX(position), graphics.posnY(position));

}

public Image addLine(Posn start, Posn end, Color c) {
return new Image(image.addLine(theImage, start.x, start.y,

end.x, end.y, c.toString()));
}
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public int width() {
return image.imageWidth( theImage );

}

public int height() {
return image.imageHeight( theImage );

}

public boolean equals(Object o) {
return (o instanceof Image) &&

rename.imageEqP(theImage,((Image) o).theImage);
}

}
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A.2.2 View
package graphics;

import scheme.lib.mred.mred;
import scheme.lib.htdch.graphics.rename;

public class View {

private static int viewCount = 0;

private dynamic frame;
private dynamic canvas;
private dynamic dc;

private dynamic buffer;

private String name;
private boolean visible = false;

private boolean image = true;

public View() {
viewCount += 1;
this.name = "View-"+viewCount;

}

//Produces a View with a visible canvas of size x and y
public View display( int x, int y) {
if (visible)
this.hide();

buffer = rename.newObject(mred.bitmapDcObj,
rename.newObject(mred.bitmapObj,x,y));

buffer.clear();

class CanvasInner {
public void callBack(dynamic canvas, dynamic dc) {

dc.drawBitmap( View.this.buffer.getBitmap(), 0,0);
}

}

frame = rename.newObject(mred.frameObj, name, false, x+15, y+20);
canvas = rename.newObject(rename.callBackCanvasObj, frame,

rename.innerToFunction( 2, new CanvasInner()));
dc = canvas.getDc();

this.clear();

frame.show(true);
visible = true;
return this;

}
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//Produces a View without a visible canvas
public View hide() {
this.visible = false;
frame.show(visible);
return this;

}

public View show() {
this.visible = true;
frame.show(visible);
return this;

}

//The Image is a equality testable version of the canvas
//after the drawing command
public Image draw( Image i) {
drawToCanvas(i);
dc.drawBitmap(buffer.getBitmap(), 0 ,0);
return getBufferCopy();

}

//The Image is again an equality testable version of the canvas
//after applying all commands. Issues the commands in reverse order
public Image drawSequence( CommandSequence commands ) {
commands.drawAll(this);
dc.drawBitmap(buffer.getBitmap(), 0 ,0);
return getBufferCopy();

}

void allowImage( boolean ok ) {
this.image = ok;

}

private Image getBufferCopy() {
if (image) {
dynamic bufferBitmap = buffer.getBitmap();
dynamic bitmapCopy = rename.newObject(mred.bitmapObj,

bufferBitmap.getWidth(),
bufferBitmap.getHeight());

dynamic dcCopy = rename.newObject(mred.bitmapDcObj, bitmapCopy);
dcCopy.clear();
dcCopy.drawBitmap(bufferBitmap, 0, 0);
dcCopy.setBitmap(false);
return new Image(rename.newObject(mred.imageSnipObj, bitmapCopy, false));

} else {
return new Image(false);

}
}

void keyCallBack(dynamic curWorld) {
canvas.setCallback(curWorld);
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}

//erases the canvas
void clear() {
buffer.clear();
dc.drawBitmap(buffer.getBitmap(), 0 ,0);

}

void drawToCanvas( Command c) {
if (!visible)
throw new RuntimeException("View must be displayed to draw in it");

c.issue(buffer);
}

}
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A.2.3 GameWorld
package graphics;

import scheme.lib.htdch.graphics.rename;
import scheme.lib.mred.mred;

public abstract class GameWorld extends World {

dynamic timer;

public GameWorld() {
super(new View());

}

public World endOfWorld() {
timer.stop();
return this;

}

World nextWorld = this;

void oneStepPrivate(World oldWorld, World newWorld) {
((GameWorld) newWorld).timer = ((GameWorld) oldWorld).timer;
newWorld.display = oldWorld.display;
display.allowImage(false);
newWorld.draw();
display.allowImage(true);

}

//Produces a World that will animate with a clock tick of rate
public final boolean animate( int width, int height, int rate ) {

class TimerCallBack {
public void callBack() {

World old = GameWorld.this.nextWorld;
GameWorld.this.nextWorld = GameWorld.this.nextWorld.onTick();
GameWorld.this.oneStepPrivate(old, GameWorld.this.nextWorld);

}
}

class KeyCallBack {
public void callBack(String key) {

World old = GameWorld.this.nextWorld;
GameWorld.this.nextWorld = GameWorld.this.nextWorld.onKey(key);
GameWorld.this.oneStepPrivate(old,GameWorld.this.nextWorld);

}
}

display.display(width, height);
dynamic tCB = new TimerCallBack();

display.keyCallBack(rename.innerToFunction(1, new KeyCallBack()));
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timer = rename.newObject(mred.timerObj,
rename.innerToFunction(0,tCB));

timer.start(rate, false);
return true;

}

}



APPENDIX B

USER SURVEYS

B.1 Survey of Students in CpSc 2010 Fall 2003
ProfessorJ User Survey Fall 2003

1. What programming experience did you have prior to 2010?

• None
• Had written 1 or 2 small programs
• Had written many small programs
• Had written medium sized programs
• Had written large programs

2. If you had programming experience prior to 2010, in what language(s)?

3. How much experience had you had with Java prior to its presentation in 2010?

• Had never written a Java program
• Had written 1 or 2 small programs in Java
• Had written many small programs in Java
• Had written medium sized programs in Java
• Had written large programs in Java

4. What was your level of knowledge of Object-oriented programming prior to its
presentation?

• Had never seen object-oriented programming
• Had heard of but did not fully understand object-oriented programming
• Fully understood object-oriented programming concepts

5. What is your present level of understanding of OO programming?

• Do not understand OO
• Can write programs in OO style, but some concepts still unclear
• Fully understand OO

6. If you do not feel that you fully understand OO, what areas are still confusing?

7. What aspect of ProfessorJ caused you the most difficulty?

8. What, if anything, did you like about using ProfessorJ?

9. If you could remove 1 feature from ProfessorJ, what would it be?
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10. If you could add 1 feature to ProfessorJ, what would it be?

11. What is your overall opinion of the ProfessorJ language levels?

12. If given the choice, would you rather continue using ProfessorJ language levels as
you gain familiarity with Java or move to using full Java?

13. If you would like to continue using ProfessorJ language levels, why?

14. If you would like to move to using full Java, why?
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B.2 Survey of Students in CSPP 50101 Summer 2005
ProfessorJ Usage Survey Summer 2005

Prior knowledge

Please indicate your level of knowledge prior to taking this course:
• Complete novice
• Some knowledge of programming other than Java (or C#)
• Some knowledge of programming in Java (or C#)

If you had programmed in Java before, please list what tools you had used.

Working with ProfessorJ

What aspects of using ProfessorJ did you like?

What aspects of using ProfessorJ did you not like?

Did you find that error messages in ProfessorJ were generally comprehensible to you?

Testing

Please indicate which style of testing you prefered
• Graphical (minus file corruption woes)
• Extending the Test class with specific test methods

What changes would you suggest for your preferred testing mechanism (minus correcting
file corruption)

The Future

What feature(s) would you like to see added to ProfessorJ?

Would you prefer to continue using ProfessorJ? Why?
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B.3 Survey of Teachers Spring 2006
ProfessorJ Teacher Survey Spring 2006

1. What course(s) have you used ProfessorJ in?

2. What is the average experience level of your students?

• Beginners (Never written a program to written a few independently)
• Intermediate (Completed one or two CS courses)
• Advanced (Completed several CS courses)

3. If students had completed at least one programming course before, please de-
scribe the prerequisites of your course (including programming language of prior
course(s)).

4. What tools had you used/curriculum had you followed previously?

5. What version(s) of ProfessorJ have you used?

6. What language levels of ProfessorJ did you use?

7. Did you use ProfessorJ in combination with any other tool? If yes, what?

8. How did interacting with ProfessorJ affect your students? (aided, hindered, etc)

9. How did using ProfessorJ affect your instruction?

10. Were the language levels appropriate divisions to your curricular needs? What
changes would you make?

11. Did you notice any improvements/deteriorations in student understanding and
course progression from before using ProfessorJ?

12. Do you foresee yourself using ProfessorJ in future classes? Why?

13. If you would not use ProfessorJ, what changes in ProfessorJ might affect your
decision?

14. How would you rate the overall experience of using ProfessorJ in your class?
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