
APPLICATION BINARY INTERFACE COMPATIBILITY

THROUGH A CUSTOMIZABLE LANGUAGE

by

Kevin Jay Atkinson

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

December 2011

Copyright c© Kevin Jay Atkinson 2011

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of

has been approved by the following supervisory committee members:

, Chair
Date Approved

, Member
Date Approved

, Member
Date Approved

, Member
Date Approved

, Member
Date Approved

and by , Chair of

the Department of

and by Charles A. Wight, Dean of The Graduate School.

Kevin Jay Atkinson

Matthew Flatt 11/3/2011

Gary Lindstrom 11/17/2011

Eric Eide 11/3/2011

Robert Kessler 11/3/2011

Olin Shivers 11/29/2011

Al Davis

School of Computing

ABSTRACT

ZL is a C++-compatible language in which high-level constructs, such as classes, are

defined using macros over a C-like core language. This approach is similar in spirit to

Scheme and makes many parts of the language easily customizable. For example, since the

class construct can be defined using macros, a programmer can have complete control over

the memory layout of objects. Using this capability, a programmer can mitigate certain

problems in software evolution such as fragile ABIs (Application Binary Interfaces) due to

software changes and incompatible ABIs due to compiler changes.

ZL’s parser and macro expander is similar to that of Scheme. Unlike Scheme, however,

ZL must deal with C’s richer syntax. Specifically, support for context-sensitive parsing and

multiple syntactic categories (expressions, statements, types, etc.) leads to novel strategies

for parsing and macro expansion.

In this dissertation we describe ZL’s approach to parsing and macros. We demonstrate

how to use ZL to avoid problems with ABI instability through techniques such as fixing the

size of class instances and controlling the layout of virtual method dispatch tables. We also

demonstrate how to avoid problems with ABI incompatibility by implementing another

compiler’s ABI.

Future work includes a more complete implementation of C++ and elevating the ap-

proach so that it is driven by a declarative ABI specification language.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

ACKNOWLEDGEMENTS . xi

CHAPTERS

1. INTRODUCTION . 1
1.1 Dissertation Statement . 3
1.2 Approach . 4
1.3 Contributions . 4

2. PROBLEMS WITH THE C++ ABI . 6
2.1 The C++ ABI . 6
2.2 The Problem of Fragile ABIs . 9

2.2.1 Solutions Within C++ . 9
2.2.2 Defining a Better ABI . 10

2.3 The Problem of Compiler Specific ABIs . 11

3. SOLVING ABI PROBLEMS . 12
3.1 Overview . 12

3.1.1 User Roles . 13
3.2 Adding Private Data Members . 14

3.2.1 Reserving Space Ahead of Time . 14
3.2.2 Storing the Private Data in a Separate Object 16
3.2.3 Avoiding Direct Allocation . 17
3.2.4 Why Not a Fixed Set of Language Extensions? 18

3.3 Adding New Virtual Methods . 19
3.4 Reordering . 20
3.5 Removing Members . 21
3.6 Migrating Method Upwards . 22
3.7 Adding Parameters . 22
3.8 Other Difficult Transformations . 22
3.9 A Better ABI . 23
3.10 Changing Compilers . 23

4. ZL OVERVIEW . 25
4.1 ZL Primitives . 25
4.2 Macros . 26
4.3 Parsing and Expanding . 27
4.4 Procedural Macros . 28
4.5 The Class Macro . 32

5. USING ZL TO MITIGATE ABI PROBLEMS . 33
5.1 Adding Data Members without Changing Class Size 33

5.1.1 Fixing the Size of a Class . 34
5.1.2 Allowing Expansion . 36
5.1.3 Validation . 38

5.2 Fixing the Size of the Virtual Table . 38
5.3 A Better ABI . 38
5.4 Matching an Existing ABI . 40
5.5 Matching GCC’s ABI . 40
5.6 Matching Another ABI . 41
5.7 Other ABI Problems . 41

6. THE CASE OF A SIMPLE SPELL CHECKER . 42
6.1 Simple Spell . 42
6.2 The Spell Checker API . 42

6.2.1 The Application API . 43
6.2.2 The Extension API . 45

6.3 A Simple Application and Binary Compatibility . 47
6.4 Adding a Filter, Compiled with GCC . 47

6.4.1 The Bridge Class . 47
6.4.2 Adding The Email Filter . 49
6.4.3 Automating the Creation of the Bridge Class 50

6.5 Adding Support for a Personal Dictionary . 50
6.6 A Better ABI to Allow Future Enhancements . 54
6.7 A Simple Spell Checker, Version 2 . 59
6.8 An Opportunity for an Even Better ABI . 60
6.9 Comparison to a Real Spell Checker: Aspell . 60

7. USING ZL . 62
7.1 Classes and User Types . 62
7.2 Pattern-Based Macros and Lexical Extensions . 64

7.2.1 Extending the Parser . 65
7.2.2 The Parser . 66
7.2.3 Built-in Macros . 66

7.3 Macro API . 68
7.3.1 The Syntax Object . 68
7.3.2 The Syntax List . 70
7.3.3 Matching and Replacing . 71
7.3.4 Match Patterns . 72

v

7.3.5 Creating Marks . 73
7.3.6 Controlling Visibility . 73
7.3.7 Fluid Binding . 74
7.3.8 Partly Expanding Syntax . 75
7.3.9 Compile-Time Reflection . 76
7.3.10 Misc API Functions . 77

7.4 Procedural Macro Implementation and State Management 78
7.4.1 The Details . 78
7.4.2 Macro Libraries . 78
7.4.3 State Management . 80
7.4.4 Symbol Properties . 80

7.5 ABI Related APIs . 81
7.5.1 User Type and Module API . 81
7.5.2 User Type Builder . 82
7.5.3 The ABI Switch . 83
7.5.4 Mangler API . 84

8. ZL IMPLEMENTATION DETAILS . 87
8.1 Basic Expander and Hygiene System . 87

8.1.1 The Idea . 87
8.1.2 An Illustrative Example . 87
8.1.3 Multiple Marks . 90
8.1.4 Structure Fields . 91
8.1.5 Replacing Context . 92
8.1.6 Fluid Binding . 92

8.2 The Reparser . 94
8.2.1 The Idea . 94
8.2.2 Additional Examples . 96
8.2.3 Matching and Replacing with the raw_syntax Form 97

8.3 Parser Details . 97
8.3.1 Performance Improvements . 98

9. IMPLEMENTATION STATUS AND PERFORMANCE 100
9.1 C Support . 100
9.2 C++ Support . 101
9.3 Debugging Support . 101

10. RELATED WORK . 102
10.1 Binary Compatibility . 102
10.2 Scheme . 103
10.3 Other Macro Systems . 103
10.4 Ziggurat . 105
10.5 Extensible Compilers . 105

vi

11. DISCUSSION AND FUTURE WORK . 107
11.1 Evaluation of ABI Problems Solved . 107
11.2 Error Messages and Debugging Support . 108

11.2.1 Handing of Code Needing the C Preprocessor 108
11.2.2 Source Level Debugging . 109
11.2.3 Better Support for Macro Expanded Code . 110

11.3 C++ Template Support . 110
11.4 C++ Support in General . 111
11.5 Enhancements to ZL’s Macro System . 112

11.5.1 Always Reparsing . 112
11.5.2 Matching Literals Hygienically . 113
11.5.3 Using Marks for Inner Namespaces . 114

11.6 Support for an Extensible Parser . 114
11.7 Beyond ABI Compatibility . 115

11.7.1 Type Safe and Extensible printf . 115
11.7.2 Variable Interpolation . 116
11.7.3 Embedding SQL . 116

11.8 Areas of Future Research . 117
11.9 Alternative Research Direction . 117

12. CONCLUSION . 119

APPENDIX: OVERHEAD OF THE PIMPL IDIOM . 120

REFERENCES . 125

vii

LIST OF FIGURES

4.1 How ZL compiles a simple program. The body of f is reparsed and expanded
as it is being compiled. 29

4.2 Procedural macro version of or macro from Section 4.2. 30

4.3 Basic macro API. 30

5.1 Macro to fix the size of a class. All ... in this figure are literal. 35

6.1 The speller.hpp header file providing the core functionally of Simple Spell. 44

6.2 Other parts of the core simple spell API defined in other header files. 44

6.3 Simple Spell document checker API. All parts of this API use the GCC ABI. 46

6.4 Simple Spell extension API. 46

6.5 A bridge class to allow using filters compiled with GCC. 48

6.6 Part of the mk_bridge macro. The real implementation is just under 55 lines
of code. 51

6.7 Extending the Speller class to include support for a personal dictionary. . . . 53

6.8 The Speller class using the pimpl idiom. 55

6.9 Improved Session class to support future enhancements without breaking
binary compatibility. 56

6.10 Improved SessionWFilters class. 58

6.11 The Filter class using an enhanced ABI. 58

7.1 Macro that iterates over an STL-like container. 65

7.2 Simplified PEG grammar. 67

7.3 Version of foreach that returns a helpful error message if the container does
not contain the begin or end methods. 68

7.4 Syntax object API. 69

7.5 Syntax list API. 71

7.6 Match and replace API. 71

7.7 Mark API. 73

7.8 Visability API. 74

7.9 Expander API. 76

7.10 Compile time reflection API. 76

7.11 Misc API functions. 77

7.12 Symbol properties syntax and API. 80

7.13 User type and module API. 82

7.14 User type builder API. 82

7.15 Overview of the StringBuf class. 85

7.16 Overview of the symbol API . 86

8.1 Example code to illustrate how hygiene is maintained. 88

8.2 Example code to show how hygiene is maintained when a macro expands to
another macro. 91

A.1 Class used in test. 121

A.2 Same class (Figure A.1) but refactord to use the pimpl idiom. 121

A.3 Simplified version of code used to test the overhead of the pimpl idiom. 122

ix

LIST OF TABLES

3.1 Changes that can affect the ABI. 12

5.1 ZL’s solution for changes that can affect the ABI. 33

6.1 Approximate lines of code of the various versions of Simple Spell and Aspell. 61

8.1 Improvements in run time and memory usage due to parser optimizations. . . 98

8.2 Effects of individual optimizations in run time and memory usage. 98

A.1 Overhead on using the pimpl idiom. 123

ACKNOWLEDGEMENTS

I would like to thank my co-advisers Matthew Flatt and Gary Lindstrom—who were

also coauthors for works that are part of this dissertation—for their support and contribu-

tions to this dissertation. I would also like to thank my other committee members, Eric

Eide, Bob Kessler, and Olin Shivers for their support and feedback on this dissertation.

In addition I would like to thank Ryan Culpepper, Carl Eastlund, and Jon Rafkind for

feedback on works that are part of this dissertation.

I also want to thank Jay Lepreau (though he passed away) and Eric Eide for their

financial support through the Flux Research Group.

This work is based on an earlier work [12]: “ABI Compatibility Through a Cus-

tomizable Language”, Proceedings of the Ninth International Conference on Generative

Programming and Component Engineering (GPCE’10), Eindhoven, The Netherlands, Oct.

2010. c© ACM, 2010, http://dx.doi.org/10.1145/1868294.1868316.

Parts of this dissertation also appear in the work [11]: “Adapting Scheme-Like Macros

to a C-Like Language”, Workshop on Scheme and Functional Programming, Portland,

Oregon, Oct. 2011.

CHAPTER 1

INTRODUCTION

There are two types of programming interfaces to a library: the Application Program-

ming Interface (API) and the Application Binary Interface (ABI). The API defines the ways

a programmer may request services from the library. Some of the constituents of an API

in an object-oriented language are the names of classes, the methods they support, and the

types of the arguments that methods take. What goes into the API is under the control of

the library designer. An ABI is the object-code equivalent of an API. It is the low-level

interface between the application and the library. A compiler implements a mapping

from a library’s API to its ABI. Some of the constituents of the mapping include calling

conventions and class layout. Unlike the API, the programmer has little to no control of the

ABI in most languages.

When a library designer changes an API in a way that preserves backwards compat-

ibility with previous releases, source code compatibility is maintained. That is, existing

applications that use a library do not need to change at the source level. However, even if

source code compatibility is preserved, binary compatibility need not be preserved; existing

applications may need to be recompiled because the compiler typically does not guarantee

ABI compatibility with API compatibility.

In situations when a library is used by a small number of programs that can easily be

recompiled, breaking binary compatibility between releases may be acceptable. However,

if a large number of programs depend on the library, then recompiling is not an acceptable

option as it can take anywhere from hours to days to recompile everything. In addition,

in many situations the source code for applications using the library is not available, thus

making upgrading impossible unless binary compatibility is preserved.

Preserving binary compatibility for C++ programs is difficult because the typical C++

ABI is extremely fragile. Seemingly simple changes, such as adding methods, may break

2

binary compatibility. In fact, almost any change to a class declaration will likely break

binary compatibility and require applications that use the library to be recompiled.

In addition, the C++ ABI is not well defined as every compiler implements the C++

standard in a slightly different way. Libraries compiled with one compiler, such as Visual

C++, generally will not be usable by applications compiled with a different compiler, such

as GCC. Furthermore, the ABI may change between releases of the same compiler. Thus,

upgrading to a newer compiler may also break binary compatibility.

In contrast to C++, the C ABI is simple and well defined for a given architecture and

operating system. Since the C ABI is far simpler than the C++ ABI, preserving binary

compatibility is much easier. Furthermore, since the C ABI is well defined for a given

architecture, compatibility between compilers is a nonissue. In fact, some C++ applications

export only a C API for these very reasons.

The C ABI is successful because of its simplicity and consistency. That simplicity,

in turn, is based in part on the simplicity of the C language. As languages become

more complicated, so do the number of choices to be made in an ABI. Thus, ABIs for

complicated languages, such as C++, tend to vary among compilers and even among

versions of a compiler. Standardizing on one C++ ABI would solve the incompatibility

problem. Although some effort has been made in that area with Itanium C++ ABI [7],

there are still several C++ ABIs in common use, most notably the GCC and Visual C++

ABIs.

Even if all C++ compilers standardized on a single ABI, the problem of preserving

binary compatibility between releases of a library would still be a major problem. This is

because most C++ ABIs, including the Itanium C++ ABI, are optimized for performance,

not for preserving binary compatibility. Previous designs for a less fragile ABI for C++ [48,

38] make significant sacrifices in performance. Thus, library designers must make a choice

between breaking binary compatibility between releases or contorting their programs to

preserve it by using a variety of programming idioms.

We could try to add a few extensions to C++, such as a choice of different ABIs or

support for common programming idioms, but a fixed number of extensions will never

be enough as the problem of preserving binary compatibility is far too complex. A

3

nonextensible language cannot and should not support every possible rarely needed case.

A more general and integrated approach is an extensible compiler. Traditional extensible

compiler designs treat a compiler extension as an entity separate from the code to be

compiled. On the other hand, a macro system acts as an extensible compiler and also

allows the programmer to implement code and compiler extensions together, thus elevating

compiler extensions to the level of a library. This, in turn, allows different ABI choices

to be incorporated with different parts of an application. For example, one class can use

an ABI optimized for performance while another uses an ABI aimed at preserving binary

compatibility.

A simple macro system, such as the C preprocessor, is not adequate for defining

compiler extensions. Rather, the macro system must be an integral part of the language,

and it must be able to do more than simply rearrange syntax. In addition to providing macro

primitives, a language for giving the programmer control over an ABI must include a care-

fully designed core that allows higher-level constructs, such as classes, to be implemented

via macros. This capacity enables the programmer to redefine key aspects that affect ABI

attributes, such as class layout. ZL, a C++ compatible systems programming language that

is the subject of this dissertation, does exactly this.

For relatively simple language extensions ZL supports pattern-based macros similar to

Scheme’s syntax-rules [51]. In addition, ZL supports parser extensions that change the

tokenization (roughly) of the input source, so that macro uses need not have the restricted

form that Scheme’s macro system imposes. Even with such extensions, pattern-based

macros are limited. Therefore, in the same way that Scheme provides procedural macros

via syntax-case [24], ZL supports procedural macros. ZL’s API for procedural macros

includes support for reflective tasks such as getting the value of a macro parameter,

determining whether a symbol is currently defined and getting basic properties about the

symbol, and other necessary tasks to implement a class system.

1.1 Dissertation Statement
Fragile and incompatible ABIs are a major problem in software maintenance and evo-

lution that can be systematically dealt with and effectively managed using a macro-based

4

system that allows the programmer to control how an API maps to an ABI.

1.2 Approach
This dissertation demonstrates the thesis in the context of C++, through the use of

ZL. Class layout is a key aspect of the C++ ABI and is hence the focus of our research.

However, we support other parts of the ABI as well. For example, we support name

mangling, which is how local symbol names are translated in order to make them globally

unique.

Although, the ZL language gives the user complete control over many things that affect

the ABI, since our implementation of ZL compiles to a C like language, it does not give

the user control over everything such as exceptions and calling conventions. This is not a

problem, however, since exception support is beyond the scope of our research and calling

conventions are stable within a given architecture.

In addition, C++ is a very complicated language and this research only addressed the

features of C++ most relevant to the research question. In particular we did not address

multiple-inheritance, exceptions, and templates, which pose unique challenges.

1.3 Contributions
Our contributions in this dissertation are two-fold. The first is to demonstrate how ZL

can be used to mitigate the problem of binary incompatibility through the use of macros.

The second is to demonstrate the adaptation of Scheme-style, hygienic macros to C-style

syntax.

This dissertation outlines the problems of binary compatibility in C++ (in Chapter 2)

and shows how a macro system can help (in Chapter 3). We then, after giving an overview

of ZL (in Chapter 4), demonstrate how ZL can be used to mitigate the problem of binary

incompatibility (in Chapters 5 and 6). For example, we show how to avoid breaking binary

compatibility when adding new data members or methods to a class. We also match GCC’s

ABI to the point where a simple library can be compiled with ZL and then used with GCC

and vice versa. In addition to ZL’s native ABI and GCC’s ABI, we implement several

other specialized ABIs and show how classes with different ABIs can be used in the same

program.

5

This dissertation also presents the details of ZL parser and macro expander (in Chapters

4, 7, and 8). Dealing with C’s idiosyncratic syntax introduces complexities that are not

solved by simply converting the original text into an S-expression intermediate format.

Instead, parsing of raw text must be interleaved with the expansion process, and hygiene

rules must be adapted carefully to actions such as accessing structure members.

CHAPTER 2

PROBLEMS WITH THE C++ ABI

This chapter outlines what goes into the C++ ABI, why it is so fragile, and the problems

both the fragility and being compiler specific cause.

2.1 The C++ ABI
There are many components to the C++ ABI. Of them, the components of most interest

to this dissertation are:

• Data Layout. An ABI specifies how data are laid out in a memory region representing

an instance (struct) of a class. These data include the data members of the class but it

may also include other auxiliary information needed by the compiler such as a pointer

to the virtual table (vtable). If a struct only contains data members and nonvirtual

functions, and does not inherit from any other classes, it is generally considered a

POD (plain old data) datatype. The layout of POD objects is the same as it would

be in the C API. If the structure or class is not a POD data type than the layout is

essentially left undefined by the C++ standard. However, in general a pointer to the

virtual table is included first, then the data-members of any nonvirtual base classes, or

a pointer to the class in the case of a virtual base class, then finally the data members

of the current class.

• Virtual Table Layout. A virtual table (vtable) is the table that is used to dispatch

virtual functions and contain run-time type information (RTTI), among other things.

A vtable is not part of a C++ standard but it is included in nearly every C++ ABI.

The virtual table is generally a static object that is included in the object file and then

copied into memory at load time. A virtual table generally includes the following

items:

7

– The typeinfo pointer for RTTI

– The displacement to the top of the object from the location within the outer

object.

– Virtual function pointers, which are used for virtual function dispatch

– Copies of the virtual tables for any nonvirtual base classes

– Pointers to virtual tables for any virtual base classes

• Construction and Destruction. An ABI defines how objects are created and de-

stroyed. In C++ this is done via special member functions known as constructors

and destructors. These functions are created automatically by the compiler, but the

user can control part of the contents. What is involved in object construction is part of

the ABI specification. An ABI, such as GCC’s [7], may even emit multiple versions

of the same constructor or destructor.

• New and Delete. An ABI defines how new, delete, and delete [] are imple-

mented. Often these operators call ABI specific functions rather than just calling C’s

malloc and free.

• Name Mangling. An ABI specifies how a function’s local symbol names are mangled

in order to make them globally unique. Some of the things that go into the mangled

name include 1) the local name of the symbol, 2) the types of the parameters for

functions, 3) the class name for member function, and 4) the namespace the symbol

is in.

Other important components include:

• RTTI. In addition to information to implement inheritance, an ABI also contains

some run-time type information. In C++ the RTTI has three purposes: 1) to support

the typeid operation, 2) to match an exception handler with a thrown object, and 3)

to implement the dynamic_cast operator [7, §2.9].

• Calling Conventions. Calling conventions for nonmember functions are the same

as they are in the C ABI. Calling conventions for nonvirtual member functions

8

are generally the same as for nonmember functions with the first parameter being

the this pointer. However, this is not always the case. For example, Microsoft

Visual C++ passes the this pointer in a register, rather than passing it is as the

first parameter. The calling convention for virtual functions involves a lookup in the

vtable and thus varies from one ABI to another.

• Exception Handling. An ABI also specifies how exceptions are handled. There are

many different possible ways to implement exceptions.

• Layout of The Object File. The layout of the object file is generally not part of the

C++ ABI specification. It is generally left to other standards such as ELF.

• Linkage. Symbol lookup in C++ is generally delegated to the standard linker for the

platform. However, unlike with C, many objects in C++ are not clearly part of any

single object file. Examples include:

– Out-of-line Functions

– Static Data

– Virtual Tables

– Typeinfo

– Constructors and Destructor

– Instantiated Templates

These symbols can thus appear in multiple object files. As a result, the C++ compiler

needs a way to inform the linker of these special symbols and the linker needs a

policy to handle them.

• Templates. Templates are a large part of the C++ language but a small part of the

ABI. As far as the C++ ABI is concerned templates are ordinary objects except for

the fact that 1) the symbol names need to be mangled such that they include the

template parameters, and 2) the same instantiation can appear in multiple object files

and should be combined to save space when linking them together.

• Keeping track of the size of dynamically allocated arrays.

9

• Pointer to member functions. For nonvirtual functions this is generally a function

pointer. For virtual functions it is the pointer into the virtual table.

2.2 The Problem of Fragile ABIs
The C++ ABI is extremely fragile as seemingly simple changes, such as adding data

members or virtual methods to a class, may break binary compatibility. Adding data

members breaks binary compatibility because it changes the size of the class, which is

used at compile time when allocating objects on a stack or inlining one object in another.

Similarly, adding virtual methods changes the size of the vtable, and thus, with most

ABIs, changes the offsets of all the methods’ function pointers for any subclasses. In

fact, most changes to a class will break binary compatibility since they change the object’s

(or vtable’s) layout in one way or another.

Due to the extremely fragility of the C++ ABI programmers go to great lengths to avoid

breaking the ABI. For example many large software engineering projects have guidelines

to that deal with this issue. Examples include KDE [27], BE [49], and Windows.

In fact the problem of fragile ABIs was a key consideration when developing the Java

ABI as The Java Language Specification [39] has an entire chapter devoted to the issue of

Binary Compatibility. The importance of binary compatibility was also recognized in the

paper by Forman, et al., which they summarize as “Only application alteration necessitates

recompilation” on page 430 [36] . According to Yu, et al. this paper was a precursor to to

Java’s concept of binary compatibility [58].

2.2.1 Solutions Within C++

For compiled languages like C++ there is no comprehensive solution to this problem;

consequently, developers employ a large number of techniques to get around it.

One solution is to only export abstract base classes (ABCs), or interfaces, which will

never change. When it is necessary to add new methods a new ABC is created. This

technique is often accomplished by including version numbers in the name of the ABC.

A very similar technique is used by the Microsoft Component Object Model [57]. This

however, requires full encapsulation, i.e., no direct access to data members.

10

Another solution is to create a C API on top of the C++ one for the sole purpose of

more easily maintaining binary compatibility. C ABIs are inherently less fragile than C++

since they are simpler. For example, we did this with the Aspell project [1].

Yet another solution is to be aware of what exactly will break an ABI and employ

techniques to avoid doing so, many of which require planning ahead. For example, a

dummy variable can reserve space ahead of time to avoid changing the size of an object

when adding new data members. However, these techniques, which will be explored in

detail in Chapter 3, can often lead to less maintainable code.

2.2.2 Defining a Better ABI

The main reason ABIs are so fragile for compiled languages such as C++ is that offsets

and sizes are fixed at compile time. If this information were resolved at load-time then the

issue of fragile ABIs would be greatly reduced.

Java does just that, by making nearly all references in the compiled Java bytecode

symbolic. That is, not only are functions symbolic as they are in C, but so are calls to virtual

methods; even data member lookups are symbolic. All of these symbols are resolved when

the class is loaded. The Java Language Standard [39] is very careful to define the ABI in

such a way that breaking binary compatibility will almost certainly mean breaking source

code compatibility also.

Resolving any sort of detail that will affect ABI compatibility at load time is possible

in Java since Java uses a completely different notion of compilation. In particular Java

is compiled to byte code, not object code. This allows more flexibility in the type of

information that can be resolved a load time.

Even if it is not practical to resolve everything that can possibly affect ABI compatibly

at run time, the ABI can still be defined in such as way to make it significantly less fragile.

Such an approach is done by Goldstein and Sloan [38]. They define a special ABI known

as the Object Binary Interface which will only be used on request. The ABI they define

allows for evolutionary steps such as adding new public and protected methods, and adding

or removing private data members. However, it does not allow for changing the order

or type of public data members. Thus it greatly reduces the problem of a fragile ABI

but does not eliminate it. Also, their ABI is not without cost when compared to the more

11

traditional C++ ABI. Thus, it is likely to affect performance, especially since all inheritance

is implemented in a manner similar to how virtual inheritance is implemented in traditional

C++ ABIs.

2.3 The Problem of Compiler Specific ABIs
Due to the complexity of the C++ ABI, the implementation is compiler specific. Hence,

changing compilers can also break binary compatibility. Thus, when using C++ libraries,

not only is the specific version of the library important, but so is the compiler used to

compile it.

The fact that a C++ library is tied to a particular ABI implementation is a particular

problem in Windows when a large amount of code written is using Microsoft’s VC++.

Because so much code is written using VC++ in Windows many other Windows compilers

often conform to at least part of this ABI, making it less of an issue. But it is still an

issue since this ABI is not universally used by all C++ compilers. For example GCC uses a

different ABI. Thus it is impossible to use GCC when developing Windows code that uses

Windows C++ libraries. We ran into this problem a while ago, when we wanted to write

some filters for AviSynth, a program for scriptable video processing. The source code for

AviSynth is freely available but it will only compile on VC++. We wanted to write the

filters using GCC. So in order to do this we had to write a special filter whose sole purpose

was to bridge the gap by using a more stable C (as opposed to C++) interface. We then

used this filter to write filters that could be compiled using GCC. These filters were written

in C++. Thus we had to write a special “C” interface in order to interface with “C++” code,

which seems silly, but was necessary since VC++ and GCC C++ ABIs are incompatible.

There is no real solution to the problem of incompatible ABIs. The general solution

is to simply avoid the issue by just using a compiler that is compatible with the C++ ABI

deployed. When this is not an option, then the only other solution is to write a C API as

was done for AviSynth.

CHAPTER 3

SOLVING ABI PROBLEMS

Table 3.1 lists changes that can break binary compatibility without affecting source code

compatibility. Except for the last item, this list is from the paper by Forman, et al. [36].

This chapter discusses each of the problems, the solutions used in practice, and how a

macro system can improve on them.

3.1 Overview
For each ABI compatibility problem there are often several different solutions, and

which one to choose depends on the situation. If there were one really good solution to

the particular problem then it could easily be added as an extension to the language. In

fact, since C++ is a fairly mature language, there is a good chance that the solution already

Table 3.1. Changes that can affect the ABI. Solutions to many of these problems can be
supported to some extent within the constraints of the existing C++ ABI, but for some the
only solution is a better ABI.

Change Can Support Section
add instance variable Yes 3.2
add new method Yes 3.3
reorder methods Yes 3.4
reorder instance variables Yes 3.4
remove private method Yes 3.5
remove private instance variable Yes 3.5
migrate method upward in class hierarchy Yes 3.6
add parameters Yes 3.7
insert new class in class hierarchy New ABI 3.8
migrate parent downward in class hierarchy New ABI 3.8
change compilers - 3.10

13

would have been added. However, since there are many solutions, with none of them being

clearly better than the other, language designers would have to add them all in order to

deal with the problem. Adding all solutions is not an attractive option, as it would severely,

possibly unnecessarily, bloat the language. Furthermore, there may be additional creative

solutions, specific to a particular problem that language designers cannot possibly think

of. Consequently it is essential to give the programmer as much control as practical for

implementing the best solution for a given situation. Giving programmers control is a task

ideally suited to a macro system where the implementation of the classes and other key

parts of the ABI are under the programmer’s control.

3.1.1 User Roles

A good macro system can benefit all users, but not everyone needs to know the full

details of how macros work. There are three primary classes of users: 1) End Users or

Library Consumers, who just use the library, but can benefit from increased binary com-

patibility; 2) Library Implementers, who can use the macro libraries to provide increased

binary comparability, but do not need to know the details of the macro libraries themselves;

and 3) Tool Implementers, who provide the macro libraries for the library implementers.

With traditional compiler designs, tool implementers are in relatively short supply, and

they face a daunting task on two fronts: they must modify the compiler, and they must

convince users of the library to use the modified compiler. Our approach to improving

ABI compatibility is to simplify the tool implementer’s job, so that library implementers

will have better tools and end users will have more compatible libraries. Specifically, with

a macro-extensible compiler that can express ABI details through the macro layer, tool

implementers gain a simpler framework for implementing more interoperable designs, and

they get a more composable framework so that multiple tools can be combined. In this way,

a tool becomes more like a library.

Indeed, just as library consumers can become library implementers when they want to

generalize their application code so that others can use it, library implementers can become

tool implementers when they need to do something unusual for which a macro library does

not yet exist. The key benefit of a macro system in this case is that it allows a library

implementer to easily become a tool implementer.

14

3.2 Adding Private Data Members
A C++ ABI can change by adding new private data members since that changes the size

of the object. For example, changing

class X {
private:
int old_var;

public:
...

};

to

class X {
private:
int old_var;
int new_var;

public:
...

};

breaks binary compatibility, because the size of X changes from the size of one integer to

the size of two integers. This change is a problem when the size of the object is needed at

compile time, such as when the object is allocated directly on the stack, embedded inside

another object, or even allocated with new.

3.2.1 Reserving Space Ahead of Time

One solution in C++ is to use a dummy variable to reserve space ahead of time. For

example, changing X to:

class X {
int old_var;
unsigned long _reserved[3];

};

reserves enough space for three additional variables. Then to add a new variables simply

decrease the size of _reserved:

class X {
int old_var;
int new_var;
unsigned long _reserved[2];

};

15

This approach works but requires a bit of planning ahead. It also depends on knowing

the size of the members, which varies amoung architectures. The above example relies on

the fact that long is the same size as an int, which is not always the case. For example, on

64-bit processors, an int is 4 bytes while a long is 8. However, long is used, as opposed

to an int, since on most architectures a long is the same size as a pointer.

Things get interesting when we run out of space. To deal with this situation, the last

reserved slot is used as a pointer. For example:

class X {
private:
int old_var;
unsigned long _reserved[3];

public:
...

};

becomes

class X {
private:
int old_var;
int new_var_1;
int new_var_2;
class D {int new_var_3;

int new_var_4;};
D * d;

public:
X();
X(const X & x);
X & operator= (const X & x);
~X();
...

};

X::X() {d = new D();}
X::X(const X & x) {...; d = new D(*x.d);}
X & X::operator= (const X & x) {...}
X::~X() {delete d;}

But accessing the data members is now cumbersome, since we must always use

d->new_var_3 instead of just new_var_3. There is also a slight performance hit due to

the extra layer of indirection.

16

With a macro system this solution can easily be automated by writing a macro to do the

same thing. For example we could write a macro to recognize a fix_size flag to a class

as so:

class X
: fix_size(sizeof(long)*4)

{
private:
int old_var;

public:
...

};

Then, no end-user visible tricks are needed to add a new member as the size of the object

will not change. Thus binary compatibility is maintained. Furthermore, since macros

handle the low-level details and not the programmer, this solution will be portable across

different architectures; the user does not have to know the exact size the types involved.

If a programmer tries to use more space than is preallocated, a compile-time error

will be emitted. If the programmer wishes to allow additional private data members an

additional flag can be specified:

class X
: fix_size(sizeof(long)*4), allow_expansion

{
private:
int old_var;
int new_var_1;
int new_var_2;
int new_var_3;
int new_var_4;

public:
...

};

and the macro responsible for implementing this feature will allocate additional space if

necessary. In this case the implementation will look a lot like the C++ example just given.

3.2.2 Storing the Private Data in a Separate Object

Another solution is simply to keep all the private data members in a separate object, for

example:

17

class X {
private:
class D {

int var_1;
int var_2;
...

};
Data * d;

public:
X() {d = new D();}
X(const X & x) {d = new D(*x.d);}
X & operator= (const X & x) {...}
~X() {delete d;}

};

This solution is simpler than reserving space ahead of time since it does not require

foresight in how large the object may be now, and in the future, and it also does not depend

on the size of the types. This solution, known as the pimpl idiom, is in fact a very common

solution used in practice. The only downside is that there is additional overhead involved in

the creating, copying, and deleting of X, and that all accesses to private data must be done

through. Based on our own tests the overall slowdown from using this idiom is anywhere

between a factor of 1.0 and 1.8. In practice the slowdown is likely to be closer to 1.0 than

1.8. Appendix A gives more details on the tests performed.

This solution can easily be implemented via macros using a similar syntax as before:

class X
: fix_size, allow_expansion

{
int var_1;
int var_2;

}

Since no size is given to fix_size, it will be assumed that only enough space should

be allocated to maintain a pointer to an additional object which will store all the private

data members.

3.2.3 Avoiding Direct Allocation

As previously described, the problem with changing the size of the object is that the

information is needed if the object is directly allocated. This problem can be avoided

18

by disallowing the object to be directly allocated using the standard C++ trick of making

constructors, assignment, and destructors private, and instead provide methods to create,

copy, and destroy the function:

class X {
private:
X();
X(const X &);
void operator=(const X &);
~X();

public:
X * clone();
static X * allocate();
static X * destroy();

};

This strategy means that the object cannot be directly allocated on the stack or embedded in

other objects. However, it also means that the object cannot be allocated using C++ builtin

new and delete, since new and delete cannot be overloaded on a per-class bases.

If new and delete are implemented via macros, then they can easily be modified to use

a different approach for a particular object.

3.2.4 Why Not a Fixed Set of Language Extensions?

Reserving space ahead of time is a good solution when performance really matters.

However since it requires planning ahead and depends on knowing the exact size of

types it is not a very attractive option. Storing all the private data in a separate object is

easier to implement, but it does have a small performance overhead which some may find

unacceptable. Finally, preventing direct allocation is an undesirable alternative to users of

the library.

Since none of these solutions is perfect, none of them are good candidates for language

extensions. However, in a system where higher-level objects are implemented using macros

the programmer is free to extend these macros to support whichever solution is best suited

to the problem.

19

3.3 Adding New Virtual Methods
A C++ ABI can also change by adding new virtual methods since that changes the size

of the vtable. This is a problem because the vtable is often included in the object file instead

of being created dynamically at load time.

The C++ solution is similar to the one for adding new data members, except that space

is reserved by using dummy methods. For example,

class X {
public:
virtual old_method();
private:
virtual void _dummy_1();
virtual void _dummy_2();
virtual void _dummy_3();

};

reserves enough space for three new methods. Then to add a new method simply replace

one of them with the real method:

class X {
public:
virtual old_method();
virtual new_method();

private:
virtual void _dummy_2();
virtual void _dummy_3();

};

In a system where macros will be used to implement inheritance, these macros can

easily be expanded to reserve space ahead of time for additional methods by recognizing

syntax similar to:

class X
: vtable_slots(4)

{
...

}

which will create a virtual table with four slots in it.

However, unlike the case of adding private data members, running out of slots is a

serious problem as there is no way to simply add a pointer to another object to add more

20

virtual functions, as we could before. There are still ways to add functionality to the class;

however, it can not be through adding more virtual methods.

Thus, the idea of fixing the size of the vtable is not an attractive solution since it requires

the programmer of the library to have foresight into how many virtual functions they will

ever need for this object. Therefore, support for this strategy is not something that is likely

to get added to as a language extension. But as before, in some situations, it may still be a

viable option.

3.4 Reordering
Another way to break ABI compatibility in C++ is to reorder the methods or the

instance variables since that will change the offsets in the vtable or the object’s instance,

respectively. For example changing:

class X {
public:
virtual a();
virtual b();

};

to

class X {
public:
virtual b();
virtual a();

};

will change the offset of a and b.

There is no real solution to this in C++ other than to just be aware of this fact and

not do it. However there are several ways this problem can be solved by modifying how

inheritance is implemented:

1. One idea is to use something like:

class X
: freeze_virtual_table

{
...

}

21

which will in a separate interface file store the offset of each virtual function. Once

a function is defined its offset will never change.

2. Another idea is to put the virtual methods into groups, something like:

class X
{
public (group 1):
virtual a();
virtual b();

public (group 2):
virtual c();
virtual d();

};

then sort each of the groups alphabetically. When new methods are added put them

into another group.

3. Finally, a Java-like approach can be used where the offsets are determined when the

class is first used. However, this will involve a completely different ABI from the

one generally used in C++.

The problem of reordering instance variables can be solved using similar techniques,

except that changes will affect class instances and not the vtable.

None of these solutions are particularly attractive; thus, any one of them is unlikely

to be implemented as an extension to C++. However, just because no single solution is

attractive does not mean that they are not useful. With a macro system in which classes are

implemented via macros, the programmer is free to chose which solution, if any, is best for

the particular situation.

3.5 Removing Members
Removing methods and instance variables breaks ABI compatibility in C++ since it

changes the order the vtable or the object’s instance, respectfully.

The only way to solve these problems in C++ is to avoid removing the method or

instance variables by instead replacing it with a dummy member. This way the layout is

preserved. The unused slot can then later be replaced with a new member in order to save,

or it can simply be left unused.

22

A macro system can help automate this method by freezing the layout in a very similar

fashion as discussed in Section 3.4. When this is done the macro will automatically insert a

dummy member in place of the removed member. Later on the unused slot can be replaced

with a new member.

3.6 Migrating Method Upwards
Migrating a method upwards in the class hierarchy breaks binary compatibility in C++.

Solving this problem in C++ is not really possible, but a macro system can help as long as

space is reserved ahead of time so that it is is possible to add new virtual methods to the

class (as discussed in section 3.3) and single inheritance is used. The idea is as follows:

instead of actually removing the method from the old class, the vtable for the old class is

adjusted to simply point to the method in the new class. This technique will not work when

multiple inheritance is used, since the pointer to the class instance may need to be adjusted;

in that case, a proxy method can be created that will just call the new method.

3.7 Adding Parameters
Adding parameters to a function in C++ will break binary compatibility because it

changes the name of the symbol used to represent the function. The name changes because,

to support overloading, the types of the parameters are encoded as part of the name.

However, since C++ allows for overloading it is possible to define a new function with

the added parameter. The old function can then call the new one. Macros can automate this

technique.

3.8 Other Difficult Transformations
Unfortunately, some program transformations are difficult if not impossible to support

within the constraints of an existing ABI. Such transformations include inserting a new

class and migrating a parent downwards in the class hierarchy. The transformations are

difficult because the parent class is directly embedded in the child class, for both instances

of the classes and the vtable. The only real way to support these transformations is to define

a better API.

23

3.9 A Better ABI
All of the solutions in the previous sections work within an existing ABI; thus none of

the solutions were ideal. However, the problems can all be solved by defining a new ABI

that takes these transformations into account. The new ABI can support transformations

that are difficult if not impossible to solve within the existing C++ ABI such as those

mentioned in section 3.8.

With a system where a large part of what affects the ABI is written using macros, it is

possible to write a new ABI from scratch in order to minimize the issue of ABI fragility,

for example implementing something similar to the Object Binary Interface [38], or maybe

even implementing something close to what Java does.

However, using a new ABI is not always an option. For example, if a library developer

wants code to be usable by existing C++ applications, the developer must use the existing

C++ ABI. Thus it is necessary to give programmers the tools to work within an existing

ABI when necessary, but also give programmers the option of creating a new ABI when

appropriate.

3.10 Changing Compilers
Finally, changing compilers also breaks binary compatibility, since ABIs differ between

compilers and sometimes between different versions of the same compiler. Thus, when

using C++ libraries, not only is the specific version of the library important, but so is the

compiler used to compile it. Unfortunately, there is no good solution to this problem in

C++, other than always using a compatible compiler when compiling the library. The only

way to support a different, incompatible, compiler is to avoid directly using the C++ ABI

altogether. A typical work-around is to create a C API on top of the internal C++ API, and

then only export the C API. This technique effectively defines a program-specific ABI that

the library developer has complete control over. It may seem silly for a C++ program to

have to use a C API to use another C++ library, but currently there is no other way around

the problem.

However, if classes are implemented via macros, then the programmer has control of

how classes are implemented, and thus has control over which ABI is used. In fact, a

programmer can use classes with different ABIs within the same program. For example,

24

the ABI used can be specified as part of the class declaration. For using existing code, the

ABI can be specified on a per header-file basis. Via the right macro hooks, additional parts

of the the ABI, such as name mangling, can be brought under control of the programmer.

CHAPTER 4

ZL OVERVIEW

ZL is a C++-compatible language that solves ABI compatibility problems by giving the

programmer as much control as possible. ZL provides a C-like core and enough of C++

to let the type-checker and compiler do its job without committing to key parts of the ABI

such as class layout. The rest is defined using a sophisticated macro system.

The ZL library provides a default implementation of language constructs such as

classes. The implementation can be overridden or extended by defining new macros in a

source file or by importing a macro library. Macros, including those that define the behavior

of a language construct, are scoped and can be shadowed. This means it is possible to

use two different class ABIs by loading one class library and defining some classes, then

loading another library and defining some more classes. A more convenient solution is to

add some syntax for selecting the ABI for a class, which ZL also supports.

This chapter gives an overview of ZL. Chapters 7 and 8 will give a more detailed

description of ZL and how it is implemented.

4.1 ZL Primitives
Most of the class implementation in ZL is left to macros, but since classes are an integral

part of the C++ type system, ZL still needs to have some notion of what a class is. User

types are ZL’s minimal notion of classes. A user type has two parts: a type, generally a

struct, to hold the data for the class instance, and a collection of symbols for manipulating

the data.

The collection of symbols is a module. For example,

module M { int x;
int foo(); }

26

defines a module with two symbols. Module symbols are used by either importing them

into the current namespace, or by using the special syntax M::x, which accesses the x

variable in the above module.

A user type is created by using the user_type primitive, which serves as the mod-

ule associated with the user type. A type for the instance data is specified using

associate_type.

As an example, the class1

class C { int i;
int f(int j) {return i + j;} };

roughly expands to:

user_type C {
struct Data {int i;};
associate_type struct Data;
macro i (:this ths = this) {...}
macro f(j, :this ths = this) {f‘internal(this, j);}
int f‘internal(...) {...}

}

which creates a user type C to represent a class C; the structural type Data is used for the

underlying storage. The macro i implements the i field, while the f macro implements

the f method by calling the function f‘internal with ths as the first parameter. The next

section will explain the syntax of the macros and Section 7.1 will give the full expansion

of class C and a more complete picture of how classes are implemented.

ZL also supports syntax for creating macros, of which there are two kinds: pattern-

based macros that simply rearrange syntax, and procedural macros that are functions that

perform more complex manipulation of syntax or take action based on the input, as is

necessary to implement classes.

4.2 Macros
The simplest form of a macro is a pattern-based macro, which is simply a transforma-

tion of one piece of syntax to another. For example, consider an or macro that behaves

1 For simplicity, we leave off access control declarations and assume all members are public in this
dissertation when the distinction is unimportant.

27

like C’s || operator, but instead of returning true or false, returns the first nonzero value.

Thus, or(0.0, 6.8) returns 6.8. To define it, one uses ZL’s macro form, which declares

a pattern-based macro:

macro or(x, y) { ({typeof(x) t = x; t ? t : y;}); }

In ZL, as in GCC, the ({...}) is a statement expression whose value is the result of the

last expression, and typeof(x) gets the type of a variable. Like Scheme macros [24], ZL

macros are hygienic, which means that they respect lexical scope. For example, the t used

in or(0.0, t) and the t introduced by the or macro remain separate, even though they

have the same symbol name.

The or macro above has two positional parameters. Macros can also have keyword

parameters and default values. For example:

macro sort(list, :compar = strcmp) {...}

defines the macro sort, which takes the keyword argument compar, with a default value

of strcmp. A call to sort will look something like sort(list, :compar = mycmp).

4.3 Parsing and Expanding
The macros shown so far are pattern-based macros. Writing more sophisticated pro-

cedural macros, such as those required to implement classes, requires some knowledge of

parsing and macro expansion in ZL. This section gives the necessary background material,

while the next section details how to write such macros.

To deal with C’s idiosyncratic syntax while also allowing the syntax to be extensible, ZL

does not parse a program in a single pass. Instead, it uses an iterative-deepening approach

to parsing. The program is first separated into a list of partly parsed declarations by a

Packrat [34, 35] parser that effectively groups tokens at the level of declarations, statements,

grouping curly braces, and parentheses. Each declaration is then parsed. As it is being

parsed and macros are expanded, subparts, such as code between grouping characters, are

further separated.

ZL’s iterative-deepening strategy is needed because ZL does not initially know how to

parse any part of the syntax involved with a macro. When ZL encounters something that

looks like a function call, such as f(x + 2, y), it does not know if it is a true function

28

call or a macro use. If it is a macro use, the arguments could be expressions, statements, or

arbitrary syntax fragments, depending on the context in which they appear in the expansion.

Similarly, ZL cannot directly parse the body of a macro declaration, as it does not know

the context in which the macro will ultimately be used.

More precisely, the ZL parsing process involves three intertwined phases. In the first

phase raw text, such as (x+2), is parsed. Raw text is converted into an intermediate form

known as a syntax object, which can still have raw-text components. (Throughout this paper

we show syntax objects as S-expressions, such as ("()" "x+2").) In the second phase,

the syntax object is expanded as necessary and transformed into other syntax objects by

expanding macros until a fixed point is reached. In the third phase, the fully expanded

syntax object is compiled into an AST.

Figure 4.1 demonstrates ZL’s parsing and expansion process. The top box contains a

simple program as raw text, which is first parsed. The result is a syntax list (internally

represented as a @) of stmt’s where each stmt is essentially a list of tokens, as shown in

the second box. Each statement is then expanded and compiled in turn, and is added to

the top-level environment (which can be thought of as an AST node). The third box in the

figure shows how this is done, which requires recursive parsing and expansion. The first

stmt is compiled into the fun f, while the body of the function is left unparsed. Next, fun

is compiled into an AST (shown as a rounded rectangle). During the compilation, the body

is expanded. Since it is raw text, this process involves parsing it further, which results in a

block. Parsing the block involves expanding and compiling the subparts. Eventually, all of

the subparts are expanded and compiled, and the fully parsed AST is added to the top-level

environment. This process is repeated for the function main, after which the program is

fully compiled.

4.4 Procedural Macros
Some macros must take action based on the input. One example is the built-in class

macro. Another example is a macro that fixes the size of the class, since the amount of

padding it needs to add depends on the numeric value of the size passed in. For these

situations, ZL provides procedural macros, which are functions that transform syntax

29

inline int f() {int x = 10; return x;}
int main() {return f();}

↓PARSE↓
(@ (stmt inline int f ("()" "") ("{}" "int x = 10; return x;")

(stmt int main ("()" "") ("{}" "return f();")))
↓EXPAND & COMPILE↓�

�

	

TOP-LEVEL ENVIRONMENT

(stmt inline int f ...)
↓EXPAND↓

(fun f "()" int :inline ("{}" "int x = 10; return x;"})
↓COMPILE↓�

�

	

FUN
inline true
id f
type int

body

("{}" "int x = 10; return x;")
↓EXPAND & REPARSE↓

(block (stmt int x = 10)
(return (exp x)))

↓COMPILE↓�

�

	

BLOCK

(stmt int x = 10))
↓EXPAND↓

(var x (int) (exp 10))
↓COMPILE↓�

�
	VAR

...

(return (exp x))
↓...↓

(stmt int main ...)
↓...↓

Figure 4.1. How ZL compiles a simple program. The body of f is reparsed and expanded
as it is being compiled.

30

objects.

Figure 4.2 demonstrates the essential parts of any procedural macro. The macro is

defined as a function that takes a syntax object and environment, and returns a transformed

syntax object. Syntax is created using the syntax form. The match function is used to

decompose the input while the replace function is used to rebuild the output. Finally,

make_macro is used to create a macro from a function. More interesting macros use

additional API functions to take action based on the input. Figure 4.3 defines the key

parts of the macro API, which we describe in the rest of this section.

Syntax is created using the syntax and raw_syntax forms. The different forms create

different types of code fragments. In most cases, the syntax {...} form can be used,

such as when a code fragment is part of the resulting expansion; the braces will not be in

Syntax * or(Syntax * p, Environ *) {
Match * m = match(NULL, syntax (_, x, y), p);
return replace(syntax

{({typeof(x) t = x; t ? t : y;});},
m, new_mark());

}
make_macro or;

Figure 4.2. Procedural macro version of or macro from Section 4.2.

Types: UnmarkedSyntax, Syntax, Match, and Mark

Syntax forms:
new_mark() — returns Mark *
syntax (...)|{...}|ID — returns UnmarkedSyntax *
raw_syntax (...) — returns UnmarkedSyntax *
make_macro ID [ID];

Callback functions:
Match * match(Match * prev, UnmarkedSyntax * pattern, Syntax * with)
Match * match_args(Match *, UnmarkedSyntax * pattern, Syntax * with)
Syntax * match_var(Match *, UnmarkedSyntax * var);
Syntax * replace(UnmarkedSyntax *, Match *, Mark *)
size_t ct_value(Syntax *, Environ *)

Figure 4.3. Basic macro API.

31

the resulting syntax. If an explicit list is needed, for example, when passed to match as in

Figure 4.2, then the syntax (...) form should be used (in which the commas are part of

the syntax used to create the list). Neither of these forms create syntax directly, however;

for example, syntax {x + y;} is first parsed as ("{}" "x + y;") before eventually

becoming (plus x y). When it is necessary to create syntax directly, the syntax ID

form can be used for simple identifiers. For more complicated fragments the raw_syntax

form can be used in which the syntax is given in S-expression form.

The match function decomposes the input. It matches pattern variables (the second

parameter) with the arguments of the macro (the third parameter). If it is successful, it

prepends the results to prev (the first parameter) and returns the new list. If prev is NULL,

then it is treated as an empty list. In the match pattern a _ can be used to mean “don’t care.”

The match is done from the first part of the syntax object. That is, given (plus x y), the

first match is plus. Since the first part is generally not relevant, ZL provides match_args,

which is like match except that the first part is ignored. For example, match_args could

have been used instead of match in Figure 4.2.

The replace function is used to rebuild the output. It takes a syntax object (the first

parameter, and generally created with syntax), replaces the pattern variables inside it with

the values stored in the Match object (the second parameter), and returns a new Syntax

object.

The final argument to replace is the mark, which is used to implement hygiene.

A mark captures the lexical context at the point where it is created. Syntax objects

created with syntax do not have any lexical information associated with them, and are

thus unmarked (represented with the type UnmarkedSyntax). It is therefore necessary for

replace to attach lexical information to the syntax object by using the mark created with

the new_mark primitive (the third parameter to replace).

Match variables exist only inside the Match object. When it is necessary to access them

directly, for example, to get a compile-time value, match_var can be used; it returns the

variable as a Syntax object, or NULL if the match variable does not exist. If the compile-

time value of a syntax object is needed, ct_value can be used, which will expand and

parse the syntax object and return the value as an integer.

32

Once the function for a procedural macro is defined, it must be declared as a macro

using make_macro.

This section only gives a small part of the macro API. A more detailed description is

given in Chapter 7. Some of the more important functions not shown here include functions

for controlling the visibility of macros and partly expanding syntax.

4.5 The Class Macro
We have now presented most of the necessary parts that make up the class macro.

Sections 4.1 and 4.2 give a representation of the code generated, while Sections 4.3 and 4.4

give a representation of what is necessary to generate that code. The remaining details are

given in Chapter 7, which includes more of ZL’s macro API. The class macro also uses ZL’s

support for syntax macros, which work with arbitrary syntax, as opposed to function-call

macros, which only work with syntax that takes the shape of a function call or identifier.

The core class macro is currently around 900 lines of code. The implementation is

highly reusable, because it is a class itself that is organized around methods that can be

overridden to extend its functionality. The bootstrapping problem of writing methods

to implement classes is solved by having a simpler, more compact class system just to

implement the class macro.

In addition to overriding individual methods, the class syntax object can be declared

to expand to a completely different macro. The class macro is defined using the function

parse_class, which can be called directly so that the new macro can reuse the original

implementation.

CHAPTER 5

USING ZL TO MITIGATE ABI PROBLEMS

ZL can be used to mitigate key ABI problems discussed in Chapter 3. This chapter

gives the details of how key techniques from that chapter are implemented in ZL (see Table

5.1 for an overview). The next chapter demonstrates how these techniques can be used to

mitigate binary compatibility problems through the evolution of a simple spell checker.

5.1 Adding Data Members without Changing Class Size
Adding data members to a class changes the size of the class, which breaks binary

compatibility. To avoid this problem we must somehow fix the size of the class.

Table 5.1. ZL’s solution for changes that can affect the ABI. ZL can implement all of the
techniques discussed in Chapter 3 (and shown in Table 3.1, page 12). However, only a key
subset of the techniques discussed are currently implemented. An outline of how ZL can
implement the other techniques is given in Section 5.7.

Change Solution Implemented Section
add instance variable Yes 5.1, 5.3
add new method Yes 5.2, 5.3
reorder methods - 5.7
reorder instance variables - 5.7
remove private method - 5.7
remove private instance variable - 5.7
migrate method upward in class hierarchy - 5.7
add parameters - 5.7
insert new class in class hierarchy - 5.7
migrate parent downward in class hierarchy - 5.7
change compilers Yes 5.5, 5.6

34

5.1.1 Fixing the Size of a Class

As described in Section 3, one common technique to fix the size of the class is to add

dummy data members as placeholders to allow for future expansion. Using the ZL macro

system, it is possible to automate this solution, as shown in Figure 5.1. To support this

extension the ZL grammar has been enhanced to support specifying the size. The syntax

for the new class form is:

class C : fix_size(20) {...};

which allows a macro to fix the size of the class C to 20 bytes.

The macro in Figure 5.1 redefines the built in class macro. It works by parsing the

class declaration and taking its size. If the size is smaller than the required size, an array of

characters is added to the end of the class to make it the required size.

The details are as follows. Lines 2–7 decompose the class syntax object to extract the

relevant parts of the class declaration. A @ by itself in a pattern makes the parts afterward

optional. The pattern form matches the subparts of a syntax object; the first part of

the object (the {...} in this case) is a literal1 to match against, and the other parts of

the object are pattern variables. A @ followed by an identifier matches any remaining

parameters and stores them in a syntax list; thus, body contains a list of the declarations for

the class. Finally, :(fix_size fix_size) matches an optional keyword argument; the

first fix_size is the keyword to match, and the second fix_size is a pattern variable to

hold the matched argument.

If the class does not have a body (i.e., a forward declaration) or a declared fix_size,

then the class is passed on to the original class macro in line 9. Line 11 compiles the

fix_size syntax object to get an integer value.

Lines 13–22 involve finding the original size of the class. Due to alignment issues the

sizeof operator cannot be used, since a class such as “class D {int x; char c;}” has

a packed size of 5 on most 32 bit architectures, but sizeof(D) will return 8. Thus, to get

the packed size, a dummy member is added to the class. For example, the class D will

become “class D {int x; char c; char dummy;}” and then the offset of the dummy

1 ZL matches literals symbolically (i.e., not based on lexical context). Matching sensitive to lexical context
is future work. (See 11.5.2)

35

1 Syntax * parse_myclass(Syntax * p, Environ * env) {
2 Mark * mark = new_mark();
3 Match * m = match_args
4 (0, raw_syntax(name @ (pattern ({...} @body))
5 :(fix_size fix_size) @rest), p);
6 Syntax * body = match_var(m, syntax body);
7 Syntax * fix_size_s = match_var(m, syntax fix_size);
8

9 if (!body || !fix_size_s) return parse_class(p, env);
10

11 size_t fix_size = ct_value(fix_size_s, env);
12

13 m = match(m, syntax dummy_decl,
14 replace(syntax {char dummy;}, NULL, mark));
15 Syntax * tmp_class = replace(raw_syntax
16 (class name ({...} @body dummy_decl) @rest),
17 m, mark);
18 Environ * lenv = temp_environ(env);
19 pre_parse(tmp_class, lenv);
20 size_t size = ct_value
21 (replace(syntax(offsetof(name, dummy)), m, mark),
22 lenv);
23

24 if (size == fix_size)
25 return replace(raw_syntax
26 (class name ({...} @body) @rest),
27 m, mark);
28 else if (size < fix_size) {
29 char buf[32];
30 snprintf(buf, 32, "{char d[%u];}", fix_size - size);
31 m = match(m, syntax buf,
32 replace(string_to_syntax(buf), NULL, mark));
33 return replace(raw_syntax
34 (class name ({...} @body buf) @rest),
35 m, mark);
36 } else
37 return error(p,"Size of class larger than fix_size");
38 }
39 make_syntax_macro class parse_myclass;

Figure 5.1. Macro to fix the size of a class. All ... in this figure are literal.

36

member with respect to the class D is taken. This new class is created in lines 13–17. Here,

the @ before the identifier in the replacement template splices in the values of the syntax

list.

To take the offset of the dummy member of the temporary class, it is necessary to parse

the class and get it into an environment. However, we do not want to affect the outside

environment with the temporary class. Thus, a new temporary environment is created in

line 18 using the temp_environ macro API function. Line 19 then parses the new class

and adds it to the temporary environment. The pre_parse API function partly expands the

passed-in syntax object and then parses just enough of the result to get basic information

about symbols.

With the temporary class now parsed, lines 20–22 get the size of the class using the

offsetof primitive.

Lines 24–37 then act based on the size of the class. If the size is the same as the

desired size, there is nothing to do and the class is reconstructed without the fix_size

property (lines 24–27). If the class size is smaller than the desired size, then the class is

reconstructed with an array of characters at the end to get the desired size (lines 28–35).

(The string_to_syntax API function simply converts a string to a syntax object.) Finally,

an error is returned if the class size is larger than the desired size (lines 36–37).

The last line declares the function parse_myclass as a syntax macro for the class

syntax form.

5.1.2 Allowing Expansion

The example in Figure 5.1 demonstrates one technique for preserving binary compat-

ibility when adding new data members. However, this technique requires planning ahead

and reserving enough space for all future extensions. If there is not enough space reserved

but enough space for a pointer, then the remaining space can be used to point to the rest of

the data. For example:

class C : fix_size(12) { int x; int y; int i; int j; };

could become:

class C { int x; int y;
struct {int i; int j;} * data; }

37

To do this, we modify the macro definition in Figure 5.1 to use the last bit of available

space for the overflow pointer instead of returning an error. To a user of the class, the fact

that some data members are stored in a separate object is completely transparent. In the

above example, if x is an instance of class C, then data member i can be accessed using

x.i. The full expansion of class C is something like:

class C { int x; int y;
class Overflow {

struct Data { int i; int j; };
struct Data * ptr;
Overflow() {ptr = malloc(sizeof(Data));}
Overflow(const Overflow & o)

{ptr = malloc(sizeof(Data));}
~Overflow() {free(ptr);} };

Overflow overflow;
pseudo_member i int overflow.ptr->i;
pseudo_member j int overflow.ptr->j; };

The key to making this work is the use of pseudo_member (which is built into the

default class macro) to create pseudo members that behave like normal members for

most purposes. This support includes properly calling the constructor and destructor for

the member if it has one. Thus, the members in C::Overflow::Data will get properly

initialized even though malloc/free is used instead of new and delete.

In principle, the fix_size macro can work without the pseudo_member extension, but

doing so greatly increases the complexity of fix_size, and implementing pseudo_member

in the class macro was accomplished in around 6 lines of code. In addition, a closely related

feature, alias, is useful for implementing other features such as anonymous unions. An

alias is like a pseudo_member except that the constructor and destructor for the member

are not called.

We chose to implement pseudo_member in the default macro class. However, since

the class macro is built using its own class system, extending the class macro to support

pseudo_member is fairly straightforward, and would still be less work than trying to do all

the work in the fix_size macro.

The enhanced fix_size macro can also be used to store all the private data, i.e. the

“pimpl idiom,” in a separate object by specifying a size of zero, which the fix_size macro

would recognize as a special case.

38

5.1.3 Validation

Both previously mentioned techniques have been implemented in ZL as a macro

library. All the end user needs to do is include the library, which will replace the class

implementation with one that supports fixing the size. We have verified that the size does

not change under various scenarios and hence binary comparability will be maintained.

5.2 Fixing the Size of the Virtual Table
Adding new virtual methods can break binary compatibility in essentially the same

way as adding data members. Since the macro that implements classes uses another class

to implement the vtable, all of the techniques previously discussed can easily be used to fix

the size of the vtable. To make this strategy work, the ZL class macro provides a way to

specify the implementation of the class used to implement the virtual table.

We have written a macro that uses the technique just described to allowing fixing the

vtable size using the special syntax:

class X : fix_vtable_size(8) {...}

which will fix the vtable size to 8 bytes. We have verified that the macro does indeed fix

the size of the vtable and hence maintains that aspect of binary compatibility. We have

also written a a more sophisticated macro that, amount other things, allows the size to be

implemented in terms of slots, which is discussed in Section 6.6.

5.3 A Better ABI
Adding new data members or methods breaks binary compatibility because the sizes

of the class and vtable are needed at compile time. The size of the class is needed when

directly allocating an object on the stack, or when inlining one object into another. The first

can be avoided by dynamically allocating the class on the heap. However, the second is a

problem with most C++ ABIs as a typical C++ ABI defines class layout to be something

like:

class Parent {...};
class Child { Parent parent; ...};

which inlines the parent in the child class. This means adding new data members to the

parent class will break binary compatibility for any code that depends on the child class.

39

We defined a new ABI to avoid this problem. Our new ABI defines class layout to be

something like:

class Parent {void * child_ptr; ...};
class Child {
Parent * parent_ptr; void * child_ptr; ...};

where the parent class is dynamically allocated when the child class is created, and

child_ptr is used to downcast. This strategy preserves binary compatibility when new

data members are added to the parent. A similar strategy is used for the vtable.

The code to implement the new ABI is under 60 lines of code. It overrides three

methods from the core class macro; the method that adds the parent info to the user type

was rewritten, and some additional information was added to every user type to include the

child pointer.

We verified that the new ABI maintains binary comparability when adding new data

members by creating a situation in which adding data members would cause problems with

the more traditional ABIs. For example, in the following code:

class X {int x;}
class Z : public X {int z;}

adding a new data member, say y, to X will break binary compatibility with programs that

use Z since the addition will change the offset of z. Therefore, accesses to the data member

z will report an incorrect value. We verified that this was indeed a problem with ZL’s

default ABI, by setting the value of z with object code compiled against the new API (the

one with the new y data member) but reading the value with object code compiled against

the original API (without y) and verified that a different value was returned. We then did

the same thing with the new ABI and verified that the same value was returned. We did a

similar test to verify that adding new virtual methods will not break binary comparability.

For many purposes, this ABI can impose too much overhead. For example, each class

must have a pointer to the child to support down casting, and virtual-method dispatch is

slower. When binary compatibility is a primary concern, however, this ABI can be a good

choice. Furthermore, since ZL can use more than one ABI at a time, a programmer can

choose this ABI for just the parts of a program where the benefits in binary compatibility

outweigh the costs in performance.

40

5.4 Matching an Existing ABI
Because classes are just user types to the compiler, it is possible to construct classes to

match an existing ABI. This includes specialized ABIs which are really a C implementation

of classes (such as done in GNOME [5]) or C wrappers around a C++ API (such as done

in Aspell [1]). Doing so provides a more class-like interface to the C API. For example,

ZL’s macro API is a pure C API for simplicity; however, a more class-like interface is also

provided. ZL provides a class-like interface to many of the API types including Match,

Syntax, and UnmarkedSyntax. For example, instead of using match_var(m, syntax x),

one can use m->var(syntax x). This is done by creating a user type Match that looks

something like:

user_type Match { associate_type struct Match;
macro var(str, :this ths)

{ match_var(ths, str);} };

5.5 Matching GCC’s ABI
Just as it is possible to match a C ABI, it is possible to match other compilers’ ABIs.

It is even possible to use classes with different ABIs in the same program with some

restrictions, which depend on fundamental incompatibilities between different ABIs. For

example, while it is possible to mix classes with different ABIs through composition, doing

so via inheritance is unlikely to work. This is due to differences in how inheritance is

implemented, and in particular, how the vtable is laid out.

To demonstrate that ZL is complete enough to match another compiler’s ABI we have

matched the GCC ABI. The vtable layout turned out to be compatible with ZL’s default

ABI. However, there were still some key differences between ZL’s default ABI and GCC.

The most significant one is that each class has multiple implementations of each constructor

and destructor. In particular there is an allocating constructor that calls new and then

constructs the object, the constructor that is called by derived classes, and the normal

constructor. In a similar fashion there are multiple destructors. If the destructor is virtual

than there are also multiple destructors in the vtable, hence affecting vtable layout. In

addition to class layout, the mangling scheme used by GCC is different from that of ZL.

41

The code to implement the GCC ABI consists of around 150 lines of code to extend the

class macro and around 300 lines of code to implement the alternative mangling scheme. A

demonstration that we indeed matched the GCC ABI is given throughout the next chapter.

5.6 Matching Another ABI
In addition to the ABIs we have already implemented, we implemented one additional

ABI. We defined a new ABI by building on the existing class macro to pass the this

parameter as a global variable. This implementation simulates passing the this parameter

in a register, as the Microsoft C++ ABI does, as opposed to passing it as the first parameter,

as GCC does. We then used both ABIs in the same program, and even embedded classes

with one ABI in another via composition. The code to implement the new ABI was under

45 lines. The only methods from the core class macro that needed to be overridden were

the ones involved with constructing and calling member functions—three in all.

5.7 Other ABI Problems
This chapter illustrated how ZL enabled solutions to key ABI problems outlined in

Chapter 3. There are no fundamental limitations to solving the other ABI problems outlined

in that chapter. Regarding techniques for maintaining binary compatibility, it is just a

matter of writing the macros to implement the additional techniques. The main difficulty

in the unimplemented techniques is the bookkeeping to keep track of previous states in the

ABI. For example to avoid breaking binary compatibility when reordering methods it is

necessary to keep track of the old layout somehow. While possible with ZL macros—as

they can perform I/O—there is still some issues to work out before they can be made

reliable.

CHAPTER 6

THE CASE OF A SIMPLE SPELL CHECKER

In this chapter we use the techniques of the previous chapter to mitigate binary com-

patibility problems through the evolution of a simple spell checker (which we refer to as

Simple Spell). In addition, we demonstrate ABI compatibly with GCC.

6.1 Simple Spell
Simple Spell is a spell checker that provides basic spell checker functionally. It can

check that a word is in a dictionary and handles case in a intelligent fashion; for example,

if a first letter is upper case, Simple Spell will first try to match the word in a case-sensitive

fashion, and if that fails, it looks for an all lower-case version of the word; thus, it will reject

“Mcdonald” as the correct spelling is “McDonald,” but still accept “Color” and “Dog.” If

a word is not found in the dictionary then Simple Spell will offer a list of words which

are within one edit-distance of the misspelled word. For example, it will suggest “the”

when given “teh” or “color” when given “colr.” If the misspelled word is indeed the correct

spelling, Simple Spell can remember the word to avoiding flagging it again via a session

dictionary.

In addition to offering basic spell checker services such as checking if a word is the

dictionary, Simple Spell also provides an API for checking documents. The document

checker provides the ability to skip over parts of the document that should not be spell

checked, such as URL’s, via a plugable filter interface that selectively blanks out part of the

document. A simple URL filter is provided.

6.2 The Spell Checker API
With concern to binary compatibility there are two API’s of interest; there is the API

for applications simply wishing to use the spell checker and there is the extension API for

43

those wishing to extend the functionally of the spell checker. So that Simple Spell can be

used by more than just ZL, we will use GCC’s ABI for the application ABI. The extension

ABI will be in ZL’s own ABI so that we have more flexibility in the techniques used to

mitigate ABI compatibility problems. Nevertheless, we will still be able to make use of

extensions compiled with GCC through the use of a bridge class which will be discussed

in a latter section.

6.2.1 The Application API

The most important class in Simple Spell is the Speller class, which is responsible

for checking that a word is correctly spelled—and when it is not, coming up with a list of

suggestions. The definition of the Speller class is defined in speller.hpp as shown in

Figure 6.1.

The basic usage of Simple Spell is to create a new instance of the Speller class and

then initialize it via the init method by giving it a language and dictionary class. The

API of those two classes is of no interest to the application writer, instead new instances

are created via the new_lang and new_master_dict factory functions, which are shown

in Figure 6.2. Once a new instance of the Speller class is created, the check method is

used to check if a word is the correct spelling. If the word is not the correct spelling the

suggest method can be used to come up with a list of possible replacements, or if the word

is indeed correct, the add_to_session method can be used to ignore the word for the rest

of the session.

The Suggestions struct is used for iterating through the suggestion results. It is a

simple wrapper class and as such the implementation details are completely exposed via

the header file for the sake of efficiency. The SugsData struct is an internal class used by

ZL, but its existence must be exposed in the header file since it is a data member of the

Speller class.

The preprocessor macros GCC_ABI_BEGIN and GCC_ABI_END ensure that the GCC ABI

is used when compiled with ZL. They are defined in the config.hpp header file as such:

44

...
#include "config.hpp"
...
GCC_ABI_BEGIN

struct Suggestions {
...
const_iterator begin() const {return begin_;}
const_iterator end() const {return end_;}
const char * operator[](unsigned n) const {return begin_[n];}
unsigned size() const {return end_ - begin_;}

};

struct SugsData;

class Speller {
...
SugsData * sugs_data;
...

public:
Speller();
void init(Language * lang, Dictionary * main);
bool check(const char *);
void add_to_session(const char *);
Suggestions * suggest(const char *);
~Speller();

private:
Speller(const Speller &); // no copy

};

GCC_ABI_END

Figure 6.1. The speller.hpp header file providing the core functionally of Simple Spell.

Language * new_lang(const char * name);

Dictionary * new_master_dict(Language *, const char * fn);
WritableDict * new_session_dict(Language *);

Figure 6.2. Other parts of the core simple spell API defined in other header files.

45

#ifdef __zl
define GCC_ABI extern "C++" : "GCC"
define GCC_ABI_BEGIN extern "C++" : "GCC" {
define GCC_ABI_END }
#else
define GCC_ABI
define GCC_ABI_BEGIN
define GCC_ABI_END
#endif

where __zl is defined by the zlc compiler when prepossessing ZL code and

“extern "C++" : "GCC"” selects a macro-pluggable ABI implementation (details in

7.5.3).

The other important part of the spell checker API is the document checker interface,

which is shown in Figure 6.3. The Session class provides basic document checker support

and the SessionWFilters class extends it with basic filter support.

A document is checked one line at a time by passing in a line with the new_line

method. The next_misspelling method is then used to advance to the next misspelled

word on the current line, assuming there is one, otherwise it returns false. When there

is a misspelled word misspelled_word returns the word, and misspelled_offset and

misspelled_len can be used to find the word in the current line. If the misspelled word

was replaced with another, supposedly correct word, the replace method needs to be used

to inform the document checker of the correct spelling. When this method is used the

checker will recheck the word to make sure it is correct before advancing on.

The extended document checker interface SessionWFilters functionally is identical

to Session except that before checking the document one or more filters needs to be added

using the add method. The function new_url_filter returns a new instance of the URL

filter. The details of the Filter class are part of the extension API.

6.2.2 The Extension API

Simple Spell supports the ability to provide custom filters by extending the Filter

class defined in Figure 6.4. New filters simply define the filter method, which blanks out

any part of the line that should not be spell checked. New filters can then be added via the

add method of the already shown SessionWFilters class (Figure 6.3).

46

class Session {
protected:
char * word;
unsigned misspelled_start;
unsigned misspelled_stop;
...

public:
Session(Speller * sp);
virtual void new_line(const char *);
virtual bool next_misspelling();
virtual void replace(const char * new_word);
const char * misspelled_word() {return word;}
unsigned misspelled_offset() {return misspelled_start;}
unsigned misspelled_len() {return misspelled_stop - misspelled_start;}
virtual ~Session();

};

class SessionWFilters : public Session {
...

public:
SessionWFilters(Speller * sp);
virtual SessionWFilters & add(Filter *);
virtual void new_line(const char *);
virtual ~SessionWFilters();

};

Filter * new_url_filter();

Figure 6.3. Simple Spell document checker API. All parts of this API use the GCC ABI.

class Filter {
public:
Filter() : next() {}
virtual void filter(char * line) = 0;
virtual ~Filter();
Filter * next;

};

Figure 6.4. Simple Spell extension API.

47

6.3 A Simple Application and Binary Compatibility
To demonstrate the functionally of Simple Spell, and that we matched another compil-

ers ABI, we wrote a simple application that uses the Simple Spell library. When given a

file name (via the command line) the application checks the current document. Otherwise,

it enters a simple demonstration mode that accepts one word per line and reports it as either

correct or incorrect and then offers a list of suggestions.

The interface for checking a document is simple but functional. It checks the provided

text file for spelling errors and when one is found, prints out the line with the misspelled

word highlighted, offers a list of suggestions, and then prompts the user for what to do next.

For example:

Teh dog swm up the stream.
1) The 2) Tea 3) Ted 4) Tee 5) Tel 6) Ten 7) Tet 8) TeX 9) Tech
i) Ignore I) Ignore all r) Replace a) Abort

The user can then either accept one of the suggestions, ignore the word this time, ignore the

word for the rest of the document (i.e., add it to the session dictionary), offer a replacement,

or abort. When done checking the document, a new file is written out that has the same

name as the original file but with the .new extension added.

We have compiled this simple application with GCC and linked it with a version of

Simple Spell compiled with ZL, thus demonstrating that we have indeed matched GCC

ABIs with ZL. In addition we have compiled the application with ZL and linked it with a

version of Simple Spell compiled with GCC, thus further demonstrating ABI compatibility.

6.4 Adding a Filter, Compiled with GCC
Due to the choice of using ZL’s ABI for the Filter class, the Simple Spell library,

when compiled with ZL, can not make direct use of a Filter class that is compiled with

GCC. However, we can rectify this situation through the use of a simple bridge class.

6.4.1 The Bridge Class

The bridge class is shown in Figure 6.5. The Filter class with ZL’s ABI is included in

the file filter.hpp, while the Filter class in GCC’s ABI in wrapped in a module so that

we can refer to both at the same time. Normally, the module name will appear as part of

48

#include "filter.hpp"

module GCC :asm_hidden {
GCC_ABI
class Filter {
public:
Filter() : next() {}
virtual void filter(char * line) = 0;
virtual ~Filter();
Filter * next;

};
}

class FilterBridge : public Filter {
GCC::Filter * GCC_filter;

public:
FilterBridge(GCC::Filter * f) : GCC_filter(f) {}
void filter(char * line) {GCC_filter->filter(line);}
~FilterBridge() {delete GCC_filter;}

};

extern "C"
Filter * filter_bridge (void * filter) {
return new FilterBridge(reinterpret_cast<GCC::Filter *>(filter));

}

Figure 6.5. A bridge class to allow using filters compiled with GCC.

49

the mangled name of symbols defined within it; however, this is clearly not what we want

in this case. Thus, the :asm_hidden flag is used to make the module invisible as far as

external names go. Normally, this will cause name conflicts, but since a different mangling

scheme is used for the ZL and GCC ABIs, there is no conflict.

The actual bridge class is fairly simple and should be self explanatory. It implements

ZL’s Filter interface by simply forwarding the filter method to GCC Filter class.

Directly including header files for any parts involved with the GCC ABI is extremely

problematic since there will now be two filter classes, one of which is meant to be in ZL’s

ABI and others GCC’s. A module is not the same thing as a C++ namespace; for example,

the following will not work:

module GCC {class Filter {...};}
module GCC {class EmailFilter : public Filter {...};}

as the second module will shadow the first rather than extending in. Thus, wrapping the

header files in the module will not work. When ZL implements C++ namespaces this might

be made to work, but for now we simply avoid the need by not referring to the GCC Filter

class in the parameter for the filter_bridge factory function, and instead cast the void

pointer to the correct type.

6.4.2 Adding The Email Filter

With this bridge class now written we make use of it to add a filter that is compiled with

GCC to our application. The new filter, the email filter, is a simple filter that skips quoted

lines. For example given:

> This line will be skippd.
This line will be checkd.

the word “skippd” will not be checked but the word “checkd” will.

We avoid including the actual definition of the class itself and instead only include the

declaration of the factory function:

extern "C" void * new_email_filter();

We then make use of the email filter by passing in the pointer returned by

new_email_filter into filter_bridge to create a new Filter instance using ZL’s ABI.

50

6.4.3 Automating the Creation of the Bridge Class

The filter class is fairly simple with only one real method. The creation of the bridge

class for more complicated methods would be a lot more tedious. In addition, there is the

burden of keeping the bridge class up-to-date as methods are added or removed from the

interface class. Fortunately it is fairly easy to automate the creation of the bridge class with

a procedural macro.

Figure 6.6 shows the essential part of the bridge class. In order to avoid having to

include the definition of the class in the macro call we extract the original syntax object

from the class definition by using get_symbol_prop to extract the syntax_obj property

from the module used to implement the class. The syntax_obj property is one of many

properties added by the class macro.

Once we have the syntax object for the class we extract the virtual method definition

and create the necessary bridge code. We then return the code to define the bridge class.

The symbols OtherAbi and Bridge are lexically scoped and thus we do not need to worry

about conflicts with other bridge classes.

With this macro now written we replace the code in Figure 6.5 with

mk_bridge(Filter, filter_bridge, "GCC");

in the Simple Spell library.

6.5 Adding Support for a Personal Dictionary
No spelling dictionary can include every possible valid word; thus a key feature of

almost any spell checker is the ability to maintain a personal dictionary. We would like

to be able to add this feature to Simple Spell without breaking binary compatability.

Unfortunately, since we allow direct allocation of the Speller class (by exposing the class

definition, private data members and all) we cannot easily extend the Speller class without

breaking binary compatability. For one thing, we cannot add private data members as that

will change the size of the class instance.

Fortunately, all is not lost as we can still extend the the Speller class, we just need

to be careful not to change of the size of the class. Doing so using traditional C++ can be

very tedious and error prone. However, assuming we are willing to require that the library

51

Syntax * parse_mk_bridge(Syntax * p, Environ * env) {
Mark * mark = new_mark();
Match * m = match_args(0, syntax (class_n, fun_n, abi_name), p);
Syntax * class_syn = get_symbol_prop(m->var(syntax class_n),

syntax syntax_obj, env);
m = match_args(m, raw_syntax (_ @ (pattern ({...} @body)) @_), class_syn);

SyntaxList * bridges = new_syntax_list();
SyntaxEnum * itr = partly_expand_list(m->varl(syntax body), FieldPos, env);
Syntax * member;
while ((member = itr->next)) {
// if memeber is a virtual method, create a
// forwarding method and append it to bridges list

}

UnmarkedSyntax * res = syntax {
module OtherAbi :asm_hidden {

extern "C++" : abi_name $1;
}
class Bridge : public class_n {

OtherAbi::class_n * obj;
Bridge(OtherAbi::class_n * o) : obj(o) {}
$2;
~Bridge() {delete obj;}

};
extern "C" class_n * fun_n (void * o) {

return new Bridge(reinterpret_cast<OtherAbi::class_n *>(o));
}

};
return replace(res, match_local(m, class_syn, bridges, 0), mark);

}

make_macro mk_bridge parse_mk_bridge;

Figure 6.6. Part of the mk_bridge macro. The real implementation is just under 55 lines
of code.

52

is compiled with ZL, we can use the fix_size macro from Section 5.1 to maintain the

size of the class and thus maintain binary compatibility. Note that while we require that the

library be compiled with ZL, we will still be matching the GCC ABI. Thus applications

that use Simple Spell can still be compiled with either GCC or ZL.

Figure 6.7 shows the part of the header file defining the improved Speller class. The

header file is designed to be used by both GCC and ZL.

To be able to fix the size of the class, we first must determine what the size of the old

class was; thus we create a dummy class, SpellerOld for the sole purpose of taking its

size. We then use fix_size to fix the size of the new Speller class. With the class size

fixed, we are free to add (or remove) new private data members. We can even reorder

existing onces since we do not expose any code (in the form of inline functions) that use

the private data members.

We will also naturally need to add some additional methods to the class, but this will

not break binary compatability since the Speller class does not have a vtable. We can

even even overload an existing method, as is done with init, without a problem as it is

equivalent to adding a new method since the two methods will be mangled differently.

However, since fix_size is a ZL construct and this header file is also used by

applications compiled with GCC we must also fix the class size in GCC’s eyes. To do

this we replace the entire class with a character array of the correct size when the header is

read by GCC (or other non-ZL compiler). Since the application has no need to access the

private data members this is all that is needed to preserve binary compatibility.

It is important to note that while the header file is slightly complicated, it is far simpler

than any solution would of been without the aid of the fix_size macro. In particular, the

changes shown here are the only changes necessary to fix the size of the class. The library

code does not need to worry about the fact the some of the private data members are now

likely in a separate object, nor does it need to worry about maintaining the object which is

likely to be heap allocated.

To test the new functionally and to verify that we still match the GCC ABI, we enhanced

our sample application to take advantage of the new personal dictionary. We then compiled

the application with both ZL and GCC and linked it with the same library (which now must

53

class SpellerOld {
// original Speller class private data members

};

class Speller
#ifdef __zl
: fix_size(sizeof(SpellerOld))

#endif
{
public: // but don’t use
#ifdef __zl
// private data members
SavableDict * personal;
// more private data members

#else
union {
void * datap; // to make sure the structure is aligned
char data[sizeof(SpellerOld)];

};
#endif
public:
Speller();
void init(Language * lang, Dictionary * main);
void init(Language * lang, Dictionary * main, SavableDict * personal); // NEW
bool check(const char *);
void add_to_session(const char *);
void add_to_personal(const char *); // NEW
void save_personal();
Suggestions * suggest(const char *);
~Speller();

private:
Speller(const Speller &); // no copy

};

Figure 6.7. Extending the Speller class to include support for a personal dictionary.

54

be compiled with ZL). We also verified that we indeed maintained binary compatability

by linking the original application (before the changes in this section) with the new library

without recompiling and verified that everything worked.

6.6 A Better ABI to Allow Future Enhancements
Through the use of ZL we were able to extend the Speller class without breaking

binary compatability. However, the only reason we were able to do this was because we

did not need to add any virtual methods to the Speller class. If we did, we would not

have been able to extend the Speller class as adding any virtual methods will change the

offset in the vtable for any derived classes. In addition, we would not be able to fix the

size of Speller’s vtable as we did with the class itself since—unlike with the private data

members—the application does directly use the vtable. As such GCC will not be able to

use any methods whose pointer is not directly stored in the vtable.

However, with some planning ahead we can create a better initial ABI which allows for

easier expansion. For every class whose definition is exposed to the application we will fix

the size of the class from the start. We will also fix the size of the vtable to allow for future

expansion. As long as the vtable size is larger than the required size we will not create ABI

problems for GCC as a separate object will not need to be used. We will also take use this

opportunity to hide some unnecessary implementation details from the application.

Figure 6.8 shows the new Speller class definition. Since the applicaton has no need

to access any of the private data members we chose to use fix_size to implement the

pimpl idiom. By doing so we also able to avoid a layer of indirection in the orignal API; in

the orignal API (Figure 6.1) the Speller class contained a pointer to the SugsData class

to avoid having to expose the SugsData definaton in the header file. However, with the

pimpl idiom this is unnecessary since only the Speller class needs access to the private

data members. Any source file that does not implement the Speller class only needs to

know the size of the class (just like application using the Simple Spell library). Thus,

unless __speller_impl is defined all the other source files will see is void * impl.

Any source file that defines part of the spell checker includes an alternative header file

speller_impl.hpp which defines the SugsData class, the __speller_impl preprocessor

55

class Speller
#ifdef __speller_impl
: fix_size(0)

#endif
{
#ifdef __speller_impl
...
SugsData sugs_data;

#else
void * impl;

#endif
public:
Speller();
void init(Language * lang, Dictionary * main); // will take ownership of both
bool check(const char *);
void add_to_session(const char *);
Suggestions * suggest(const char *); // result only valid to next call to suggest
~Speller();

private:
Speller(const Speller &); // no copy

};

Figure 6.8. The Speller class using the pimpl idiom.

macro and then includes speller.hpp, for example:

struct SugsData {...};

#define __speller_impl
#include "speller.hpp"
#undef __speller_impl

Figure 6.9 shows the new Session class definition. Since, unlike like the Speller

class, some of the private data members are used by the application (via inline functions)

we can not use the pimpl idiom. Instead we fix the size of the class to be just large enough

to include the pointer-to-vtable and the private data members used by inline functions.

To make the header file more readable we define a few preprocessor macros that are

defined differently depending on whether ZL is being used as follows:

56

class Session
FIX_SIZE(sizeof(void *) /* vptr */ + sizeof(unsigned) * 2

+ sizeof(char *) + sizeof(void *))
VTABLE_SLOTS(16) {

protected:
unsigned misspelled_start;
unsigned misspelled_stop;
char * word;

#ifdef __zl
// other private data members

#else
void * impl;

#endif
void reset_line();

public:
Session(Speller * sp);
virtual void new_line(const char *);
virtual bool next_misspelling();
virtual void replace(const char * new_word);
const char * misspelled_word() {return word;}
unsigned misspelled_offset() {return misspelled_start;}
unsigned misspelled_len() {return misspelled_stop - misspelled_start;}
virtual ~Session();

#include "vtable_pad-Session.inc"
};

Figure 6.9. Improved Session class to support future enhancements without breaking
binary compatibility.

57

#ifdef __zl
define FIX_SIZE(size) :fix_size(size)
define VTABLE_SLOTS(size) :vtable_slots(size)
#else
define FIX_SIZE(size)
define VTABLE_SLOTS(size)
#endif

In addition, and unlike the Speller class, the Session class has a vtable; thus, we also

fix the size of the vtable so we can add new methods without breaking binary compatability.

However, since we also need to match the GCC ABI and provide a header file that can

be used with GCC we need to use a method slightly more complicated than the method

described in Section 5.2 in which we used the same fix_size macro on the vtable class.

The problem is that we need to fix the size of the vtable in GCC’s eyes but we can not just

provide a dummy character array as we can not directly specify what goes into the vtable,

and even if we could the application needs to access the vtable for virtual dispatch. But we

can still fix the size by including dummy virtual methods, which is what is included in the

file vtable_pad-Session.inc:

#ifndef __zl
virtual void * dummy__0001_();
virtual void * dummy__0002_();
...
virtual void * dummy__0011_();
#endif

Thus, to create the vtable_pad-Session.inc file we use a specialized macro de-

signed specially for the vtable class. This macro will, as a side effect, write out a file with

the correct number of dummy methods to be used by GCC. In addition, since we are using

a specialized macro, we can also allow the user to specify the size in terms of available

slots for virtual methods rather than raw size. Thus we use :vtable_slots instead of

:fix_vtable_size.

Since using dummy methods is the only viable method to fixing the size of the vtable

with GCC we need to plan ahead and make sure we reserve enough slots to allow for future

expansion. We choose to use 16, but we could easily make that larger since the vtable

is only allocated once per class (as opposed to once per class instance) and thus does not

waste a lot of memory.

58

The SessionWFilters class, shown in Figure 6.10, gets similar treatments except that

we fix the size to 0 (and thus effectively use the pimpl idiom) since none of the private data

members need to accessed by the application.

Since we already decided that we will not match the GCC ABI for the extension

interface we will use the more complicated ABI described in Section 5.3 for the filter class

so we don’t have to worry about reserving enough vtable slots ahead of time. For reference

the the new definition is included in Figure 6.11.

While we changed the ABI from the orignal we have not made any changes to the API,

thus we can reuse the same application after a simple recompile.

class SessionWFilters : public Session
FIX_SIZE(0) VTABLE_SLOTS(16)

{
#ifdef __zl
// private data members

#else
void * impl;

#endif
public:
SessionWFilters(Speller * sp);
virtual SessionWFilters & add(Filter *);
virtual void new_line(const char *);
~SessionWFilters();

#include "vtable_pad-SessionWFilters.inc"
};

Figure 6.10. Improved SessionWFilters class.

extern "C++" : "better"
class Filter {
public:
Filter();
virtual void filter(char * line) = 0;
virtual ~Filter();
Filter * next;

};

Figure 6.11. The Filter class using an enhanced ABI.

59

6.7 A Simple Spell Checker, Version 2
Now that we have defined a better ABI we can make two key enhancements with

minimal effort: 1) add a personal dictionary and 2) better support filters with state.

The changes made for the first enhancement are identical to the ones we made in

Section 6.5, except that we no longer need any of the tricks in that section as we already

fixed the size. All we need to is add the necessary private data members and methods.

So far the filters we have added are stateless, that is they they do not need to maintain

any state between lines. But most useful filters will need to maintain sort of state between

line; for example, a filter to only check the comments a C or C++ source file will need to

know if the previous line started a C style comment. The current API will support such

filters as long as only a single document is checked and the lines are checked in sequential

order. However, it is sometimes necessary to recheck the same document and often useful

to check more than one document without having to create a new session.

Thus, to better support stateful filters we add a new virtual method to the Session

and Filter class, reset(), which simply resets the state. Since not all filters need to

implement this method we provide a no-op default implementation.

Adding the reset method to Session would normally break binary compatability since

it will change the offset of any derived classes. In particular, in SessionWFilters, the

offset of the add method will change. Thus, if an application calls the add using the new

SessionWFilters class with a header file for the old implementation, the wrong method

will be called. As we already discussed, without planning ahead and reserving spots there is

little we could have done to avoid this problem while still using the GCC ABI. Fortunately,

we did plan ahead and adding the new method does not cause a problem.

To take advantage of the new filter API we added a new filter to our sample application

that simple checks all comments in a C or C++ source file and ignores the rest.

To verify that we indeed maintained binary compatability, we linked the original

application (before the changes in this section) with the new library without recompiling

and verified that everything worked. In addition we tried adding the reset method without

fixing the size of the vtable and verified that the wrong method was called as predicted.

60

6.8 An Opportunity for an Even Better ABI
The enhanced ABI we used for the Filter class (from section 5.3) goes a long way

towards preserving binary compatibility. The new ABI will avoid changing the offsets of

any virtual methods of derived classes when adding new methods to the base class. But

unfortunately this is still not enough to allow us to use filters compiled with the old ABI

with the new ABI, at least without some extra care. That is, we can use a filter from the

old ABI as long as the new reset method is never called. If we do try to call the reset

method on a filter with the old ABI, the application will crash. The problem is that filters

compiled with the old ABI will still use the original vtable since they are created statically

when the application starts. Hence, the application will crash since the original vtable does

not contain that slot.

A better ABI, which could be implemented in ZL, could avoid this problem by dy-

namically creating the vtable so that all derived classes will use the vtable for the Filter

class of the new ABI regardless of which ABI they where originally compiled with. This

change will allow new virtual methods to be called without a problem provided that they

have a default implementation. If they do not (i.e., they are pure virtual) then source code

compatability will also be broken and hence there is no point in trying to maintain binary

compatibility.

6.9 Comparison to a Real Spell Checker: Aspell
Simple Spell is modeled after a real spell checker, Aspell [2]. In many ways the

interface to Simple Spell mirrors that of Aspell. Of course, Aspell is far more complex

than Simple Spell, with Aspell containing around 30,000 lines of code and Simple Spell

containing between 1,100 and 1,700 lines of code (depending on which version) (see

Table 6.1).

To mitigate ABI compatibility problems Aspell does not expose a C++ interface.

Instead, a Perl script is used to generate the C interface. The Perl script is around 1,900 lines

of code, with around a 1,000 line input file. The Perl script generates around 3,000 lines of

code, of which 400 lines consist of code that is now manually maintained. An additional

1,900 lines of manual interface code is also used in the C interface (not including the 400

61

Table 6.1. Approximate lines of code of the various versions of Simple Spell and Aspell.

Spell Checker Version Section Lines Of Code
Simple Spell (Initial Version) 6.1 1,100
Simple Spell w/ Email Filter 6.4 1,300
Simple Spell w/ Personal Dictionary 6.5 1,300
Simple Spell w/ Better ABI 6.6 1,600
Simple Spell, Version 2 6.7 1,700
Aspell - 30,000

lines once generated with the Perl script). The large line count for the interface code reflects

the fact that Aspell is a moderately complex program, and also that the bridge between the

internal C++ interface and external C interface is rather involved; for example, it includes

support for managing memory and conversion of the input and output from one encoding

(such as UTF-8) to Aspell’s internal 8-bit encoding.

Due to its use of advanced C++ features (such as templates) Aspell is currently unable

to compile under ZL. Had it been able to compile, the bridge code (from the internal C++

ABI to the external C ABI) could be written using ZL; the information in the interface file

could become part of the class, and a modified class macro can be used to extract it. It

remains to be seen if the end result will be any simpler. More importantly, by using many

of the techniques outlined in this chapter, it will likely be possible to directly expose a

stable C++ that will not change between different releases of Aspell.

CHAPTER 7

USING ZL

As the main ZL compiler compiles to a C-like language and does not create executables

directly, a driver script is provided to create the executable. The driver is designed to act as

a drop in replacement for GCC. For example,

zlc main.zl file1.cpp file2.zlp -o main

compiles the pure ZL source file main.zl, the C++ source file file1.cpp, and the ZL

source file file2.zlp into an executable main. Each file is compiled slightly differently

based on the extension as ZL has different modes for C, C++, and ZL source files. In

addition C, C++, and ZL source files with the .zlp extension are run through the C

preprocessor to handle includes and other token-level macros that the higher-level ZL

macro processor can not handle. Pure ZL files with .zl extension are not preprocessed.

The rest of this chapter gives the additional details of ZL of interest to the macro or tool

implementer. The rest of the implementation details worth mentioning are given in the next

chapter.

7.1 Classes and User Types
A user type (see 4.1), which is ZL’s minimal notion of a class, consists of two parts:

a type, generally a struct, to hold the data for the class instance, and a module, which is

collection of symbols for manipulating the data.

As an example,

class C { int i;
int f(int j) {return i + j;} };

expands to:

63

user_type C {
struct Data {int i;};
associate_type struct Data;
macro i (:this ths = this) {(*(C *)ths)..i;}
macro f(j, :this ths = this) {f‘internal(ths, j);}
int f‘internal(C * fluid this, int j) {return i + j;}

}

and creates the class C.

To allow user types to behave like classes, member-access syntax gets special treatment.

For example, if x is an instance of the user type above, x.i calls the i macro in the C

module, and it passes a pointer to x as the this keyword argument. This protocol allows

x.i to expand to something that accesses the x field of the underlying struct, which can

be done using the special syntax x..i. Thus, i effectively becomes a data member of

x. Methods can similarly be defined. For example, x.f(12) calls the f macro with one

positional parameter and the this keyword argument.

The default value for the this keyword argument is necessary to support the implicit

this variable when data members and methods are accessed inside method definitions.

The function f‘internal, which implements the f method, demonstrates this. (The

‘internal simply specifies an alternative namespace for the f symbol so that it does

not conflict with the f macro.) The first parameter of the function is this, which puts

the symbol into the local environment. When i is called inside the function body the

this keyword argument is not supplied, since we are not using the member access form.

Therefore, the this keyword argument defaults to the this specified as the default value,

which binds to the this in the local environment. The fluid keyword (see 7.3.7) is

necessary to make the this variable visible to the i macro; with normal hygiene rules,

binding forms at the call site of a macro are invisible, as symbols normally bind to whatever

is visible where the macro was defined.

User types can also be declared to have a subtype relationship. The declaration specifies

a macro for performing both casts to and from the subtype. Subtypes are used to implement

inheritance. For example the class:

class D : public C { int j; };

expands to something like:

64

user_type D {
import C;
struct Data {struct C::Data parent; int j;};
associate_type struct Data;
macro _up_cast (ths) {&(*ths)..parent;}
macro _down_cast (other) {(D*)other;}
make_subtype C _up_cast _down_cast;
macro j (:this ths = this) {(*(D*)ths)..j;}

}

New symbols defined in a module are allowed to shadow imported symbols, so the fact

that there is also a Data in C does not create a problem. Also, note that there is no need to

redefine the data member and method macros imported from C, since the existing ones will

work just fine. They work because the class macro makes sure that the ths macro parameter

is cast to the right type before anything is done with it. For example, if y is an instance

of the type D, then y.i expands to (*(C*)&y)..i. When ZL tries to cast &y to C*, the

D::_up_cast macro is called and the expression expands to ((*&(*&y)..parent))..i,

which simplifies to y..parent..i. Method calls expand similarly, except that the cast is

implicit when the ths macro parameter is passed into the function.

If a class contains any virtual methods, then a vtable is also created. The macro that

implements the method then looks up the function in the vtable instead of calling it directly.

For example, if f was a virtual function in the class C, then the macro for f would look

something like:

macro f(j, :this ths = this) {_vptr->f(ths, j);}

where _vptr is a hidden member of the class that contains a pointer to the virtual table.

The vtable is also a class, so to implement inheritance with virtual methods a child’s vtable

simply inherits the vtable of the parent. To override a method, the constructor for the child’s

vtable simply assigns a new value to the entry for the method’s function pointer.

7.2 Pattern-Based Macros and Lexical Extensions
Figure 7.1 shows a pattern-based macro (see 4.2) that iterates over an STL-like con-

tainer. To print the contents of con, a container of integers, one would use:

foreach(x, con, {printf("%d\n", x);});

65

macro foreach (VAR, WHAT, BODY) {
typeof(WHAT) & what = WHAT;
typeof(what.begin()) i=what.begin(), e=what.end();
for (; i != e; ++i) {
typeof(*i) & VAR = *i;
BODY;

}
}

Figure 7.1. Macro that iterates over an STL-like container.

7.2.1 Extending the Parser

The syntax of the foreach macro in Figure 7.1 is a bit ugly. It would be nice if we

could instead write something like:

foreach (x in con) printf("%d\n", x);

which does not have the shape of a function call. ZL lets us do this by modifying1 the STMT

production in the grammar for the parser (from raw text to syntax objects) to recognize the

new form:

<foreach> "foreach" "(" {ID} "in" {EXP} ")" {STMT}

In this grammar, anything between {} becomes a subpart of the syntax object that is named

between the <>. We must pair this modification with a macro for the new syntax form.

The definition of the new foreach macro is identical to the function-call one except that

smacro is used instead to declare that the macro works with a syntax object produced by

the parser.

Support for both styles of macros (function call and syntax) is important, because

not every macro warrants support in the parser. For example, since the or macro from

Section 4.2 has limited usefulness, it probably does not warrant adding a new operator.

Furthermore, function-call macros are typically sufficient in generating boilerplate code.

In contrast, new general-purpose forms typically merit a parser extension.

1 More modular lexical extensions that do not requiring modifying the full grammar is future work. (See
Section 11.6.)

66

7.2.2 The Parser

The ZL grammar is specified through a PEG [35], but with a few extensions to the usual

PEG notation, and a Packrat [34] parser is used to convert strings of characters to syntax

objects. A simplified version of ZL’s initial grammar is shown in Figure 7.2. For readers

not familiar with PEGs, the two most important things to note are that PEGs work with

characters rather than tokens, and the / operator defines a prioritized choice. A prioritized

choice is similar to the | operator used in Backus-Naur Form, except that it unconditionally

uses the first successful match. For example, given the rule “A = ’a’ / ’ab’” the string

ab will never match because the first choice is always taken. The PEG specification more

closely resembles regular expression syntax (as used in grep) than it does Backus-Naur

Form. The (), [], ?, *, +, and _ (otherwise known as .) operators are all used in the

same manner as they are in regular expressions. Anything between single quotes is a literal

string. The double quote is like the single quote, except that special rules make them behave

similarly to tokens. For example, "for" will match the for in for(, but it will not match

the prefix of foreach. The {} and <> are extensions to the standard PEG syntax and are

used for constructing syntax objects in the obvious ways. The special <<mid>> operator

and MID production are explained later in Section 8.2.

7.2.3 Built-in Macros

The grammar serves to separate individual statements and declarations, and to recog-

nize forms that are convenient to recognize using a Packrat parser. As such, it creates

syntax objects that need additional processing before they can be compiled into an AST.

The expander has several built-in macros for this purpose: stmt, exp, (), [], and {}.

The stmt macro recognizes declarations and expressions. It first tries the declarations

expander, which is a handwritten parser designed to deal with C’s idiosyncratic syntax for

declarations. If the declarations expander fails, then the expression expander is tried, which

is an operator-precedence parser [32]. The exp macro is like the stmt macro, but only the

expression expander is tried.

The macros (), [], and {} are used for reparsing strings. The () and [] macros

reparse the string as an expression using the EXP production in the grammar, where as the

{} generally reparses the string as a block using the BLOCK production.

67

TOP = <top> SPACING {STMT}+;

STMT = <<mid PARM>> {MID} ";"
/ <if> "if" "(" {EXP} ")" {STMT} ("else" {STMT})?
/ <while> "while" "(" {EXP} ")" {STMT}
/ <break> "break" ";"
/ <return> "return" {EXP} ";"
/ {BLOCK}
other statements ...
/ <stmt> ({TOKEN_}+ {PAREN} {BRACE} / {TOKEN}+ ";");

EXP = <exp> {TOKEN}+;

BLOCK = <block> "{" {STMT}* "}";

TOKEN_ = <<mid PARM>> {MID} / {BRACK} / {CONST} /
{ID} / {SYM};

TOKEN = TOKEN_ / PAREN;

PAREN = <()> "(" {RAW_TOKEN*} ")";
BRACE = <{}> "{" {RAW_TOKEN*} "}";
BRACK = <[]> "[" {RAW_TOKEN*} "]";

CONST = <f> ... / <l> ... / # float, numeric literal
<s> ... / <c> ... # string, character

ID = <<mid>> {MID} / {[@$\a_][\a_\d]*} SPACING;

SYM = {’...’ / ’==’ / ’+’ / ...} SPACING;

RAW_TOKEN = STRING / CHAR / SYM / BRACE / PAREN /
BRACK / COMMENT / [^\)\]\}];

STRING = ’"’ (’\\’_/[^"])+ ’"’ SPACING;
CHAR = ’\’’ (’\\’_/[^’])+ ’\’’ SPACING;

SPACING = [\s]* COMMENT?;

COMMENT = ...;

Figure 7.2. Simplified PEG grammar.

68

7.3 Macro API
Figure 7.3 shows a procedural-macro (see 4.4) version of the foreach macro, which

returns an error message if the container does not contain the begin or end method. This

section gives the details of procedural macros and its API. The API has both a class-like

form (see 5.4) and a procedure form; this section presents the class-like form. The mapping

from the class API to the raw API is straightforward. The general scheme is that the object

name prepends the method in all lower case with an underscore separating it from the

method name. The object is then passed in as the first parameter. For example, the method:

Syntax * Match::var(UnmarkedSyntax * var);

becomes

Syntax * match_var(Match *, UnmarkedSyntax * var)

7.3.1 The Syntax Object

The API for syntax objects (see 4.3) is lised in Figure 7.4. There are two syntax-

objects types, UnmarkedSyntax and Syntax. The difference between the two is the first

represents a syntax object that has not been marked (see 4.4) yet, while the second one has.

A Syntax object will automatically convert to a UnmarkedSyntax. But in order to go from

Syntax * foreach (Syntax * syn, Environ * env) {
Mark * mark = new_mark();
Match * m = match_args(0, syntax(VAR,CON,BODY), syn);
Syntax * what = m->var(m, syntax CON);
if (!symbol_exists(syntax begin,what,mark,env) && ...)
return error(what,

"Container lacks begin or end method.");
UnmarkedSyntax * repl = syntax {
typeof(CON) & what = CON;
typeof(what.begin()) i=what.begin(), e=what.end();
for (; i != e; ++i) {typeof(*i) & VAR = *i; BODY}};

return replace(repl, m, mark);
}
make_syntax_macro foreach;

Figure 7.3. Version of foreach that returns a helpful error message if the container does
not contain the begin or end methods.

69

Type UnmarkedSyntax

Type Syntax, subtype of UnmarkedSyntax, with methods:
Syntax * num_parts(unsigned)
Syntax * part(unsigned)
Syntax * flag(UnmarkedSyntax *)
bool simple()
bool eq(UnmarkedSyntax *)
Syntax * stash_ptr(void *) (static method)
void * extract_ptr()

Figure 7.4. Syntax object API.

UnmarkedSyntax to Syntax the syntax object needs be marked, which is generally done

via replace.

Internally UnmarkedSyntax and Syntax are the same type. The distinction in the API

is to avoid invalid use of unmarked syntax objects.

A syntax object consists of one or more parts, and optional flags. The first part has

special meaning and is used to identify the syntax, provided that it is simple. A simple

syntax object is basically2 a syntax object with just one part, and no flags. Internally it is

represented slightly differently. Parts other than the first are considered arguments.

Syntax objects can also have any number of optional flags. A flag is a named argument

and is retrieved by name, rather than position. A flag itself is just a normal syntax object

with the first part used to name the flag. Flags can be tested for existence using the Syntax’s

flag method (which returns NULL if the flag does not exist) or matched with the match

family of functions (see 7.3.3). Flags are primarily used when parsing declarations and can

be created in macros by using the raw_syntax primitive. For example the following syntax

object:

(... :flag1 :(flag2 value2))

contains two flags, where flag1 is a flag without any value associated with it while flag2

is a flag with a value. Flags can also be passed into function call macros in which are just

another name for the already described keyword arguments.

2 This is an over simplification since “foo” and “(foo)” are not the same. The first is considered simple
while the second is not.

70

Syntax objects can also contain other types of objects embedded within them. A syntax

object of such form is considered an entity. The most common types of objects are parsed

syntax either in the form of an AST node or a symbol. However, it is also possible to

embed arbitrary objects such as pointers in a syntax object using the stash_ptr and

extract_ptr methods. These methods are most commonly used in combinations with

Symbol properties, which will be described in 7.4.4.

Sometimes it is useful to get information on the syntax object without having to use

match. For this ZL provides a number of methods to directly access the syntax object and

get basic information. The part and num_parts method can be used for direct access.

The eq and simple method can be used to get basic properties on the syntax object. The

eq method tests if the syntax object is equal to another, taking into account that the first

one may be marked. The simple method tests if the syntax object is simple as previously

described.

7.3.2 The Syntax List

A syntax list is a syntax object whose first part is a @. It represents a list of syntax

objects (which can include flags). Lists have the effect of being spliced into the parent

syntax object.

Syntax lists can be used as values for macro identifiers, in which case the results are

spliced in. Macros can return syntax lists, but the results are not automatically spliced in.

Rather when a list of elements is parsed any @ are flattened as the list is read in. It is an

error to return a syntax list in a nonlist context.

The SyntaxList API is shown in Figure 7.5. Syntax lists are created using the

new_syntax_list function. Elements are then appended to the list using the append

or append_flag method. The empty method returns true if the list has 0 elements. The

elements method is used to iterate through the elements and return a SyntaxEnum. The

next method of SyntaxEnum returns the next element in the list or NULL if there is none,

while the clone method returns a copy of the SyntaxEnum.

71

Type SyntaxList, subtype of Syntax, with constructor:
SyntaxList * new_syntax_list()

and methods:
int empty()
void append(Syntax *)
void append_flag(Syntax *)
SyntaxEnum * elements()

Type SyntaxEnum with methods:
Syntax * next()
SyntaxEnum * clone()

Figure 7.5. Syntax list API.

7.3.3 Matching and Replacing

Figure 7.6 lists the API for matching and replacing (see 4.4). The match, match_args,

and replace functions have already been described. The var method is identical to the

previously described match_var function. The varl method is like var except that it

returns an an enumeration for iterating through the elements of a syntax object that is also

a list. The fact that it results an enumeration rather than a list is deliberate, since syntax

lists are mutable objects, and the results from a match are not.

When it is necessary to build syntax directly from syntax objects, the match_local

function provides a convenient way to do so. It takes in a match object and a list of syntax

objects, terminated by NULL. It will assign a numeric match variable in the form of $NUM

Type Match with methods:
Syntax * var(UnmarkedSyntax *)
SyntaxEnum * varl(UnmarkedSyntax *)

and related functions:
Match * match(Match * prev, UnmarkedSyntax * pattern, Syntax * with)
Match * match_args(Match *, UnmarkedSyntax * pattern, Syntax * with)
Match * match_local(Match *, ...)

Callback function:
Syntax * replace(UnmarkedSyntax *, Match *, Mark *)

Figure 7.6. Match and replace API.

72

with the first one being $1.

7.3.4 Match Patterns

A pattern to be matched against is expected to either be a simple list of the form

syntax (a, b, ...) or fully parsed, i.e., created with raw_syntax. The difference is

that pattern variables matched with the former will need to be reparsed while patterns

variables matched with latter do not.

The syntax () form is designed to be used when matching parameters passed in via a

function-call macro. The pattern contains a list of the following (with some restrictions on

order):

• ID

• ID = VALUE – must be after all plain ID’s

• @ – can only appear once

• @ID – must be last

• :FLAG

• :FLAG ID

• :FLAG ID = VALUE

ID matches a normal parameter. The second item, “ID = VALUE”, is used for giving

parameter default values if they are omitted. A _ can be used any place an identifier will

be used when the value is irrelevant. Parameters can also be optional if they are after the

special @ instruction, in which case they will simply be omitted from the match list. The

@ID form will match any remaining parameters and store them in a syntax list. Flags can

also be matched with any of the :FLAG forms. Flags, in the current implementation, are

always optional; however, any matched flags will not appear in the syntax list matched with

@ID.

A pattern can also be specified in raw_syntax form, which is designed to be used with

syntax macros. In the raw_syntax form a pattern can represent anything that a match

list can. In addition, it is possible to match the subparts of an expression using (pattern

(WHAT ...)). For example, to match the list of declarations inside of a class body which

73

is represented as (class foo ({...} decl1 decl2)) into the pattern variable body, the

(_ _ (pattern ({...} @body))) pattern can be used.

It is also possible to use the raw_syntax form with function-call macros; however,

when doing so it is important to know that the macro parameters are not parsed. For

example if f is a function-call macro, the parameter of the call f(x+2) is passed in as

(parm "x+2"). When using the syntax forms for matching, ZL’s normal parsing process

(see 4.3, 8.2) parses the string at the right time. But the raw_syntax form skips this step.

Thus, it it necessary to manually instruct ZL to parse the parameter passed in by using

(reparse ID). For example, to match the parameter in the f macro above use:

match_args(..., raw_syntax((reparse ID), ...))

7.3.5 Creating Marks

Marks (see 4.4) are used to implement lexical scope, and the API is listed in Figure 7.7.

The new_mark primitive is actually a macro that calls the callback function new_mark_f

and uses the primitive environ_snapshot() to capture the environment.

7.3.6 Controlling Visibility

The get_context and replace_context functions, shown in Figure 7.8, are used to

bend hygiene in a very similar fashion to datum->syntax-object in the syntax-case

expander [23]. For example, a macro defining a class needs to create a vtable that is

accessible outside of the macro creating the class. The get_context function gets the

context from some symbol, generally some part of the syntax object passed in, while

Type EnvironSnapshot with related syntax form:
environ_snapshot() — returns EnvironSnapshot *

Type Mark with related function:
Mark * new_mark_f(EnvironSnapshot *)

and macros:
macro new_mark(es = NULL) {new_mark_f(es ? es : environ_snapshot();}
macro new_empty_mark() {new_mark_f(0);}

Figure 7.7. Mark API.

74

Type Context with related functions:
Context * get_context(Syntax *)
Syntax * replace_context(UnmarkedSyntax *, Context *)

Figure 7.8. Visability API.

replace_context replaces the context of the symbol with the one provided. For example,

code to create a symbol _vtable that can be used later might look something like:

...
Match * m = match_args(0, raw_syntax (name ...), p);
Syntax * name = m->var(m, syntax name);
Context * context = get_context(name);
Syntax * _vtable = replace_context(syntax _vtable, context);
...

Here name is the name of the class that is passed in as m. The name symbol is extracted into

a syntax object so that it can be used for get_context. The replace_context function

is then used to put the symbol _vtable in the same context as name. Now _vtable will

have the same visibility as the name symbol, and thus be visible outside the macro.

7.3.7 Fluid Binding

The get_context and replace_context functions are one way to bend hygiene.

The other is to use fluid_binding, which allows a variable to take its meaning from

the use site of a macro rather than the macros’s definition site, in a similar fashion to

define-syntax-parameter in Racket [31, 16].

A prime example of the need for fluid_binding is the special variable this in classes.

Variables in ZL are lexically scoped. For example, the code:

int g(X *);
int f() {return g(this);}
int main() {X * this = ...; return f();}

will not compile because the this defined in main is not visible in f, even though f is

called inside main. However, if the this variable was instead dynamically scoped, the

this in main would be visible to f.

Normal hygiene rules preserve lexical scope in a similar fashion, such that:

75

int g(X *);
macro m() {g(this);}
int main() {X * this = ...; return m();}

will also not compile. Attempts to make this work with get_ and replace_context will

not compose well [16]. What is really needed is something akin to dynamic scoping in the

hygiene system. That is, for this to be scoped based on where it is used when expanded,

rather than where it is written in the macro definition. This can be done by marking the

this symbol as fluid using fluid_binding at the top level and then using fluid when

defining the symbol in local scope. For example:

fluid_binding this;
int g(X *);
macro m() {g(this);}
int main() {X * fluid this = ...; return m();}

will work as expected. That is, the this in m will bind to the this in main.

7.3.8 Partly Expanding Syntax

In complex syntax macros, it is often necessary to decompose the parts passed in.

However, in most cases, those parts are not yet expanded; thus it is necessary to expand

them first.

For instance if it was necessary to to decompose the syntax for the container passed

into foreach in Figure 7.3, the syntax object would need to be expanded first, as at the

point the macro was called, the container is likely still represented as a generic exp, which

is just a list of tokens. For example, if the container were the identifier c, the syntax object

for the container would be (exp c) instead of (id c). To support this decomposition ZL

provides a way to partly expanded a syntax object in the same way it will internally; the

API is shown in Figure 7.9.

The pos parameter tells ZL what position the syntax object is in; the values of the

Position enum can be bitwise or’ed together. This parameter will affect how the expan-

sion and, if necessary, reparsing is done. Common values are TopLevel for declarations,

StmtPos for statements, and ExpPos for expressions. The Environ parameter is the

environment as passed into the macro.

76

Callback functions:
Syntax * partly_expand(Syntax *, Position pos, Environ *)
SyntaxEnum * partly_expand_list(SyntaxEnum *, Position pos, Environ *)

and enum Position with possible values:
NoPos, OtherPos, TopLevel, FieldPos, StmtDeclPos, StmtPos, ExpPos

Figure 7.9. Expander API.

If the parts of a syntax object represent a list of some kind, it is best to use

partly_expand_list. The function partly_expand_list is like partly_expand, ex-

cept that it expects a list of elements in the form of an SyntaxEnum, and it automatically

flattens any Syntax Lists (ie @) found inside the list. The elements of the list are expanded

as they are iterated through, rather than all at once when the function is called.

7.3.9 Compile-Time Reflection

Often it is necessary to do more than just decompose syntax. Sometimes, it is necessary

to get compile-time information on the syntax objects or the environment itself—for

example, to get numerical value of an expression as was done in with fix_size in Section

5.1 or to check if a symbol exists as is done in foreach in Figure 7.3. Figure 7.10 shows

some of the available API functions for compile-time reflection.

The ct_value function (which was used in the fix_size example) takes a syntax

object, expands the expression, parses the expansion, and evaluates the parsed expression

as an integer to determine its value. An error is thrown if the expression passed in is not a

compile time constant.

To see if a symbol exists in the current environment or an object that is a user type (as

Callback functions:
unsigned ct_value(Syntax *)
bool symbol_exists(UnmarkedSyntax * sym, Syntax * where,

Mark *, const Environ *)
Environ * temp_environ(const Environ *)
Syntax * pre_parse(Syntax *, Environ *)

Figure 7.10. Compile time reflection API.

77

was done in the foreach example), the symbol_exists function can be used. The first

argument is the symbol to check for. The second argument is the user type to check that

the symbol exists in; if it is NULL then the current environment will be checked instead. The

third argument provides the context in which to look up the current symbol, and finally the

last argument is the environment to use.

Sometimes in order to get compile-time information it is necessary to add additional

symbols to the environment. For this the temp_environ and pre_parse functions are

used, as was done in the fix_size macro. The temp_environ function creates a new

temporary environment while pre_parse parses a declaration just enough to get basic

information on it, and then adds it the the environment. The creation of a temporary

environment avoids affecting the outside environment with any temporary objects added

with pre_parse.

7.3.10 Misc API Functions

Sometimes it is necessary to create syntax on the fly, such as creating syntax from a

number that is computed at run time. The string_to_syntax function, shown in Figure

7.11, converts a raw string to a syntax object. The string passed in is the same as given for

the syntax form, which can be specified at run time.

The syntax_to_string function does the reverse, which is primarily useful for check-

ing an identifier for a literal value. It is also useful for debugging to see the results of

a complex macro. However, for large syntax objects the dump_syntax function is more

efficient. For complex syntax objects the output of both functions is designed to be human

readable and as such the output is not suitable for reparsing with string_to_syntax.

The error function is used to return an error condition as in done with foreach in

Callback functions:
UnmarkedSyntax * string_to_syntax(const char *)
const char * syntax_to_string(UnmarkedSyntax *)
void dump_syntax(UnmarkedSyntax *)
Syntax * error(Syntax *, const char *, ...)

Figure 7.11. Misc API functions.

78

Figure 7.3. It creates a syntax object that results in an error when it is parsed. The first

argument is used to determine the location where the error will be reported; the location

associated with this syntax object is used as the location of the error.

7.4 Procedural Macro Implementation and
State Management

In order to use procedural macros effectively, it is necessary to know a little bit about

how they are implemented. This section gives the details on how procedural macros are

implemented, the use of macro libraries, and how to share state between procedural macros.

7.4.1 The Details

The current ZL compiler does not contain an interpreter; thus procedural macros are

compiled and then dynamically linked into the compiler when the macro is first used. A

simple dependency analysis is done so that any components that the procedural macro

depends on (and are not already compiled and linked in) are also compiled at the same

time.

In addition, ZL determines the role of each function as for run-time or compile-time

only to avoid included macro related functions in the executable. A compile-time only

function is any function that uses part of a macro API, or one that depends on a function

which does.

The dependency analysis that determines which code to include when a procedural

macro is first used is separate from the dependency analysis used to determine a role. Thus,

it is possible for a function to be used at both run-time and compile-time if the function is

used by both a normal (i.e., run-time) function and a compile-time only function. Such a

function will be considered a run-time function even though it is also used at compile time.

7.4.2 Macro Libraries

Since the compilation of a complicated procedural macro can take a decent amout of

time, ZL also provides a mechanism for precompiling macros ahead of time via macro

libraries. A macro library is similar to a normal library, except that the code is loaded while

compiling the program, instead of during the programs execution.

79

A macro library is a collection of code compiled with the -C option. The compilation

creates a shared library with the -fct.so extension; for example, if the code for the library

was contained in the file lib.zl, the shared library will be called lib-fct.so. The

macro library is then used by importing the same file (used to create the library) using

the import_file primitive. Importing will: 1) parse enough of the macro library code to

get the function prototypes and related information; and 2) load the related shared library.

A header file can also be provided (with an extension of .zlh), which will be read in instead

of the full macro code.

Normally, when new_mark() (which uses the environ_snapshot() primitive) is used,

the environmental snapshot is taken at the place in the code where the syntax is used.

(Basically, environ_snapshot() gets replaced with a pointer the the current environment

as the procedural macro is being parsed.) Unfortunately, ZL does not have the ability to

serialize the environment, which means a snapshots can only be taken for code that is

compiled in the same translation unit (also known as the compilation unit). This creates a

problem when a procedural macro is compiled into a library. To work around this problem

the user can declare that the environmental snapshot is taken where the macro is declared,

rather then where environ_snapshot() is used, by adding :w_snapshot to make_macro,

for example:

make_syntax_macro foreach :w_snapshot

Since, unlike the function body, the make_macro declaration is always read as the program

is being compiled, this ensures that there is always a point where the snapshot can be taken.

In the rare cases when this strategy will not work, it is possible to store a snapshot of an

environment in a variable. For example, if:

EnvironSnapshot * prelude_envss = environ_snapshot();

is found in a header file, than ZL will ensure that the value of global variable

prelude_envss is a pointer to an environmental snapshot in the current compilation

unit. Within the macro library, this variable can then be used with an alternative form

of new_mark, which accepts a pointer to EnvironSnapshot as its first parameter.

When macro libraries are used no automatic dependency analysis is done; everything

included in the macro library is assumed to used at compile-time only. If it is necessary

80

to use the same code at both compile-time and run-time, special previsions need to be

made, such as moving the shared code into a separate file so that it can be linked in at both

compile and run time. Linking compile-time only functions into the executable will fail

with undefined symbols.

7.4.3 State Management

Macros may maintain global state in one of two ways. The first way is to simply use

global variables; any state stored within a global variable will be accessible to any macros

used in the same compilation, even if they are compiled and linked in separately. The other

way to maintain global state is to store the information inside of a top-level symbol via the

use of symbol properties, the details of which are provided in the next section.

Using either method, state is only maintained during within the compilation unit.

Separate provisions need to be made to store state between compilations.

7.4.4 Symbol Properties

Any top-level symbol can have any number of properties associated with it. The value

of the propriety is simply a syntax object. Symbol properties are used extensively by the

class macro to store information about the class which is then used by the parent class and

when expanding method definitions defined outside of the class.

Figure 7.12 shows the syntax for the add_prop primitive used for adding symbol

properties. Note that add_prop is not an API function; it is part of the syntax returned

by the macro. In addition, the add_prop primitive is always used in the lower level

Syntax to add properties to existing symbols:
(add_prop SYMBOL PROPERTY-NAME VALUE)

Syntax to add properties within modules:
(add_prop PROPERTY-NAME VALUE)

Macro API function to retrieve properties:
Syntax * get_symbol_prop(UnmarkedSyntax * symbol, UnmarkedSyntax * prop,

const Environ *)

Figure 7.12. Symbol properties syntax and API.

81

s-expression form (i.e., created using raw_syntax instead of syntax) in order to be able

to precisely control the syntax object being added. Such control would not be possible in

the higher level syntax due to reparsing.

The three argument form of add_prop is used to add properties to already existing

top-level symbols. For example the class macro adds the propriety is_method to the macro

representing methods by using:

(add_prop (fun method (. @parms)) is_method true)

where method and @parms are pattern variables. The two argument form of add_prop is

used within a module or user type to add properties to the module.

To retrieve properties from a symbol the macro API function get_symbol_prop can be

used. The function will return NULL if the property does not exist for that symbol.

When used in combination with stash_ptr and extract_ptr arbitrary objects can be

stashed away for latter retrieval. For example the class macro uses this to store a pointer

to the class used to implement the class in the module for the class. This pointer is then

extracted when expanding method definitions defined outside of the class, thus greatly

simplifying the implementation.

7.5 ABI Related APIs
This section gives additional procedural macro API components that are important to

creating classes and controlling the ABI.

7.5.1 User Type and Module API

Within the class macro it is necessary to get some basic properties on data memeber

types and the parent class. In particular it is necessary to determine if the type is a user

type with any special methods such as a default constructor or destructor. The API for user

types and modules is shown in Figure 7.13.

The constructors user_type_info and module_info get the corresponding symbol

from a symbol name. From a user_type it is also possible to get the underlying module

using the module method.

The have_* user type methods are used to check if a data-member type has any special

methods. The class macro uses this information when building the corresponding special

82

Constructors:
UserType * user_type_info(Syntax *, const Environ *)
Constructor: Module * module_info(Syntax *, const Environ *)

Type UserType with methods:
Module * module()
bool have_default_constructor()
bool have_copy_constructor()
bool have_assign()
bool have_destructor()

Type Module with methods:
bool have_symbol(const Syntax *)

Figure 7.13. User type and module API.

method. For example if any the data-members have the assign method is is necessary to

create an assign method for the class.

7.5.2 User Type Builder

Due to the need to get information about the user type as it is being built, the class

macro builds the user type directly and then returns a syntax object with the compiled

syntax object embedded directly. The builder API is shown in Figure 7.14.

A new builder is created using new_user_type_builder. Components are added

Type UserTypeBuilder with constructor:
UserTypeBuilder * new_user_type_builder(Syntax * name, Environ * env)

and methods:
void add(Syntax *)
Syntax * to_syntax()
bool have_default_constructor()
bool have_copy_constructor()
bool have_assign()
bool have_destructor()

and members (read only):
Environ * env
UserType * user_type

Figure 7.14. User type builder API.

83

using the add method. Finally, the to_syntax method is used to finalize the user type

and return a syntax object with the compiled user type embed within.

The have_* methods are used for querying the user type as it is being built. They

are needed because, due to overloading, it is difficult for the class macro to determine if

a constructor or assignment operator is provided that satisfies the requirements of a copy

constructor or copy assignment operator, restively. Thus, after all the methods are added to

the user type, the class macro uses these methods to check for the existence of the special

methods and can act appropriately.

The user type builder also exposes several read only members. The most important

one is the local environment inside the module. This environment is needed when partly

expanding class components, for example, in the following code:

typedef const char * iterator;
iterator begin();

the second line, will not expand correctly unless the iterator type is in the environment.

7.5.3 The ABI Switch

Since class layout is a key component to the ABI, a new ABI can be created by

extending (or overriding) the class macro and then remapping the class syntax object

to use the new macro. Another way to define a new ABI is to register the ABI so that it

can be used with the ABI switch. The ABI switch is an extension of C++ extern with an

additional part for the ABI. For example:

extern "C++" : "gcc"
class C {...};

causes the class C to use the “gcc” ABI. In addition to class layout, the ABI switch also

controls name managing and other key componets of the ABI, which can differ between

compilers.

A class macro is registered with the ABI switch by compiling it into into a macro library

and defining the symbols _abi_list and _abi_list_size. The _abi_list variable is

an array of AbiInfo and _abi_list_size is the array size. The struct AbInfo is defined

as:

84

struct AbiInfo {
const char * abi_name;
MangleFun mangler;
MacroLikeFun parse_class;
const char * module_name;
Module * module;

};

The abi_name member is the name of the ABI, and parse_class points to the macro

function defining the class. The mangler member is part of the mangler ABI and will be

described the next section.

Class layout and mangling are two important parts of the ABI. Another important part

is the implementation of new and delete. To support any ABI specific implementations a

module name can be provided. Any symbols is this module will shadow any global symbols

when the ABI is in effect; thus ABI specific new and delete macros can be defined. In

addition the ABI info is tied to a user type so a class is always allocated and deleted with

the class ABIs new and delete.

For example the macro library implementing the “gcc” ABI has the following lines:

unsigned _abi_list_size = 1;
AbiInfo _abi_list[1] = {{"gcc", NULL, parse_class_gcc_abi,

"gcc_abi_info", NULL}};

with the following lines in the header file:

module gcc_abi_info {
macro alloc(type, size) {...}
macro free(type, ptr) {...}

}

where alloc and free are called by the new and delete primitives, receptively.

The final memeber module is filled in by ZL when the macro library is read in, by

looking for a module with the name module_name.

7.5.4 Mangler API

The final aspect of the ABI that ZL can control is the mangling scheme. The API to

implement the alternative manglers is part of ABI switch implementation just described.

The function type MangleFun is defined as:

85

StringObj * (*MangleFun)(Symbol *)

The mangler takes a symbol and transforms it into a string of the form of a pointer to

StringObj. The string object is expected to build up a string using the StringBuf and

then call the freeze method, which returns a StringObj. An overview of the StringBuf

class is given in Figure 7.15.

In order to transform the string the mangler needs access to a large number of properties

about the symbol. The most important of these properties is the parameter types for

function symbols as they are the primary components of the mangled name. An overview

of the API used for getting symbol properties is given in Figure 7.16.

Once the mangler function is defined it is necessary to register it with ABI switch.

Diffrent components of the ABI may be given in diffrent libraries, and any NULL fields

will simply be left alone if there where defined elsewhere for that ABI. For example, the

GCC mangler is defined with the following line:

unsigned _abi_list_size = 1;
AbiInfo _abi_list[1] = {{"gcc", to_external_name, NULL, NULL, NULL}};

class StringBuf {
public:

StringBuf();
StringBuf(const char * s);
StringBuf(const char * s, unsigned size);
StringBuf(const StringBuf & other);
StringBuf & operator= (const char * other);
StringBuf & operator= (const StringBuf & sother);
StringBuf & append(char * start, char * stop);
StringBuf & operator+= (const char * s);
StringBuf & operator+= (const StringBuf & s);
StringBuf & prepend(const char * str);
int printf(const char * format, ...);
size_t size() const;
bool empty() const;
char * data();
StringObj * freeze();
...;

};

Figure 7.15. Overview of the StringBuf class.

86

Type Symbol with methods:
const char * name()
const char * uniq_name()
Type * type()
FunType * fun_type()
Syntax * prop(UnmarkedSyntax * prop)

Type Type with methods:
Type * subtype()
int qualifiers()
bool is_scalar()
bool is_qualified()
bool is_pointer()

Constants:
TypeQualifier_CONST = 1
TypeQualifier_VOLATILE = 2
TypeQualifier_RESTRICT = 4

Type FunType with methods:
Type * ret_type()
unsigned num_parms(const FunType *)
Type * parm_type(unsigned num)

Figure 7.16. Overview of the symbol API

CHAPTER 8

ZL IMPLEMENTATION DETAILS

This chapter gives the implementation details of the interesting parts of ZL.

8.1 Basic Expander and Hygiene System
This section describes the basic macro-expansion algorithm without the reparsing steps

to focus on the hygiene system. For simplicity, we first assume that macro parameters and

syntax forms are fully parsed; the next section gives the details.

8.1.1 The Idea

During parsing, ZL maintains an environment that maps from one type of symbol to

another. Symbols in the environment’s domain correspond to symbols in syntax objects,

while each symbol in the environment’s range is generated to represent a particular binding.

Symbols in syntax objects (and hence the environment domain) have a set of marks

associated with them. The set of marks are considered part of the symbol’s identity. A

mark is created with the new_mark primitive and applied to symbols during the replacement

process (via replace). During this process, each symbol is either replaced, if it is a macro

parameter, or marked. A mark also has an environment associated with it, which is the

global environment at the site of the new_mark call.

When looking up a binding, the current environment is first checked. If a symbol with

the same set of marks is not found in the current environment, then the outermost mark is

stripped and the symbol is looked up in the environment associated with the stripped mark.

This process continues until no more marks are left.

8.1.2 An Illustrative Example

To better understand this process, consider the code in Figure 8.1. When the first

binding form “float r = ...” is parsed, r is bound to the unique symbol $r0, and the

88

float r = 1.61803399;

Syntax * make_golden(Syntax * syn, Environ * env) {
Mark * mark = new_mark();
Match * m = match_args(0, syntax (A,B,ADJ,FIX), syn);
UnmarkedSyntax * r = syntax {
for (;;) { float a = A, b = B;

float ADJ = (a - r*b)/(1 + r);
if (fabs(ADJ/(a+b)) > 0.01) FIX;
else break; }

};
return replace(r, m, mark);

}
make_macro make_golden;

int main() {
float q = 3, r = 2;
make_golden(q, r, a, {q -= a; r += a;});

}

Figure 8.1. Example code to illustrate how hygiene is maintained. The make_golden
macro will test if A and B are within 1% of the golden ratio. If not, it will execute the code
in FIX to try to fix the ratio (where the required adjustment will be stored in ADJ) and then
try again until the golden ratio condition is satisfied.

89

mapping r => $r0 is added to the current environment. When the function make_golden

is parsed, it is added to the environment. When the new_mark() primitive is parsed inside

the body of the function, the current global environment is remembered. The new_mark()

primitive does not capture local variables, since it makes little sense to use them in the result

of the macro. Next, “make_macro make_golden” is parsed, which makes the function

make_golden into a macro.

Now the body of main is parsed. A new local environment is created. When

“float q = 3, r = 2” is parsed, two unique symbols $q0 and $r1 are created and

corresponding mappings are added to the local environment. At this point, we have:

float $r0 = 1.61803399;
[make_golden => ..., r => $r0]
int main () {
float $q0 = 3, $r1 = 2;
[r => $r1, q => $q0, make_golden => ..., r => $r0]
make_golden(q, r, a, {q -= a; r += a;});

}

The expanded output is represented in this section as pseudo-syntax that is like the input

language of ZL with some additional annotations. Variables starting with $ represent bound

symbols. The [...] list represents the current environment in which new binding forms

are added to the front of the list.

Now, make_golden is expanded and, in the body of main, we have:

...
[r => $r1, q => $q0, make_golden => ..., r => $r0]
for (;;) { float a’0 = q, b’0 = r;

float a = (a’0 - r’0*b’0)/(1 + r’0);
if (fabs(a/(a’0+b’0)) > 0.01)
{q -= a; r += a;}

else break; }
’0 => [r => $r0]

where ’0 represents a mark and ’0 => [...] is the environment for the mark. Notice how

marks keep the duplicate a and r’s in the expanded output distinct.

Now, the statement “float a’0 = q, b’0 = r” is compiled. Compiling the first part

creates a unique symbol $a0 and the mapping a’0 => $a0 is added to the new environment

inside the for loop. The variable q on the right-hand-side resolves to the $q0 symbol in

the local environment. A similar process is performed for the second part. We now have:

90

...
for (;;) { float $a0 = $q0, $b0 = $r1;

[b’0 => $b0, a’0 => $a0, r => $r1,
q => $q0, ...]
float a = (a’0 - r’0*b’0)/(1 + r’0);
...}

’0 => [r => $r0]

Next, the statement “float a = ...” is compiled. A unique symbol $a1 is created

for a and the associated mapping is added to the local environment. Then the right-hand-

side expression must be compiled. The variables a’0 and b’0 resolve to $a0 and $b0,

respectively, since they are found in the local environment. However, r’0 is not found, so

the mark ’0 is stripped, and r is looked up in the environment for the ’0 mark and resolves

to $r0. We now have:

...
for (;;) { ...

float $a1 = ($a0 - $r0*$b0)/(1 + $r0);
[a => $a1, b’0 => $b0, a’0 => $a0,
r => $r1, q => $q0, ...]
if (fabs(a/(a’0+b’0)) > 0.01)
{q -= a; r += a;}

else break; }
’0 => [r => $r0]

Next, the if is compiled. The marks keep the two a variables in the expression

a/(a’0+b’0) distinct, and everything correctly resolves. Thus, we finally have:

float $r0 = 1.61803399;
int main() {
float $q0 = 3, $r1 = 2;
for (;;) { float $a0 = $q0, $b0 = $r1;

float $a1 = ($a0 - $r0*$b0)/(1 + $r0);
if (fabs($a1/($a0+$b0)) > 0.01)
{$q0 -= $a1; $r1 += $a1;}

else break; }
}

Hence, all symbols are correctly bound and hygiene is maintained.

8.1.3 Multiple Marks

The symbols in the expansion of make_golden only had a single mark applied to them.

However, in some cases, such as when macros expand to other macros, multiple marks are

91

needed. For example, multiple marks are needed in the expansion of plus_10 in Figure

8.2. In this figure, mk_plus_n expands to

macro plus_10 (X’0) { ({int x’0 = X’0; x’0 + x;}); }

where the first mark ’0 is applied. A second mark is then applied in the expansion of

plus_10(x) in main:

{ ({int x’0’1 = x; x’0’1 + x’1;}) }

In particular, a second mark is added to x’0, making it x’0’1. This symbol then resolves

to the x local to the macro plus_10. In addition, x’1 resolves to the global x constant1

and the unmarked x resolves to the x local to main. Thus, hygiene is maintained in spite of

three different x’s in the expansion.

8.1.4 Structure Fields

Normal hygiene rules will not have the desired effect when accessing fields of a

structure or class. Instead of trying to look up a symbol in the current environment, we

are asking to look up a symbol within a specialized subenvironment.

For example, the following code will not work with normal hygiene rules:

1 In pattern based macros there is an implicit call to new_mark at the point where the macro was defined;
hence, the ’1 mark captures the environment where mk_plus_10 (expanded from mk_plus_n) is defined,
which includes the global constant x.

macro mk_plus_n (NAME, N) {
macro NAME (X) { ({int x = X; x + N;}); }

}

static const int x = 10;
mk_plus_n(plus_10, x);

int main() {
int x = 20;
return plus_10(x);

}

Figure 8.2. Example code to show how hygiene is maintained when a macro expands to
another macro.

92

macro sum(q) {q.x + q.y;}
struct S {int x; int y;}
int f() {
struct S p;
...
return sum(p);

}

The problem is that sum(p) will not be able to access the fields of p since it will expand

to “p.x’0 + p.y’0” with marks on x and y. The solution is to use a special lookup

rule for structure fields. The rule is that if the current symbol with its sets of marks is

not found in the structure, strip the outermost mark and try again, and repeat the process

until no more marks are left. This process is similar to the normal lookup rule except

that the subenvironment associated with the mark is ignored since it is irrelevant. In the

above example, p.x’0 in the expansion of sum(p) will resolve to the structure field x in

struct S.

8.1.5 Replacing Context

The get_context and replace_context functions (see Section 7.3.6) can be used to

bend normal hygiene rules. A context is simply a collection of marks. Thus get_context

simply gets the marks associated with the syntax object, while replace_context replaces

the marks of a syntax object. If a syntax object already has any marks associated with it,

they are ignored.

8.1.6 Fluid Binding

The fluid_binding form (see Section 7.3.7) bends hygiene by allowing a variable to

take its meaning from the use site rather than from the macros’s definition site. It changes

the scope of a marked variable from lexical to fluid and is used together with the fluid

keyword, which temporarily binds a new symbol to the fluid variable for the current scope.

The fluid_binding form inserts a fluid-binding symbol into the environment that

serves as an instruction to perform the lookup again. The symbol consists of the instruction

and a unique symbol name to perform the second lookup on; the name is constructed by

taking the symbol name and applying a fresh mark to it (with an empty environment). For

example, “fluid_binding this” inserts the mapping this => fluid(this’0) into the

93

environment, where the fluid-binding symbol is represented as fluid(SYMBOL’MARK). The

“fluid VAR” form then replaces the variable VAR with the unique symbol name associated

with the fluid binding. This has the effect of rebinding the fluid_binding variable

to the current symbol for the current scope. For example, “X * fluid this” becomes

“X * this’0” and this’0 gets temporarily bound to the local symbol $this0. Finally,

whenever a symbol resolves to something that is a fluid binding the symbol will be resolved

again, this time using the unique symbol name in the fluid binding. For example, this will

first resolve to fluid(this’0), which then resolves to $this0.

To see why this method works, consider the parsing of f‘internal from the expansion

of class C given in Section 7.1:

fluid_binding this;
...
user_type C {
...
macro i(:this ths = this) {(*(C *)ths)..i;}
macro f(j, :this ths = this) {f‘internal(ths, j);}
int f‘internal(C * fluid this, int j) {return i + j;}

}

The fluid_binding form (given in the prelude) is first parsed and the mapping

“this => fluid(this’0)” is added to the environment where ’0 is an empty mark. The

macros i and f in the user type C are also parsed and we now have:

user_type C {
[f => ..., i => ..., this => fluid(this’0)]
int f‘internal(C * fluid this, int j) {return i + j;}

}

Now f‘internal is parsed. Since the first parameter has the fluid keyword the symbol

this is looked up in the environment and fluid this becomes this’0 giving:

int f‘internal(C * this’0, int j) {...}

The parameters are now parsed and added to the environment and the body of f‘internal

is expanded:

int f‘internal(C * $this0, int $j0) {
[j => $j0, this’0 => $this0, f => ..., i => ..., this => fluid(this’0)]
return (*(C *)this’1)..i + j;

}
’1 => [..., this => fluid(this’0)]

94

The body of f‘internal is now parsed. The variable this’1 (from the expansion of

i) first resolves to the fluid symbol fluid(this’0), which temporarily becomes this’0

and then resolves to $this0. The rest of f‘internal is also parsed giving:

int f‘internal(C * $this0, int $j0) {
return (*(C *)$this0)..i + $j0;

}

Hence, the this variable in the macro i gets resolved to to the this parameter in

f‘internal as intended.

8.2 The Reparser
Supporting Scheme-style macros with C-like syntax turns out to be a hard problem for

two reasons. The primary reason, as mentioned in Section 4.3, is that ZL does not initially

know how to parse any part of the syntax involved with macros. The other and less obvious

reason is that when given a syntax form such as “syntax (x * y)”, ZL does not know

if x and y are normal variables or pattern variables until the substitution is performed. If

they are normal variables, then it will be parsed as (exp x * y), but if they are pattern

variables, it will be parsed as (exp (mid x) * (mid y)) where mid (macro identifier)

is just another name for a pattern variable. ZL solves the former problem by delaying

parsing as much as possible, which works nicely with ZL’s hygiene system by reducing the

complexity of macro explanation from quadratic to linear. ZL solves the latter problem by

installing special hooks into its Packrat parser.

8.2.1 The Idea

As already established, the syntax () and syntax {} forms create syntax objects with

raw text that cannot be parsed until ZL knows where the syntax object will ultimately be

used. Thus replace is unable to perform any replacements. Instead, replace annotates

the syntax object with with a set of instructions to apply later that includes two bits of

information: (1) the mark to apply, and (2) the substitutions to apply.

For example, given the code:

95

int x;
Syntax * plus_x(Syntax * syn, Environ * env) {
Match * m = match_args(0, syntax (y), syn);
return replace(syntax (x + y), m, new_mark());

}
make_macro plus_x;

the call plus_x(z) results in ("()" "x + y"){’0; y => (parm "z")} where the {}

represents the annotation and parm is a built-in macro (see Section 7.2.3) to indicate the

need to reparse. The first part of the annotation is the mark and the second is the substitution

to apply. Thus the substitution is delayed until ZL knows where the call to plus_x will be

used.

Eventually, the annotated syntax object will need to be parsed, which requires two steps.

First the raw text needs to be parsed using the Packrat parser. Second the instructions in

the annotations need to be applied.

Parsing the raw text creates a problem since ZL does not know which identifiers are

pattern variables. Solving this problem involves a special hook into the Packrat parser,

which is the purpose of the special <<mid>> operator shown in the grammar (Figure 7.2).

The relevant bits of the grammar (with some extra required productions) are these:

EXP = <exp> {TOKEN}+;
TOKEN_ = <<mid PARM>> {MID} / {ID} / ...
MID = {[@$\a_][\a_\d]*} SPACING;
PARM = {STMT} EOF / {TOKEN} EOF / {EXP} EOF;

The <<mid>> operator is a special operator that matches only if the identifier being parsed

is in the substitution list. When a MID matches, and the pattern variable is of the type

that needs to be reparsed (i.e., matched with a syntax form), the parser adds a note as to

how to reparse the macro parameter. This is either the production where it matches or the

production as given in the <<mid>> instruction. For example, when parsing

("()" "x + y"){’0; y => (parm "z")}

as an expression, the parser is able to recognize x as an identifier and y as a mid. During the

parsing of x the MID production is tried but it is rejected because x is not a pattern variable,

yet when y is tried, it matches the MID production since y is a pattern variable. Thus the

result of the parse is:

96

(exp x + (mid y PARM)){’0; y => (parm "z")}

After the raw text is parsed, the instructions in the annotation are applied to the subparts;

if the syntax object represents raw text then the instructions are simply pushed down rather

than being directly applied. In the above example this process will result in:

(exp’0 x’0 +’0 z)

That is, marks are applied and (mid y PARM) becomes z. During the substitution, the

string z is reparsed using the PARM production noted in the second argument of mid. Hence,

the string z becomes the identifier z.

The results of the reparse are then expanded and parsed as before. Marks are used

as described in Section 8.1, but with the additional rule that if no marks are left and a

symbol is still not found then it is assumed to be associated with a primitive form. For

example, exp’0 is assumed to represent the built in exp macro, since exp is not in the

current environment. Since the result is an exp, it will be expanded again to become

(plus x’0 z)

which will then be converted into an AST.

8.2.2 Additional Examples

In the previous example, the result of the reparse is a fully parsed string, but this is not

always the case. For example, if the macro plus_x were instead plus_2x, and the call

plus_2x(z) expanded to:

("()" "2*x + y"){’0; y => (parm "z")}

the result will first parse to:

(exp ("()" "2*x") + y){’0; y => (parm "z")}

with "2*x" left unparsed. Applying the annotations will then result in:

(exp’0 ("()" "2*x"){’0; y => (parm "z")} + z)

That is, since the "()" syntax objects represents raw text, the instructions are pushed down

on that object rather than being directly applied.

Also, in the same example, the macro parameter was just an identifier and the special

PARM production is not needed, as it would be correctly parsed as a TOKEN. However, this is

not always the case. For example, if the call to plus_x were instead plus_x(z + 2) the

string “z + 2” would need to be parsed as a PARM since it is not a token.

97

8.2.3 Matching and Replacing with the raw_syntax Form

As the lazy substitutions of macro parameters and the reparsing are coupled, lazy

substitution only applies to syntax forms that are to be reparsed, such as the () and {}

forms. Syntax created with raw_syntax is fully parsed, and thus replace performs the

substitutions eagerly.

8.3 Parser Details
To allow for easily adding lexical extensions, ZL uses a Packrat parser with the grammar

specified as an extended PEG (see 7.2.2). When considering what parsing technology to use

we also considered GLR (Generalized Left-to-right Rightmost derivation) parsing. GLR

parsing differs from Packrat parsing in that the grammar is specified as a CFG (Context

Free Grammar). Unlike specialized LR(k) or LL(k) parsers, a GLR parser accepts any

CFG and conflicts are handled by creating multiple parse trees in the hope that the conflict

will latter be resolved. Unfortunately, there is no way to know if the conflict will ultimately

be resolved, as determining if a CFG is unambiguous is an undecidable problem. The

worst case performance of a GLR parser is O(n3), but for most grammars the performance

in practice can be made near linear. In contrast and because a PEG is a specification of

how to parse the text, Packrat parsing is always unambiguous; however, the parse may not

always be what was intended. In addition, Packrat parsing is guaranteed linear (although

with a large constant factor) due to memorization. Packrat parsing also avoids the need for

a separate lexer pass as it naturally works well with raw characters (since the PEG language

is very close to the language of regular expressions used by traditional lexers). For all these

reasons, and others, we chose Packrat parsing over GLR parsing.

We also chose to use Packrat parsing because the memorization can also be used to

avoid quadratic parsing times with ZL’s frequent reparsing of strings. For example, when

parsing (x*(y+z)) as ("()" "x*(y+z)"), the PAREN production is used on (y+z), since

ZL must recognize the grouping. When ("()" "x*(y+z)") is expanded, the same PAREN

production is used. Therefore, if the memorization table for the PAREN production is kept

after the initial parse, there will be no need to reparse (y+z).

98

8.3.1 Performance Improvements

For ease of implementation, and unlike other Packrat parser such as Rats! [40], ZL’s

PEG is directly interpreted. (In other words, ZL’s parser is not a parser generator.) The

initial implementation of the parser was a major bottleneck. However, after making several

key improvements we were able to improve the performance and memory usage of ZL

by over an order of magnitude as shown in Table 8.1. The table shows numbers from a

simple benchmark that consisted of compiling several nontrivial programs. These programs

consisted of compiling ZL’s prelude as well as several of the examples given in Chapter 5.

The tests were run on an AMD Athlon(tm) 64 3000+ Processor with 1 GiB total RAM, and

ZL was compiled with GCC 4.4 with basic optimization enabled.

Most of the improvements are from using better data structures. However, there were

several improvements worth noting. A summary of these improvements is shown in

Table 8.2.

The first improvement involved how errors are handled. Using the techniques outlined

in Bryan Ford’s Master’s thesis [33], ZL makes a basic attempt to find the most probable

reason that caused the parse to fail. This, unfortunately, involved keeping a lot of state

around, which would normally not be needed. Hence, a big improvement was made by

Table 8.1. Improvements in run time and memory usage due to parser optimizations.

What Before After Improvement
Avg. Run Time 1.90 sec. 0.156 sec. 12.2 times
Avg. Max Heap Usage 57.61 MiB 4.22 MiB 13.7 times

Table 8.2. Effects of individual optimizations in run time and memory usage.

Improvement Run Time Reduction Heap Usage Reduction
Don’t Keep Error State 2.15 times 2.13 times
Keep State Between Reparses 1.21 times 1.14 times
Mark Transient Productions 1.04 times 1.68 times

99

simply not keeping this state around during normal parsing. If the parse failed, the text

would be reparsed in a separate mode in order to find the error. This improvement led to a

reduction in run-time and memory usage by a factor of around 2.1.

Another improvement worth noting was keeping the state around when reparsing strings

to avoid quadratic parsing times. Unfortunately, not all productions can be kept between

reparses, because sometimes the result of the parse involves a possible macro identifier

(productions with the special <<mid>> instruction) and hence the results of the parse could

change. For example, in Figure 7.2 (page 67) TOP, STMT, EXP, BLOCK, TOKEN_, TOKEN, ID

could not be kept since they all involved a possible macro identifier. As a result of this and

other factors this improvement did not have nearly as much of an effect as we had hoped,

as it only lead to around a 1.2 times improvement in run-time and 1.1 times reduction in

memory usage.

Finally, we implemented the ability to mark certain productions as transient (i.e., used

only once) as was done in Rats! [40] to disable memoization on the production. Unlike

with Rats!, however, transient productions in ZL cannot be determined statically since

some productions, while appearing only once in the grammar, are in fact used more than

once when reparsing. Thus, we also implemented a special profile-like mode in ZL that

will output data that can be used automatically to discover transient productions and create

a hint file which can then be used by ZL. In the sample grammar shown in Figure 7.2,

TOP, STMT, EXP are all transient. In addition, BLOCK, TOKEN, RAW_TOKEN, and SPACING

where also marked as transient since they are low-cost. This optimization led to a small

improvement (1.04 times) in run time and a larger (1.7 times) reduction in memory usage.

CHAPTER 9

IMPLEMENTATION STATUS AND

PERFORMANCE

The current ZL prototype supports most of C and an important subset of C++. For C, the

only major feature not supported is bitfields, mainly because the need has not arisen. C++

is a rather complicated language, and fully implementing it correctly is beyond the scope

of our research. We aim to implement enough of C++ to demonstrate our approach; in

particular, we support single inheritance, but currently do not support multiple inheritance,

exceptions, or templates.

As ZL is at present only a prototype compiler, the overall compile time when compared

to compiling with GCC 4.4 is 2 to 3 times slower. However, ZL is designed to have little to

no impact on the resulting code. ZL’s macro system imposes no run-time overhead.

The ZL compiler transforms higher level ZL into a low-level S-expression-like lan-

guage that can best be described as C with Scheme syntax. Syntactically, the output is very

similar to fully expanded ZL as shown in Figure 4.1. The transformed code is then passed

to a modified version of GCC 4.4. When pure C is passed in we are very careful to avoid

any transformations that might affect performance. The class macro currently implements

a C++ ABI that is comparable to a traditional ABI, and hence should have no impact on

performance.

9.1 C Support
To demonstrate that ZL can support C programs, two well-known programs were

compiled with ZL: bzip2 and gzip. Bzip2 was compiled without modifications, but gzip

required some minor modification because it was an older C program and used some C

syntax that is not a subset of C++: K&R-style function declarations were transformed into

the newer ANSI C style, and one instance of new as a variable was renamed to new_.

101

Overall, compile times were 2 to 3 times slower with ZL in comparison to compiling

with GCC 4.4. However, both programs compiled correctly, produced correct results, and

had similar run times to the GCC-compiled versions.

9.2 C++ Support
To evaluate ZL’s suitability to compile C++ programs, we chose to compile rand-

prog [26], which is a small C++ program that generates random C programs. Randprog

uses inheritance and other important C++ features, such as overloading and nondefault

constructors. In addition, it uses a few C++ features that ZL does not yet support, so

we changed randprog in small ways to compensate. These changes include reworking

the command-line argument parsing, which used of a library that requires many modern

C++ features; explicit instantiation of vector instances; changing uses of the for_each

template function into normal for loops; and reworking some functions to avoid returning

complex objects.

Randprog was verified to produce correct results by fixing the seed and comparing the

generated program with a version of randprog compiled with GCC for several different

seeds. It was also instrumented with Valgrind and found free of memory errors.

Overall compile time was around 2.5 times slower with ZL when compared to GCC

4.4. A direct run-time performance comparison is of limited usefulness, since ZL does not

use the same C++ library as GCC, but the runtime performance of the ZL-compiled version

of randprog was up to twice as fast as the GCC-compiled version.

9.3 Debugging Support
As ZL is only a prototype compiler only limited debugging support is provided. In

particular, ZL does not provide source level debugging support. Any debugging will need

to be done on the intermediate C like code. Some attempt is made to keep track of line

numbers, however. These numbers can be found in the comments after each line and are

only present when all code on the line ultimately comes from the same source line. Code

from complicated macro transformation will not contain line numbers.

CHAPTER 10

RELATED WORK

The problem of fragile and incompatible ABIs due to software and compiler changes is

well known, and there have been several attempts to address the problem. To the author’s

knowledge, ZL’s approach of providing a small core language and letting everything else

be defined as macros has not been tried before.

10.1 Binary Compatibility
The first serious attempt to solve the problem of fragile ABIs in C++ was in ∆C++

by Palay [48], but that ABI imposes a substantial performance penalty. Williams and

Kindel developed a more sophisticated system with less overhead, known as the Object

Binary Interface [38]. The Object Binary Interface is used only on request, and it allows

for evolutionary steps, such as adding new public and protected methods and adding or

removing private data members. However, it does not allow for changing the order or

type of public data members; thus, it greatly reduces the problem of fragile ABIs, but

does not entirely eliminate it. This ABI also imposes a higher cost when compared to the

more traditional C++ ABI, and as such, is likely to affect performance, especially since all

inheritance is implemented in a manner similar to how virtual inheritance is implemented

in traditional C++ ABIs. Work on ∆C++ and the Object Binary Interface was done in the

early 90s. Research on how to solve the problem in C++ since then is virtually nonexistent,

most likely because of the inherent tradeoff between fragility and speed.

Some attempts have been made to standardize the C++ ABI between compilers for a

given architecture. For example, the Itanium C++ ABI [7] aims to standardize the C++

ABI for the Itanium platform. This ABI is now used by GCC for all platforms towards

the goal of providing a standard C++ ABI for GNU/Linux systems [3]. This effort has had

some success, as the Intel C++ compiler also uses this ABI [6].

103

Since the problem of a fragile and incompatible ABIs was recognized as a serious

issue that needed to be addressed, some newer languages, such as Java, specifically address

the issue in the language specification. The Java concept of binary compatibility was first

developed in SOM [36] and then later defined in the Java Language Specification (JLS) [39,

58]. In Java the ABI is completely specified in The Java Virtual Machine Specification [43],

thus addressing the issue of incompatible ABIs.

Unfortunately supporting binary compatibility as specified in the JLS imposes a per-

formance cost. Many Java compilers that support static compilation at first ignored

binary compatibility in the interest of performance; one such compiler was the GNU Java

Compiler, GCJ [4]. Later research by Yu, Shao, and Trifonov showed how to support static

compilation and binary compatibility [58]. These techniques were later integrated into

GCJ [53].

10.2 Scheme
ZL’s design philosophy is closely related to Scheme’s [51] design philosophy of pro-

viding a small core language and letting everything else be defined as macros. The hygiene

and module system are similar to Chez Scheme’s syntax-case [24] and modules [55],

respectively.

While ZL’s hygiene system is similar to the syntax-case, the data structures are

different. A mark holds a lexical environment, and marks are applied during replace

rather than to the input and result of a macro transformer. Special lookup rules search mark

environments in lieu of maintaining a list of substitutions.

10.3 Other Macro Systems
There are numerous other macro systems for various languages, but apart from Scheme,

few have the goal of allowing a large part of the language to be defined via macros. As such,

they are either a macro system built on top of an existing language, or they lack procedural

macros for general compile-time programming.

Maya [15] is a powerful macro system for Java. Maya macros (known as Mayans)

support lexical extensions by extending Java’s LALR(1) grammar. Like ZL’s macros,

Mayans are procedural and hygienic. Unlike the current version of ZL, Mayans are

104

modular; however, since they extend the LALR(1) grammar, conflicts may well arise

when combining them. OpenJava [52] and ELIDE [20] are similar to Maya but less

advanced. Neither of these systems support hygiene, and they do not support general syntax

extensions.

A procedural and hygienic macro system based on the Earley [25] parser is described in

Kolbly’s dissertation [42]. His system is similar to Maya in that macro expansion is part of

the parsing process, yet more powerful as the Earley parser can handle arbitrary grammars

rather than just the LALR(1) subset. His macro system is also used in the RScheme [8]

dialect of Scheme.

Fortress [10] is a new language with hygienic macro support, and the ability to extend

the syntax of the language. Like ZL, it uses a Packrat parser to support lexical extensions.

In addition and unlike the current version of ZL, the lexical extensions are modular and

thus can be combined. Fortress macros support recursive and mutually recursive definitions

unlike some other macro systems. However, macros cannot expand to other macros, and

are not procedural.

The Dylan [50] language has support for hygienic macros. However, unlike ZL, one

cannot really extend the grammar as macros are required to take one of three fixed forms:

def, stmt, and fun call macros. The JSE system [13] is a version of Dylan macros adapted

to Java.

MS2 [56] is an older, more powerful macro system for C. It essentially is a Lisp

defmacro system for C. It offers powerful macros since they are procedural, but like Lisp’s

defmacro lacks hygiene. In addition, like Dylan but unlike ZL, macros are required to take

one of several fixed forms; no mechanism for general syntactic extensions is provided.

ASTEC [44] is a safer C preprocessor that is less error prone and easier to analyze.

As such, it does not aim to be a complete macro system and thus has many of the same

limitations of the C preprocessor in terms of power of the macro system.

The <bigwig> [18] language support pattern-based macros and lexical extension.

However, and unlike ZL, its macros are limited in power because recursion is explicitly

forbidden. By limiting the power of the macro system <bigwig> can support type safety

and termination of the macro-expansion process.

105

MacroML [37] has similar aims to <bigwig> in that it limits what macros can do to en-

sure safety. While MacroML supports recursion, it does not support lexical extensions. In

addition, macros are not allowed to inspect or take apart code. However, these restrictions

allow macros to be statically typed. This guarantees that macro definitions are well formed

and thus always produce valid code.

10.4 Ziggurat
All of the macro systems mentioned so far are either macro systems on top of a language

or a macro system that is part of a language. Ziggurat [29, 28] is neither. Rather, it is a

language framework centered around Scheme-like macros.

In Scheme, language extensions can be stacked to form “language towers” [30], but

information on each level of the language tower is generally lost once expanded. With

Ziggurat, each level in the language tower can also have static semantics. For example,

fully expanded ZL code has no notion of class methods; this information is available in

the higher level syntax, but is lost once classes are expanded. In Ziggurat, the higher-level

class syntax is one level in the language tower, the fully expanded classes another level, and

the generated C-like code another level. For analysis, each level is important; for-example,

higher-level class information (and, in particular, a notion of class methods) is needed in

order to effectively perform devirtualization. With a Ziggurat style type abstraction in ZL,

it may even be possible to avoid having a type system, and hence user types, built into the

language as they could simply be static semantics of one of the language layers.

Ziggurat, however, only works in S-expression syntax. It has a language layer for C,

but only after it is converted to S-expression syntax. Thus just as ZL can benefit from

Ziggurat type abstraction, Ziggurat can benefit from having a more sophisticated parsing

layer, perhaps one similar to ZL (after it has suitably been extended to support more module

syntax) that converts higher level syntax to S-expression syntax.

10.5 Extensible Compilers
Macros are one approach to providing an extensible compiler, but a more traditional

approach is to provide an API to directly manipulate the compiler’s internals, such as the

AST. On the surface this approach may seem more powerful than a macro system, but we

106

believe a macro system can be equally powerful with the right hooks into the compiler.

Macros also elevate the extensions to the level of a library. For example in ZL being

able to define classes with different ABIs arises naturally from the macro based approach to

defining classes. With a traditional extensible compiler, such a feat will require extra book-

keeping. Nevertheless, some tasks involving complicated program transformations such as

optimizations are better served by the more traditional extensible compiler approach.

Xoc [21] is an extensible compiler that supports grammar extensions by using GLR

(Generalized Left-to-right Rightmost derivation) parsing techniques. Xoc’s primary focus

is on implementing new features via many little extensions, otherwise known as plugins.

This approach has an advantage over most other extensible compilers in that the extensions

to be loaded can be tailored for each source file. As such, Xoc provides functionality similar

to that of traditional macro systems.

METABORG [19] is a method for embedding domain-specific languages in a host

language. It does this by transforming the embedded language to the host language using

the Stratego/XT [54] toolset. Stratego/XT supports grammar modifications using GLR

parsing techniques.

Polyglot [46] is a compiler front-end framework for building Java language extensions;

however, since it uses an LALR parser, extensions do not compose well. JTS [17] is

a framework for writing Java preprocessor with the focus on creating domain-specific

languages. Stratego/XT [54] is a compiler framework whose primary focus is on stand-

alone program transformation systems; it also supports grammar modifications using GLR

parsing techniques. CIL [45] focus in on C program analysis and transformation, and as

such, does not support grammar modifications. Again, as external tools, these systems all

represent an approach different from ZL’s support for extension within the language.

CHAPTER 11

DISCUSSION AND FUTURE WORK

The main use of ZL in this dissertation has been to mitigate ABI compatibility prob-

lems. In the process, we have also demonstrated how a powerfull Scheme-like macro

system can be used to build C++ constructs over a C-like core. As such, ZL has many

other potential uses beyond addressing ABI compatibility problems. In this chapter, we

will evaluate ABI problems solved, outline additional work to be done, explore other uses

of ZL, and outline areas of future research.

11.1 Evaluation of ABI Problems Solved
In Chapter 5 and 6 of this dissertation, we have solved many of the ABI problems

outlined in Chapter 3. In addition, we outlined what needed to be done to solve the

remainder of those problems in Section 5.7. We have demonstrated that we can use

several ABIs at once in addition to using ZL to help maintain binary comparably while

still matching another compiler’s ABI (GCC’s).

Matching other compilers’ ABIs would contribute little towards supporting the thesis,

but would improve the utility of ZL. Other than GCC, the main target ABI would be

the Visual C++ ABI. Work involved towards matching this ABI includes 1) porting ZL

to Windows, 2) writing a new mangler function, 3) adding support the “this” calling

conversion in the ZL backend. The version of GCC that the ZL backend was created from

does not support the “this” calling conversion, yet newer versions do, so implementing (3)

involves either back-porting the changes in GCC that support the new calling conversion

or forward-porting the front-end changes to the latest version of GCC. It is important to

note that class layout for ZL ABI, GCC ABI, and Visual C++ ABI are the same except for

perhaps the issue of multiple destructors; thus there is very little work to be done in that

area.

108

11.2 Error Messages and Debugging Support
ZL attempts to provide helpful error information when expanded code has syntax or

related errors by to providing a backtrace of what is expanded from where, but the backtrace

is inexact. In addition, if the code was preprocessed using the C preprocessor source

locations will correspond to the preprocessed output rather than the original source code.

As mentioned in Section 9.3, ZL does not provide any source-level debug support, so

any debugging is done on the generated code. In some cases, line numbers are provided

in comments, which can help, but the user must still look at two source files to find the

problem. Worse, as is the case with error messages, if the code needed to first go through

the C preprocessor, these line numbers correspond to the output of the prepossessed code,

rather than the original source. Needless to say, this is unacceptable for compiling all

but the most trivial of programs, and in fact has made developing the class macros more

difficult than it could be.

To improve both situations, several things need to be done. The rest of this section

details some of those steps.

11.2.1 Handing of Code Needing the C Preprocessor

To provide better debugging and error message support, the C preprocessor needs to

be integrated into the ZL parser, or at very least ZL needs to respect the #line directives

generated by the external preprocessor. Integrating the C preprocessor will in principle

allow keeping track of the exact location of each character in the input; in reality, this

support will also require changes in how ZL maintains source locations, as ZL can only

assign one source location to each token, but with preprocessed code the same token can

have multiple source locations.

Even with the limitations of one source location per token, an integrated C preprocessor

is needed to have any hope of keeping track of source code at the character level. One

obvious example where character level information can get lost is when part of the line

contains an expansion of a preprocessor macro. In fact, the problem is worse than that. The

C preprocessor makes no guarantee to preserve the amount of whitespace in a line. Thus,

even without any transformations, code such as

109

int x = y + z;

could become:

int x = y + z;

so that nearly any character level information on preprocessed output will be inexact.

However, an integrated preprocessor is not required in order to keep track of source

code location at the line level as long as ZL respects the #line directive. The main

barrier to supporting #line is that, as ZL normally keeps track of source code location

at the character level, error messages tend to rely on this information, and can thus be

misleading. The easiest solution to this problem is to just ignore it, and accept the fact that

character location within a line may be wrong. A slightly better solution is to maintain

a flag to indicate that character location may be wrong and use other means to help the

user determine the location within the line that the error is located (such as giving a code

snippet), which is what most C compilers that do not have an integrated C preprocessor

currently do.

11.2.2 Source Level Debugging

Once correct handling of preprocessed code is done, the next step is to get source level

information into the object file as debugging symbols. Adding support for line numbers is

simply a matter of figuring out how to get ZL’s back-end compiler (the modified version of

GCC) to generate said symbols. Unfortunately, since the back-end compiler is really just

a modification of the C front-end, this is a more difficult task than it should be as the C

front-end provides no easy means of setting line numbers directly.

In addition to providing line number information, good source level debugging needs

the ability to examine the value of variables. The variable names used in the generated

source code have some correspondence to the original variable names, but in most cases

they are mangled to avoid any possibility of conflict. For example, a local variable x will

get renamed to x$1, which can be confusing to the end-user that should not need to worry

about the implementation details. One solution to this problem is to only rename variables

when necessary (for example, to prevent conflicts in macro expanded code), and another is

to figure out how to get GCC to give alternative names (i.e., the original name as it appears

in the source code) in the debugging output. Neither solution is simple to implement.

110

Even when debugging with the original names, there is still the problem of how to refer

to variables introduced in the macro that conflict with local names, such as in the expansion

of the or macro in Section 4.2 (page 27). Proper support for macro-introduced variables

will likely require additional support from the debugger. Without the debugger support,

the best solution is to use a consistent naming scheme for marked (i.e., macro-introduced)

variables.

11.2.3 Better Support for Macro Expanded Code

In addition to adding support for referring to macro-introduced variables, another

challenge in debugging macro expanded code is the fact that the same piece of code can

have multiple locations: the location of the macro call site, and the location within the

macro definition. Fortunately, this situation is similar to the case of inline code so there is

already some debugging support. The main issue is generating the correct symbols.

Before the symbols (that contain the location for both the call site and definition site)

can be generated, ZL needs to able to know what the locations are. As already mentioned,

ZL does make some attempt to provide this via a backtrace of what was expanded from

where, but it does not always do a good job. Section 11.5.1 discusses improvements on

how macro expansion is handled internally that will likely greatly improve the quality of

the backtrace.

11.3 C++ Template Support
On the surface, a good macro system can replace the need for C++ templates as they

are similar to macros. However, templates provide at least one functionally that normal

macro systems do not provide: the automatic installation of template instances as needed.

For example, given

template<class T> class vector {...};

int foo() {vector<int> vec1;}
int bar() {vector<int> vec2;}

an instance of vector<int> needs to be generated for foo() and bar(). Furthermore,

both functions need to use the same instance, which is important if the class has any static

data members.

111

One approach that almost works is to have both the template definition and the use be

macros. Then, vector<int> will be a macro call that can generate the necessary code.

The problem is that the code generated will not be in the correct scope; it will be local to,

say, foo() when it needs to be in global scope. Thus, at bare minimum some support will

be needed to eject new symbols in the global environment while inside a function. There

is also the problem of having multiple instances of vector<int>, but some bookkeeping

within the macro can avoid that problem.

With explicit installation ZL’s macro system can provide basic template functionally.

In fact, ZL provides a macro to create instances of the vector template class.

While ZL’s macros can provide basic template support, a correct implementation of

C++ templates is more involved due to, in part, many difference in how ZL macros

and templates behave; for example, the scoping rules are different. In addition, C++

templates provide advanced features, such as partial specialization and function templates,

that may be hard to provide via a pure macro system. Function templates are especially

tricky because special syntax is not used when calling a function template, instead the

instantiation is part of the normal overloading rules. For example, given

template<class T> void f(T) {...}
void f(int) {...}
void f(void *) {...}

the call f(6.8) will instantiate the template version (with double as the T parameter) and

f(6) will call the nontemplate version (the second one, with the int parameter). The rules

are also tricky; for example, the call f(&x) (that is pass in a pointer to x) will instantiate a

new version of f rather than calling the nontemplate version of f with the void * parameter,

as might be expected since any pointer type can be implicitly converted to a void *.

11.4 C++ Support in General
As discussed in Section 9.2, ZL only supports a small subset of C++. The work needed

to support templates was discussed in the last section. Here is a brief run-down of additional

C++ features not implemented and the work involved to implement them:

• Namespaces. More Code.

112

• RTTI. More Code.

• Multiple Inheritance. The type system and class macro will likely need to be

completely rewritten.

• Exceptions. Exceptions are a very low-level feature, which a compiler to a C-like

language can not implement effectively. In addition it will be impossible to match

any compiler’s ABI at the C level. Nevertheless, there is built in exception support

in GCC backend so it may be possible to tap into that code to at least implement the

GCC ABI.

11.5 Enhancements to ZL’s Macro System
ZL provides a powerful, hygienic macro system. The choice of using an intermediate

s-expression for all macro expansion simplified the design of ZL. In addition, and although

not directly related to the macro system, the choice of using an intermediate s-expression

language allowed for easily adding rarely used primitives without having to define higher-

level syntax for it.

Nevertheless, there are a number of improvements that can be made to the macro

system. This section explores many of them.

11.5.1 Always Reparsing

As mentioned in Section 8.2.3, ZL’s macro expander is a mixture of eager and lazy

expansion. Expansion is eager when the raw_syntax form is used and lazy otherwise.

As is well known [24], eager expansion can lead to quadratic expansion time. More,

importantly the mixture greatly complicated the process of tracking what was expanded

from where, which makes providing meaningful backtraces difficult (as mentioned in

Section 11.2).

Thus, it makes sense to make all expansion lazy. In ZL lazy expansion is coupled with

the reparsing processes; thus the idea is to always reparse no matter what form is used to

create syntax. In particular, in order to make all expansion lazy the raw_syntax form will

need to be handled in the same way that syntax forms are currently handled (see Section

113

8.2.1) except that, when it comes time to parse the string, the s-expression parser is used

rather than the PEG parser.

An important side effect of the change (to always reparsing) is that pattern variables

will get recognized like they are with the Packrat parser, and thus get transformed from bare

identifiers to mid’s; for example, if X was a pattern variable then it would get transformed

to (mid X). In addition to eliminating some special cases, this change will also avoid

confusing single letter pattern variable with “quote” syntax forms, such as (s STRING).

Before, the use of single letter pattern variables as the first part of a syntax object was

pragmatic because the template (s n) will always represent the string n regardless of if s

is a pattern variable. With the addition of the reparser for s-expression forms, (s n) will

become ((mid s) (mid n)) if s is a pattern variable and the syntax was created using

raw_syntax.

11.5.2 Matching Literals Hygienically

ZL provides limited support for matching literals; for example, Figure 5.1 (page 35)

uses (pattern ({...} @body)) to match against the {...} literal. However, literals are

matched symbolically with no regard to lexical context. Even outside of (pattern ...),

the current ZL implementation completely ignores hygiene when matching keyword like

symbols.

This limitation is not a fundamental flaw, however, and it can be fixed using ZL’s

hygiene model. The basic idea to implementing hygienic keyword matching is to make

the keyword part of the environment and use an extended version of match that takes into

account both the environment in which the macro was called and the environment in which

the macro was defined. In this model, the keyword_binding form would introduce a

keyword into the environment; for example,

keyword_binding {...};

would make the {...} literal part of the environment. The extended version of match will

then take two extra parameters: the environment passed into the macro, and a mark (which

holds the environment in which the macro was defined). For example,

114

Syntax * parse_myclass(Syntax * syn, Environ * env) {
Mark * mark = new_mark();
Match * m = match

(0, raw_syntax(_ name @ (pattern ({...} @body))), syn, env, mark);
// ...

}

will hygienically match the {...} literal. The extended version of match will first look up

the literal {...} in the environment associated with the mark (i.e., the environment where

the macro was defined). When match finds the literal {...} in the syntax object syn, it will

look up the symbol again, but this time in environment stored in env (i.e., the environment

where the macro was called), and the pattern will only match if both {...} resolve to the

same symbol.

11.5.3 Using Marks for Inner Namespaces

Although not strictly related to the the macro expander, ZL’s hygiene model can

eliminate the need for a separate data structure to represent inner namespaces (see Section

7.1, page 63) as the role an inner namespace provides is very similar to the role marks

provide.

Instead of inner namespaces, a special mark will be used known as a "namespace" mark

that has that has the following properties:

• The mark is never stripped.

• The mark is always applied before other marks.

• If multiple namespace marks are applied then sort them; the exact ordering is

unimportant as long as it is stable within the compilation unit.

The syntax used to create namespace marks is unchanged. That is, namespace marks can

be created with the syntax:

make_inner_ns NAMESPACE

and the syntax ‘NAMESPACE syntax will apply a namespace mark to a symbol.

11.6 Support for an Extensible Parser
Currently, lexical extensions involve modifying the grammar specification. It would

be better if this was modular so that using techniques such as fix_size will not require

115

modifying the core grammar. Much work in the area of module extensions to a PEG

grammar has been done in Rats! [40] system. ZL can use many of these techniques to

provide for modular lexical extensions.

11.7 Beyond ABI Compatibility
ZL has many potential uses beyond addressing ABI compatibility issues. This section

explores some of them.

11.7.1 Type Safe and Extensible printf

C’s printf function is very powerful, yet it is also dangerous as it is a variadic function

that is not type safe. That is, the following is allowed

int x;
printf("%f", x); // %f expects a double

and will not create either a compile or run-time error. Rather the code will lead to undefined

behavior by the C standard. This problem is a common enough that the GCC compiler

provides an extension (via the format attribute) to warn about such type mismatches. Even

with the extension, printf is not extensible, in that it can not be adopted to support user-

defined types.

C++ deals with the problem by providing an alternative mechanism for formatting

output by overloading the the << operator. This mechanism, while type-safe and extensible,

is not nearly as convenient to use as specifying a printf-style template.

With ZL it is possible to have the best of both worlds—to specify formatting via a

template but also make the call type safe. To start with, a simple printf macro could

simply implement GCC’s format attribute. The macro can parse the format string and

then check the type of the parameters to make sure they are compatible, then ultimately

pass the result to the printf function. A more involved macro will allow extending the

format string to support user types. A simple implementation could convert the user type

to a string and pass that string onto printf. A more involved implementation could work

more like C++ I/O but with the benefit of retaining the syntax of C’s printf.

The Boost Format library [9] provides printf style formatting support for C++, which

works via clever use of operator overloading. However, since C++ provides no way to parse

116

the format string at compile time, any type mismatches are detected at run time rather than

at compile time, which means additional overhead that a macro system can avoid.

A type-safe printf was explored in the context of Scheme in an earlier paper by Her-

man and Meunier [41]. This paper also used macros to embed SQL and to compile regular

expressions. Section 11.7.3 discusses how ZL can be used to embed SQL. Compiling

regular expression with ZL is also possible but not discussed in this dissertation.

11.7.2 Variable Interpolation

Many dynamic languages provide support for interpolation variables in strings; for

example, in such languages, the string "Total: $total" interpolates the local variable

total into the string. Variable interpolation at times is more convenient than using a

format string. With most dynamic languages, using a variable that is not in the current

scope will only result in a error once the string is used.

C and C++ lack this feature, but with ZL it can easily be added via a macro. The macro

can parse the string and transform the code to how it would be written without variable

interpolation support. The macro has the added benefit that using a variable that is not in

the current scope will result in a compile-time error, rather than a run-time error.

11.7.3 Embedding SQL

ZL’s parsing strategy was deliberately chosen to make embedding languages within

each other easy without having to make extensive grammar modifications and hence

minimize the possibility of conflicts. For example, the SQL language can be embedded

into ZL by adding a single syntactic form:

sql (...)

Anything between the () is parsed using an alternative SQL parser. The only requirement

is that the SQL code does not introduce any unbalanced grouping characters.

Once embeded, the SQL syntax can access local variables and can even create new ones.

For example, to insert a row into the table using the local variables name and address one

could simply use

sql(INSERT INTO addresses (name, address) VALUES (name, address));

117

and the SQL parser will know that the first (name, address) are not part of an expression

but rather field names, while the second instance contains expressions that can refer to local

variables. In addition, the parser will interpolate the values in a safe manner to avoid SQL

injection attacks.

SQL code can also introduce local variables; for example, the code

foreach (sql(SELECT name, address FROM addresses)) {
...

}

creates two lexically scoped variables, name and address, that can be accessed inside the

for loop. If it would be more convenient to access the rows outside of a loop, a structure

can be created where each struct field corresponds to a field of the result; for example, in

the above query the struct will have two fields: name and address.

11.8 Areas of Future Research
One area that needs to be explored is how to provide better source level debugging in

the presence of macros, in addition to providing useful error messages. Some work has

been done on this problem with Scheme macros [22], but ZL macro expander is different

enough to pose its own unique challenges.

ZL’s hygiene implementation is similar to Scheme’s [24], but it is not the same. Future

work in this area is a more formal description of the hygiene system and to determine in

what ways it differs from Scheme’s.

11.9 Alternative Research Direction
This dissertation solved the ABI problem through a macro system. An alternative

approach is to develop a model specification language such as was done with calling

conventions by Bailey and Davidson [14] via CCL, and to some extent Olinksy, Lindig, and

Ramsey [47] via staged allocation. A model specification language is a precise description

of how to implement C++ constructs.

The model specification language for calling conventions was developed by observing

precisely the steps involved in making a call across a wide variety of architectures and

generalizing it. A language for the the more general C++ ABI will involve a similar

118

process. In addition, different languages will likely need to be developed for different

aspects of the ABI as they involve different concerns; for example, the specification for

calling conventions is mostly about the placement of parameters in registers and on the

stack, with inheritance the specification is mostly about data layout, and with exceptions it

is mostly about stack-unwinding.

A good starting place would be to formalize the description from an existing ABI

specifications (such as the Itanium C++ ABI) then try to adopt the language developed

to a different ABI. Adapting it to the Visual C++ ABI will likely require some degree of

reverse-engineering since many parts of the ABI are undocumented.

All in all, developing the specification is a topic for another dissertation, due to the

amount of work involved and the fact that each aspect of the ABI will need to be handled

separately.

CHAPTER 12

CONCLUSION

Binary compatibility is a serious problem for software evolution in C++. C++ ABIs

tend to be fragile because they are optimized for speed rather than robustness. Thus,

library implementers have developed a number of programming idioms to help mitigate

the problem. Due to the sheer number of idioms and the trade-offs involved, adding them

as language extensions is infeasible. In addition, C++ ABIs differ between compilers, and

hence, switching compilers often breaks binary compatibility.

We have solved this problem using ZL. ZL is a C++-compatible language in which

high-level constructs, such as classes, are defined using macros over a C-like core lan-

guage. ZL solves the problem of binary compatibility by using macros to automate the

use of programming idioms that programmers would use to mitigate the problem. When

programming idioms are not sufficient, ZL gives the programmer complete control over

the ABI by providing a customizable class macro. The ZL macro system benefits library

implementers and consumers who do not need to know the full details of how macros work,

as library implementers can just use the macro libraries written by the tool implementers.

At the same time, ZL makes the job of tool implementers easier when compared to a

traditional compiler system.

For the current implementation of ZL, see the ZL web page available at http://www.

cs.utah.edu/~kevina/zl/.

APPENDIX

OVERHEAD OF THE PIMPL IDIOM

The pimpl idiom (see Section 3.2.2) adds a small amount of overhead. How significant

this overhead is depends on a large number of factors. To get an idea of this overhead

we measured the performance of a program that performs a simple calculation on a large

number of objects, both with and without the pimpl idiom.

Figure A.1 and A.2 show the class used for the tests. The class contains eight integer

data members and is designed to mimic the size of a mildly complex class used in practice.

Figure A.3 shows the code used in the test. The test is broken down in three phases: the

first phase initializes the objects; the second phase computes using the objects; and the final

phase destroys the objects. Not included in any of the phases is code to allocate and free

the memory used for the objects.

All of the objects used in the test are allocated in a continuous region of memory.

The constant COUNT is the number of objects to allocate. After the objects are allocated

and initialized, compute is called LOOP number of times. The compute function iterates

through the objects 4 times, each time performing a summation over some of the fields.

The main point of the calculation is to access the data members. The actual result of the

calculation is immaterial; a simple summation was chosen to measure the cost of accessing

the fields and not the calculation itself. The constant A_PRIME can be set to a prime number

to access the objects in a nonlinear fashion (the default value is 1).

Three tests are performed. In the first test, “In Cache”, COUNT is set to 1 Ki and LOOPS

is set to 64 Ki. The idea of this test is to measure the overhead of the pimpl idiom when

all the objects can fit in the cache (likely the L1 cache). In the second test, “Predictable”,

COUNT is set to 8 Mi and LOOPS is set to 8. The idea of the second test is to measure

the overhead when all the objects can not fit in any cache (the total size of the objects

on a typical 32-bit architecture is 256 MiB) but are accessed in a predicable way. In the

121

class Test {
private:
unsigned _a;
...
unsigned _h;

public:
Test(unsigned x) : _a(x), ... _h(x+7) {}
unsigned a() {return _a;}
...
unsigned h() {return _h;}

};

Figure A.1. Class used in test.

class TestImpl {
unsigned _a;
...
unsigned _h;

public:
Test(unsigned x) : _a(x), ... _h(x+7) {}

};

class Test {
TestImpl * impl;

public:
Test(unsigned x) {impl = new TestImpl(x);}
unsigned a() {return impl->_a;}
...
unsigned h() {return impl->_h;}
~Test() {delete impl;}

};

Figure A.2. Same class (Figure A.1) but refactord to use the pimpl idiom.

122

unsigned res = 0;

int main() {
Test * objs = (Test *)malloc(sizeof(Test) * COUNT);
init(objs);
for (unsigned i = 0; i != LOOPS; ++i)
res += compute(objs);

destroy(objs);
free(objs);

}

void init(Test * objs) {...}

unsigned compute(Test * objs) {
unsigned total = 0;
unsigned i;

i = 0;
do { total += objs[i].a() + objs[i].b() + objs[i].c() + objs[i].d();

i = (i + A_PRIME) % COUNT;
} while (i != 0);

do { total += objs[i].e() + objs[i].f();
i = (i + A_PRIME) % COUNT;

} while (i != 0);

do { total += objs[i].g();
i = (i + A_PRIME) % COUNT;

} while (i != 0);

do { total += objs[i].h();
i = (i + A_PRIME) % COUNT;

} while (i != 0);

return total;
}

void destroy(Test * objs) {...}

Figure A.3. Simplified version of code used to test the overhead of the pimpl idiom.

123

final test, “Unpredictable”, COUNT and LOOPS are set as before and, in addition, A_PRIME

is set to a large prime (369983). The idea of the final test is to access the objects in a

unpredictable order to guarantee cache-misses nearly every time. In all tests, the total

number of operations performed by the compute phase is the same.

Table A.1 shows the results of the running the tests. Each test was run 60 times and the

average times were taken. The test were performed on a 3.20 GHz Intel Core i3 Processor

(with two cores) and compiled with a 32-bit version of GCC 4.4.3 on Ubuntu 10.04 using

the -O3 option. In the table, “overhead” is the extra time spent performing the test, which

is not part of one of the three phases. The cost of the overhead phase consists primarily of

the cost to allocate and free the memory for the objects. Note that when the pimpl idiom is

used, the cost of allocating the impl object is included as part of the first phase, rather than

as part of the overhead.

Depending on how the objects are accessed the slowdown in the main phase (compute)

varies from 1.0 to 1.7. When the working-set size is small enough that everything fits in the

Table A.1. Overhead on using the pimpl idiom.

Test Phase Normal Pimpl Slowdown
(cpu time in seconds) (factor of)

In Cache

Initialize 0.000±0.000 0.000±0.000 -
Compute 0.335±0.007 0.336±0.005 1.00
Destroy 0.000±0.000 0.000±0.000 -
Overhead 0.000±0.000 0.000±0.000 -
Overall 0.335±0.007 0.336±0.005 1.00

Predictable

Initialize 0.112±0.006 0.413±0.010 3.69
Compute 1.051±0.011 1.375±0.015 1.31
Destroy 0.000±0.000 0.155±0.008 ∞

Overhead 0.015±0.005 0.004±0.005 0.23
Overall 1.178±0.012 1.947±0.022 1.65

Unpredictable

Initialize 0.113±0.005 0.413±0.015 3.65
Compute 7.085±0.057 12.087±0.084 1.71
Destroy 0.000±0.000 0.153±0.009 ∞

Overhead 0.015±0.005 0.003±0.005 0.24
Overall 7.213±0.058 12.656±0.093 1.76

124

cache (as in the “In Cache” test), the pimpl idiom has no measurable overhead. Things are

more interesting when the working-set is too large to fit in any cache. When the objects are

accessed in a predicable linear fashion (as in the “Predictable” test), the pimpl idiom has an

overhead of around 31%. However, when the objects are accessed in a unpredictable way,

the overhead is 71%.

The main cost of the pimpl idiom is not the extra indirection but the extra cost of

allocating and freeing the impl object. The extra cost of allocation (the initialize phase)

causes a slowdown of factor of around 3.7 in our tests. The pimpl idiom also has a cost

when the object is freed; it adds 0.15 seconds to the overall runtime.

For the “In Cache” test, not enough objects were allocated to measure anything and

hence the cost is 0.000 for all but the compute phase. For the other tests, the already small

run-time in the overhead phase is smaller when the pimpl idiom is used, due to the fact the

the actual object is smaller (it shrinks from the size of 8 integers to the size of one pointer)

and there is hence less memory to allocate and free.

Overall, depending on how the objects are accessed, the overhead of using the pimpl

idiom is between 0 and 76%. Our tests aim for the worst case scenario where the objects are

not in the cache and the computation performed on the data members is trivial. In addition,

all objects were allocated at once in a single block of memory, and the ratio between the

number of operations performed on the object and the number of objects allocated is low. In

real programs, objects are likely to be allocated with new, and thus the slowdown due to the

pimpl idiom is likely to be less. In addition, real programs are likely to perform far more

operations on the allocated objects, and thus marginalize the cost of the initialize phase.

For all these reasons, the 76% overhead is likely to be a upper bound to the performance

impact in real programs, and the actual value is likely to be closer to the lower bound of

0% than to the upper bound.

REFERENCES

[1] Aspell C API reference. http://aspell.net/man-html/Through-the-C-API.
html.

[2] Aspell web site. http://aspell.net.

[3] A common C++ ABI for GNU/Linux. http://gcc.gnu.org/gcc-3.2/c++-abi.
html.

[4] GCJ web site. http://gcc.gnu.org/java/.

[5] GNOME. http://www.gnome.org.

[6] Intel C++ compiler man page. Available at http://software.intel.com/en-us/
intel-compilers/.

[7] Itanium C++ ABI (revision: 1.86). http://www.codesourcery.com/cxx-abi/
abi.html.

[8] RScheme web site. http://www.rscheme.org/rs/.

[9] The Boost Format library. http://www.boost.org/doc/libs/release/libs/
format/doc/format.html.

[10] Eric Allen, Ryan Culpepper, Janus Dam Nielsen, Jon Rafkind, and Sukyoung Ryu.
Growing a syntax. In Proc. Workshop on Foundations of Object-Oriented Languages
(FOOL), 2009.

[11] Kevin Atkinson and Matthew Flatt. Adapting Scheme-like macros to a C-like
language. In Proc. Workshop on Scheme and Functional Programming, Portland,
Oregon, 2011.

[12] Kevin Atkinson, Matthew Flatt, and Gary Lindstrom. ABI compatibility through a
customizable language. In Proc. Generative Programming and Component Engi-
neering (GPCE), pages 147–156, Eindhoven, The Netherlands, 2010.

[13] Jonathan Bachrach and Keith Playford. The Java syntactic extender (JSE). In Proc.
OOPSLA, pages 31–42, Tampa Bay, FL, 2001.

[14] Mark W. Bailey and Jack W. Davidson. A formal model and specification language
for procedure calling conventions. In Proc. POPL, pages 298–310, 1995.

[15] Jason Baker and Wilson C. Hsieh. Maya: multiple-dispatch syntax extension in Java.
In Proc. PLDI, pages 270–281, Berlin, Germany, 2002.

126

[16] Eli Barzilay, Ryan Culpepper, and Matthew Flatt. Keeping it clean with syntax
parameters. In Proc. Workshop on Scheme and Functional Programming, Portland,
OR, 2011.

[17] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for implementing domain-
specific languages. In Proc. Intl. Conf. Software Reuse (ICSR), page 143, 1998.

[18] Claus Brabrand and Michael I. Schwartzbach. Growing languages with metamorphic
syntax macros. In Proc. Symposium on Partial Evaluation and Semantics-based
Program Manipulation (PEPM), pages 31–40, Portland, OR, 2002.

[19] Martin Bravenboer and Eelco Visser. Concrete syntax for objects: domain-specific
language embedding and assimilation without restrictions. In Proc. OOPSLA, pages
365–383, Vancouver, BC, Canada, 2004.

[20] Avi Bryant, Andrew Catton, Kris De Volder, and Gail C. Murphy. Explicit program-
ming. In Proc. Conf. Aspect-Oriented Software Development (AOSD), pages 10–18,
Enschede, The Netherlands, 2002.

[21] Russ Cox, Tom Bergan, Austin T. Clements, Frans Kaashoek, and Eddie Kohler. Xoc,
an extension-oriented compiler for systems programming. In Proc. Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), pages 244–254,
Seattle, WA, 2008.

[22] Ryan Culpepper and Matthias Felleisen. Debugging hygienic macros. Science of
Computer Programming, July 2010.

[23] R. Kent Dybvig. Syntactic abstraction: the syntax-case expander. In Andy Oram
and Greg Wilson, editors, Beautiful Code: Leading Programmers Explain How They
Think, chapter 25, pages 407–428. O’Reilly and Associates, June 2007.

[24] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstraction in Scheme.
Lisp and Symbolic Computation, 5(4):295–326, 1992.

[25] Jay Earley. An efficient context-free parsing algorithm. Commun. ACM, 13(2):94–
102, 1970.

[26] Eric Eide and John Regehr. Volatiles are miscompiled, and what to do about it. In
Proc. Intl. Conf. on Embedded Software (EMSOFT), 2008.

[27] Matthias Ettrich and Lubos Lunak. KDE developer’s corner: Binary compat-
ibility issues with C++. http://developer.kde.org/documentation/other/
binarycompatibility.html.

[28] David Fisher. Static Semantics for Syntax Objects. PhD thesis, Northeastern Univer-
sity, 2010.

[29] David Fisher and Olin Shivers. Building language towers with Ziggurat. Journal of
Funtional Programming, 18(5–6):707–780, September 2008.

127

[30] Matthew Flatt. Composable and compilable macros: You want it when? In Proc.
Intl. Conf. Functional Programming (ICFP), pages 72–83, Pittsburgh, Pennsylvania,
2002.

[31] Matthew Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2010-1, PLT
Inc., 2010. http://racket-lang.org/tr1/.

[32] Robert W. Floyd. Syntactic analysis and operator precedence. J. ACM, 10(3):316–
333, 1963.

[33] Bryan Ford. Packrat Parsing: A Practical Linear-Time Algorithm with Backtracking.
Master’s thesis, Massachusetts Institute of Technology, 2002.

[34] Bryan Ford. Packrat parsing: Simple, powerful, lazy, linear time. In Proc. Intl. Conf.
Functional Programming (ICFP), pages 36–47, Pittsburgh, PA, 2002.

[35] Bryan Ford. Parsing expression grammars: a recognition-based syntactic foundation.
In Proc. POPL, pages 111–122, Venice, Italy, 2004.

[36] Ira R. Forman, Michael H. Conner, Scott H. Danforth, and Larry K. Raper. Release-
to-release binary compatibility in SOM. In Proc. OOPSLA, pages 426–438, Austin,
TX, 1995. ACM Press.

[37] Steven E. Ganz, Amr Sabry, and Walid Taha. Macros as multi-stage computations:
type-safe, generative, binding macros in macroml. In Proc. Intl. Conf. Functional
Programming (ICFP), pages 74–85, Florence, Italy, 2001.

[38] Theodore C. Goldstein and Alan D. Sloane. The object binary interface: C++ objects
for evolvable shared class libraries. In Proc. USENIX C++ Technical Conf., pages
1–20, 1994.

[39] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specifi-
cation, Third Edition. Addison Wesley, 2005.

[40] Robert Grimm. Better extensibility through modular syntax. In Proc. PLDI, pages
38–51, Ottawa, Ontario, 2006.

[41] David Herman and Philippe Meunier. Improving the static analysis of embedded lan-
guages via partial evaluation. In Proc. Intl. Conf. Functional Programming (ICFP),
pages 16–27, Snow Bird, UT, 2004.

[42] Donovan Kolbly. Extensible Language Implementation. PhD thesis, Univ. of Texas,
Austin, 2002.

[43] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification, Second
Edition. Addison Wesley, 1999.

[44] Bill McCloskey and Eric Brewer. ASTEC: a new approach to refactoring C. In Proc.
ESEC/FSE-13, pages 21–30, Lisbon, Portugal, 2005.

128

[45] George C. Necula, Scott McPeak, S. P. Rahul, and Westley Weimer. CIL: Intermedi-
ate language and tools for analysis and transformation of C programs. In Proc. Conf.
Compiler Construction, pages 213–228, 2002.

[46] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An
extensible compiler framework for java. In Proc. Conf. Compiler Construction, pages
138–152, 2003.

[47] Reuben Olinksy, Christian Lindig, and Norman Ramsey. Staged allocation: A com-
positional technique for specifying and implementing procedure calling conventions.
In Proc. POPL, pages 409–421, Charleston, SC, January 2006.

[48] Andrew Palay. C++ in a changing environment. In Proc. USENIX C++ Technical
Conf., pages 195–206, 1992.

[49] Peter Potrebic. What’s the Fragile Base Class (FBC) Problem? BE NEWSLETTER –
The Newsletter for BeOS Developers and Customers, June 25 1997.

[50] Andrew Shalit, David Moon, and Orca Starbuck. Dylan Reference Manual. Addison-
Wesley, 1996.

[51] Michael Sperber (Ed.). The Revised6 Report on the Algorithmic Language Scheme.
Cambridge University Press, 2007.

[52] Michiaki Tatsubori, Shigeru Chiba, Kozo Itano, and Marc-Olivier Killijian. Open-
Java: A class-based macro system for Java. In Proc. 1st OOPSLA Workshop on
Reflection and Software Engineering, pages 117–133, London, UK, 2000.

[53] Tom Tromey and Andrew Haley. GCJ: The new ABI and its implications. In Proc.
GCC Developers’ Summit, pages 169–174, 2004.

[54] Eelco Visser. Program transformation with Stratego/XT. Rules, strategies, tools, and
systems in Stratego/XT 0.9. In Lengauer et al., editor, Domain-Specific Program
Generation, Lecture Notes in Computer Science, pages 216–238. Spinger-Verlag,
June 2004.

[55] Oscar Waddell and R. Kent Dybvig. Extending the scope of syntactic abstraction. In
Proc. POPL, pages 203–215, San Antonio, TX, 1999.

[56] Daniel Weise and Roger Crew. Programmable syntax macros. In Proc. PLDI, pages
156–165, Albuquerque, NM, 1993.

[57] Sara Willliams and Charlie Kindel. The component object model: A technical
overview. Dr. Dobbs Journal, December 1994. Also at http://msdn.microsoft.
com/library/en-us/dncomg/html/msdn_comppr.asp?frame=false.

[58] D. Yu, Z. Shao, and V. Trifonov. Supporting binary compatibility with static compi-
lation. In Proc. Java Virtual Machine Research and Technology Symposium (JVM),
pages 165–180, 2002.

